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ABSTRACT

Based on recently developed cooperative systems theory and an new result for

essentially positive matrix, we consider two important ODE systems with discrete

diffusion. One is a cooperative Lotka-Volterra diffusion system and another is a

logistic system with directed diffusion. Sufficient and necessary conditions are given

for the former to be permanent and for the latter to be globally stable.

1 INTRODUCTION

Recently, many authors consider the effect of spatial distributions of species over

the range of the habitat in population $dynamics[1- 8,11- 17,19- 23,26- 31]$ . It is shown

that spatial factors play a fundamental role in persistence and stability of popu-

lations, although a complete result has not yet been obtained even in the simplest

one-species case. If the population dynamics with the effects of the spatial heterogene-

ity is modeled by diffusion process, we have two typical equations. One is semilinear

parabolic equations, i.e., a reaction-diffusion system where the population is continu-

ously spread out in $space[6,8,11,14,15,21- 23,26]$ . The other is a discrete diffusion sys-

tem where several species are distributed over an interconnected network of multiple

数理解析研究所講究録
第 827巻 1993年 1-11



2

patches and there are population migrations among $patches[1- 5,7,8,12,13,19,20,27-$

$31]$ .

In this paper, we focus our attention to discrete diffusion systems, namely, a

cooperative Lotka-Volterra diffusion system and a logistic directed diffusion system.

For the cooperative Lotka-Volterra diffusion system, based on the homotopy func-

tion technique, Beretta[4] and Beretta and Takeuchi[5] provided some sufficient con-

ditions for the existence of a positive globally asymptotically stable equilibrium point.

And in[l], Allen introduced a logistic system with directed diffusion. By using com-

parison theorem, Allen obtained a sufficient condition for the solutions of the system

to be bounded in 2-dimensional case.

In this paper, on the basis of the monotonicity for flows of cooperative systems,

for the cooperative Lotka-Volterra diffusion system, first, we prove sufficient and

necessary conditions ensuring permanence of the system and give a permanent system

with two positive equilibrium points to show that permanence does not imply global

stability in general. Then, we give sufficient and necessary conditions for the directed

diffusion system to be globally stable. The fundamental tools to prove these results

are recently developed cooperative system theories[7,24,25,28] and an new result for

an essentially positive matrix (Lemma 4).

Section 2 contains some background concepts and fundamental results for a co-

operative system and an essentially positive matrix. Section 3 and 4 state our main

results: sufficient and necessary conditions for a cooperative Lotka-Volterra diffusion

system to be permanent and for a logistic directed diffusion system to be globally

stable, respectively. We conclude the paper with some discussions.

In this paper, all matrices are supposed to be non-singular.
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2 BACKGROUND CONCEPTS AND RESULTS

To begin with we state some concepts and results concerning a general n-dimensional

cooperative system:

$\dot{x}=F(x)$ (1)

where $F$ is $C^{1}$ on a domain $R_{+}^{n}=\{x\in R^{n}|x_{t}\geq 0, i=1, \ldots, n\}$ and has Jacobian

matrix $DF(x)$ with nonnegative off-diagonal elements, i.e. for all $i\neq j,$ $i,$ $j=1,\ldots,n$

$(\partial F_{i}/\partial x_{j})\geq 0$ , for all $x\in R_{+}^{n}$ . Denote the solution to (1) as $x(t)$ whose initial value

is $x(0)$ .

We shall use a key result given by Kamke [10] and Selgrade$[24,25]$ for system (1),

which in our case can be stated as follows :

LEMMA 1. Let $R_{+}^{n}$ be invariant for (1). If initial positions are ordered $x(O)\leq$

$y(O)$ , then $x(t)\leq y(t)$ for all $t\geq 0$ . In addition, if $0\leq F(x(O))$ then $x(t)$ is non-

decreasing for $t\geq 0$ ; and if $F(x(O))\leq 0$ , then $x(t)$ is nonincreasing for $t\geq 0$ . In

either case, if the positive orbit of $x(O)$ is bounded then its $\omega$-limit set is precisely

one equilibrium point.

To prove global stability for systems in the paper, the following fact which is used

in [7] and [28] is very useful.

LEMMA 2. If system (1) possesses a positive equilibrium point $x^{*}$ satisfying

$F(\lambda x^{*})\{\begin{array}{l}>0for\lambda\in(0,1)<0for\lambda\in(1,\infty)\end{array}$

then $x^{*}$ is globally stable.

