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Steady Trapped Solutions to Forced Long-Short
Interaction Equation

九大応力研 船越 満明 (Mitsuaki Funakoshi)

\S 1. Introduction
The resonant interaction between long and short waves is possible in several

fluid systems. In a two-layer fluid system, the interaction is possible between
a long internal mode and a wave packet of short surface mode whose group
velocity is close to the phase speed $c_{p}’$ of the long internal $mode^{1,2)}$ .

Next, if a fluid flows over an uneven bottom topography at velocity $V’$ ,
waves will be generated, as in the case of mountain waves in the atmosphere.
For bottom topography of large horizontal scale and small height, the gen-
eration of a long wave in a single-layer fluid can be described by the forced
K-dV equation in the resonant case in which $V’$ is close to the phase speed of
this $wave^{3,4)}$ . The same equation is derived also for a stratified fluid system
when $V’$ is close to the phase speed of one of the wave modes of the system
in the long-wave $limit^{5,6)}$ .

In this paper, for a two-layer fluid, both the resonant interaction between
the long internal mode and the short surface mode, and the generation of the
long internal mode by the resonant motion of the fluid relative to the bottom
topography of large horizontal scale, are examined simultaneously.
\S 2. Forced Long-Short Interaction Equation

We consider two-dimensional irrotational motion of a two-layer inviscid
fluid over a localized bottom unevenness, as shown in Fig.1. Here the upper
and lower fluids (with densities $\rho_{1}$ and $\rho_{2}(>\rho_{1})$ ) are assumed to be quiescent
and to have depths $h_{1}$ and $h_{2}$ far from the unevenness. $\zeta_{1}’$ and $\zeta_{2}’$ are free-
surface and interface displacements, and $b’$ expresses the bottom unevenness.
Also $x$

‘ and $z’$ are horizontal and upward vertical coordinates, and $t’$ is the
time.
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If velocity potentials of upper and lower fluids, $\phi_{1}’$ and $\phi_{2}’$ , and $\zeta_{1}’,$ $(_{2}’,$ $b’,$ $x$ ‘,
$z’,$ $t’$ are non-dimensionalized using $h_{1}$ and gravitational acceleration $g$ , gov-
erning equations are written as

$\phi_{1xx}+\phi_{1zz}=0$ , $\zeta_{2}<z<1+\zeta_{1}$ , (2.1a)

$\phi_{2xx}+\phi_{2zz}=0$ , $-r+b<z<(2,$ (2.1b)

$\zeta_{1t}+\phi_{1x}\zeta_{1x}-\phi_{1z}=0$ , (2.1c)
on $z=1+\zeta_{1}$ ,

$\phi_{1t}+\zeta_{1}+\frac{1}{2}[(\phi_{1x})^{2}+(\phi_{1z})^{2}]=0$ , (2.1d)

$\zeta_{2t}+\phi_{1x}\zeta_{2x}-\phi_{1z}=0$ , (2.1e)

$\zeta_{2t}+\phi_{2x}\zeta_{2x}-\phi_{2z}=0$ , (2.1f)
on $z=\zeta_{2}$ ,

$(1- \triangle)\{\phi_{1t}+\zeta_{2}+\frac{1}{2}[(\phi_{1x})^{2}+(\phi_{1z})^{2}]\}$ $(2.lg)$

$- \{\phi_{2t}+\zeta_{2}+\frac{1}{2}[(\phi_{2x})^{2}+(\phi_{2z})^{2}]\}=0$ ,

$-b_{t}-b_{x}\phi_{2x}+\phi_{2z}=0$ , on $z=-r+b$, (2.1h)

where non-dimensionalized variables are expressed by dropping primes, and
$r=h_{2}/h_{1},$ $\rho_{1}=p_{2}(1-\triangle)$ .

We also assume that the bottom moves at non-dimensional speed $V$ in
this reference system. Therefore, $b$ depends only on x–Vt, and $barrow 0$ as
$x-Vtarrow\pm\infty$ . Of course, the results shown below can be used under a simple
variable transformation also for the case of the uniform fluid flow at speed
-V over a quiescent bottom.

For flat bottom $b=0$ , the linearized version of eq.(2.1) has the following
two kinds of solutions :

$\{\begin{array}{l}\zeta_{l}=a_{0}e^{i\theta\pm}+c.c.,\phi_{l}=ia_{0^{\mathcal{U}}\pm(z,k)e^{i_{\theta\pm}}+c.c}.\zeta_{2}=\mu_{\pm}(k)a_{0}e^{i_{\theta\pm}}+c.c.,\phi_{2}=ia_{0}\chi_{\pm}(z,k)e^{i\theta\pm}+c.c.\end{array}$ (2.2)

where

$\theta_{\pm}=kx-\omega_{\pm}(k)t$,

$\omega_{\pm}(k)=\{k^{\sigma_{1}+\sigma_{2}\pm\sqrt{(\sigma_{1}+\sigma_{2})^{2}-4\Delta\sigma_{1}\sigma_{2}[1+(1-\Delta)\sigma_{1}\sigma_{2}]}}2[1+(1-\triangle)\sigma_{1}\sigma_{2}]$
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$\mu_{\pm}(k)=C_{1}-\frac{k}{\omega_{\pm}(k)^{2}}S_{1}$ ,

$\iota’\pm(z, k)=\frac{\omega_{\pm}(k)}{k}\sinh k(1-z)-\frac{1}{\omega_{\pm}(k)}\cosh k(1-z)$ ,

$\chi_{\pm}(z, k)=-\frac{\omega_{\pm}(k)[C_{1}-kS_{1}/\omega_{\pm}(k)^{2}]}{kS_{2}}\cosh k(z+r)$ ,

$C_{1}=\cosh k,$ $C_{2}=\cosh kr,$ $S_{1}=\sinh k,$ $S_{2}=\sinh kr,$ $\