We also need the permanence concept (see, for example Hofbauer and Sigmund[9]).
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Definition 1. System (1) is said to be permanent if there exists a compact set

$K$ in the interior of the state space $R_{+}^{n}$ such that all solutions in the interior of $R_{+}^{n}$

enter ultimately $K$ .

Now consider the n-dimensional Lotka-Volterra cooperative system

$\dot{x};=x_{i}(b_{1}+\sum_{j=1}^{n}a_{1j}x_{j})$ . (2)

Here $b=(b_{1}, \ldots, b_{n})^{T}$ is a positive constant vector and $A=(a_{ij})_{nxn}$ a constant matrix

with $a_{ij}\geq 0(i\neq j, i,j=1, \ldots, n)$ and $a_{ii}<0(i=1, \ldots, n)$ (i.e., $A$ is an essentially

positive matrix). For system (2), we can find the following important results quoted

in [9].

LEMMA 3. For system (2), the following statements are equivalent:

(i) System (2) admits a positive equilibrium point;

(ii) The matrix $A$ is VL stable (i.e. there exists a positive diagonal matrix $C$ such

that $CA+A^{T}C$ is negative definite);

(\"ui)System (2) is permanent;

(iv) System (2) is globally stable in the sense that so is the positive equilibrium

point;

For convenience, in the following discussions, we use a usual notation $A\in S_{w}$ to

denote that matrix $A$ is VL-stable.

A key to prove the necessary conditions in the main theorems is as follows$[19,20]$ .

LEMMA 4. If an essentially positive matrix $A$ does not belong to $S_{w}$ , then $A$ has

a $K(\geq 2)$-principal minor $A_{(i_{1},\ldots,i_{k})}$ such that the system of linear equations

$A_{(:_{1},\ldots,:_{k})}y=1$ , $(1=(1, \ldots, 1)^{T})$

has a solution $y>0$ .



5

3 LOTKA-VOLTERRA SYSTEMS

We consider the following cooperative Lotka-Volterra diffusion systems with two dif-

ferent patches:

$\dot{x}_{i}=x_{i}(b_{i}+\sum_{j=1}^{n}a_{ij}x_{j})+D_{t}(y_{i}-x_{i})$ ,

$\dot{y}_{i}=y_{i}(\overline{b}_{t}+\sum_{j=1}^{n}\overline{a}_{ij}yj)+\overline{D}_{i}(x_{i}-y_{i})$ , $i=1,$
$\ldots,$

$n$ . (3)

where $b_{i},\overline{b}_{i}(i=1, )n)$ are positive constants, $a_{ii},\overline{a}_{ii}(i=1,\ldots,n)$ negative, $A=(a_{ij})_{n\cross n}$ ,

$\overline{A}=(a_{j})_{n\cross n}$ essentially positive matrices, $D;,\overline{D};(i=1,\ldots,n)$ nonnegative diffusion

constants and $x_{i},$ $y_{i}(i=1,\ldots,n)$ describe the densities of species $i$ in the patch X and

$Y$ at time $t$ .

Based on Lemmas 1,3 and 4, we can prove our first main result as follows[19].

THEOREM 1. System (3) is permanent iff $A\in S_{w}$ and $\overline{A}\in S_{w}$ .

From this theorem, we can obtain following corollary[19].

COROLLARY 1. System (3) is globally stable iff $A\in S_{w},\overline{A}\in S_{w}$ and a positive

equilibrium point is unique.

A natural problem arising from above results is whether permanence implies global

stability, namely, permanence implies the uniqueness of a positive equilibrium point,

in general.

The following example of a permanent system with two positive equilibrium points

shows that permanence does not imply global stability in general.

Example 1.

$\dot{x}_{1}=x_{1}(1.3-13x_{1}+3.1x_{2})+1.2(y_{1}-x_{1})$ ,

$\dot{x}_{2}=x_{2}(1.3+53.1x_{1}-13x_{2})+23.1(y_{2}-x_{2})$ ,
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$\dot{y}_{1}=y_{1}(1.3-13y_{1}+53.1y_{2})+23.1(x_{1}-y_{1})$ , (4)

$\dot{y}_{2}=y_{2}(1.3+3.1y_{1}-13y_{2})+1.2(x_{2}-y_{2})$ .

System (4) has at least two positive equilibrium points $(x_{*}; y_{*})=(1,3;3,1)$ and

$(x^{*}; y^{*})=(2,7;7,2)$ . Note that $A,\overline{A}\in S_{w}$ .

Comparing Theorem 1, Corollary 1 and Example 1 for diffusion system (3) with

Lemma 3 for isolated patch (2), we know that, since global stability is one hnd of

permanence, the diffusions will not change the dynamical behaviour of the system in

the sense of permanence, but will change it in the sense of global stability.

4 LOGISTIC SYSTEMS

In the preceding section, we have shown sufficient and necessary conditions for a

cooperative Lotka-Volterra diffusion system to be permanent. In this section, we

consider the following logistic system with directed diffusion terms

$\dot{x}_{t}=x_{i}(a_{i}-b_{i}x_{t})+\sum_{j=1,j\neq t}^{n}D_{ij}(x_{j}^{2}-\alpha_{ij}x_{i}^{2})$ . (5)

Denote $A=(a_{J}\cdot)_{nXn}$ , where $a_{ij}=D_{t}j$ for $j\neq i,$ $a_{ii}=-b_{i}-\Sigma_{j=1,j\neq i}^{n}D_{ij}\alpha_{ij}$ . We

suppose that $a_{i}$ and $b_{i}$ are positive constants, the diffusion constants $D_{ij}$ and boundary

condition[l] constants $\alpha_{ij}$ are nonnegative. Obviously, matrix $A$ defined as above is

an essentially positive one. In Allen[l], for system (5) as $n=2$ , the strong persistence

result is shown and some sufficient conditions for the existence of unbounded solutions

are also given. In the present section, we obtain the sufficient and necessary conditions

for the system to have a globally stable positive equilibrium point, and we show that

every solution of the system is unbounded if the conditions are failed to be satisfied.

This extends the known result for 2-dimensional system[l] to general n-dimensional

one.
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THEOREM 2[20]. Consider system (5).

i) The System possesses a globally stable positive equilibrium point $x^{*}$ , if $A\in S_{w}$ ;

ii) every solution of the system is unbounded, i.e., $\lim_{tarrow T_{x}}x(t)=\infty$ , if $A\not\in S_{w}$ .

Here, $(0, T_{x})$ is the maximal interval of existence for $x(t)$ .

In the following, we assume, without loss of generality, that the K-th principal

minor given in Lemma 4 is the K-th leading one of $A$ , that is, $i_{l}=l$ for $l=1,$
$\ldots,$

$K$ .

To prove Theorem 2, we need the following lemma.

LEMMA 5. If $A\not\in S_{w}$ , for any positive parameter $\mu$ , the following system of linear

equations

$a_{11}x_{1}^{2}+a_{12}x_{2}^{2}+\cdots+a_{1K}x_{K}^{2}=\mu$ ,

$a_{21}x_{1}^{2}+a_{22}x_{2}^{2}+\cdots+a_{2K}x_{K}^{2}=\mu$ ,

$a_{K1}x_{1}^{2}+a_{K2}x_{2}^{2}+\cdots+a_{KK}x_{K}^{2}=\mu$. (6)

has a positive solution

$x_{1}^{2}= \frac{|\begin{array}{llll}1 a_{12} \cdots a_{1K}1 a_{22} \cdots a_{2K}\vdots \vdots \ddots \vdots 1 a_{K2} \cdots a_{KK}\end{array}|\mu}{det(a_{ij})_{K\cross K}},$

$\cdots,$

$x_{K}^{2}= \frac{|\begin{array}{llll}a_{11} a_{12} \cdots 1a_{21} a_{22} \cdots 1\vdots \vdots \ddots \vdots a_{K1} a_{K2} \cdots 1\end{array}|\mu}{det(a_{ij})_{K\cross K}}$

. (7)

Proof. This lemma is a direct consequence of Lemma 4.

Proof of Theorem 2.

Now we write system (5) in the vector form

th $=diag(a_{1}, \ldots, a_{n})x+A(x^{2})=G(x)$ ,
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where $x^{2}=(x_{1}^{2}, \ldots, x_{n}^{2})^{T}$ . Since all $a_{i}(i=1, \ldots, n)$ are positive, for sufficiently small

positive vector $w$ , we have $G(w)>0$ . Hence, according to Lemma 1, the region

$R_{+}^{n}+w=\{x\in R_{+}^{n}|x_{i}\geq w;, i=1, \ldots, n\}$ is positively invariant, and furthermore, we

know that all solutions enter ultimately this invariant region. If at least one solution

is bounded, then again by Lemma 1, we know that the system possesses a positive

equilibrium point $x^{*}$ . It is easy to check that

$G_{t}(\lambda x^{*})=a_{i}x^{\dot{*}}\lambda(1-\lambda)$ ,

then by Lemma 2, $x^{*}$ is globally stable.

i) When $A\in S_{w}$ , we take a Liapunov function as follows

$V(x)= \frac{1}{3}\dot{\sum_{=1}^{n}}c;x_{i}^{3}$

where $c_{i}(i=1, \ldots, n)$ are diagonal elements of a diagonal matrix $C$ such that $CA+$

$A^{T}C$ is negative definite. Then

$\dot{V}(x)=(x^{2})^{T}(CA+A^{T}C)(x^{2})+\sum_{1=1}^{n}c_{i}a;x_{t}^{3}<0$,

for large enough $x$ . Therefore all solutions are bounded, namely, the system possesses

a globally stable positive equilibrium point $x^{*}$ .

ii) Suppose that $A\not\in S_{w}$ . Since the boundedness of at least one solution implies

global stability of the system, we only need to check that under condition $A\not\in S_{w}$ , the

system is not globally stable. Therefore, it is sufficient to show that for any compact

set $E$ in $R_{+}^{n}$ , there exists an initial $x(0)\not\in E$ such that $\Omega(x(0))\cap E=\emptyset$ . Clearly, we

can, without loss of generality, suppose that $E$ is the intersection of $R_{+}^{n}$ and a given

ball with center at the origin $0$ .

Since $A\not\in S_{w}$ , by Lemma 5, we know that there is a minimum $K\geq 2$ such that

for any given positive $\mu$ , the linear equations (6) have a positive solution (7). Now

we take an initial value $x^{0}=x(\mu)=(x_{1}(\mu), \ldots, x_{n}(\mu))$ . Here $x_{i}(\mu)(i=1, \ldots, K)$ are
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given by (7) for sufficiently large $\mu$ and the remaining $x_{j}(\mu)(j=K+1, \ldots, n)$ are

sufficiently small such that $G(x(\mu))>0$ . By Lemma 1, the solution $x(t)$ with the

initial value $x^{0}$ is increasing for $t\geq 0$ . Therefore, either $x(t)$ is unbounded or has an

$\omega$-limit set disconnected to $E$ .

This completes the proof of Theorem 2.

5 DISCUSSION

In this paper, based on the specific property of cooperative systems and some results

for monotone flow of solutions given by Kamke[10] and Selgrade$[24,25]$ , we have ob-

tained the sufficient and necessary conditions for Lotka-Volterra cooperative systems

with diffusion to be permanent. Theorem 1 and Example 1 show that if each isolated

patch is permanent, then diffusion between patches cannot destroy the permanence,

although the diffusion system can have two or more positive equilibrium points.

The global stabihty of the system is considered and a corollary to guarantee the

global stability is obtained. Under the condition of both $A$ and $\overline{A}$ belonging to $S_{w}$ ,

the uniqueness of positive equilibrium points ensures global stability.

In Section 4, global asymptotic behavior of a single species dispersing among

multiple patches is discussed. Sufficient and necessary conditions for the directed

diffusion system to be globally stable are obtained. It is shown that every solution

of the system is unbounded if the conditions are failed to be satisfied. This extends

a known result for 2-dimensional system[l] to general n-dimensional one.

The key to prove the necessities of both main Theorems 1 and 2 is a result for an

essentially positive matrix (Lemma 4) which seems a new one.

It needs to be stated that for a concrete system, the conditions $A\in S_{w}$ and $\overline{A}\in S_{w}$

are not difficult to be checked according to Lemma 3. And on the basis of recently

developed theory[18] of numerically determining solutions of systems of polynomial
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equations, it is also possible to find all positive equilibrium points of system (3) whose

number of positive equilibrium points will decide whether it is globally stable or not.
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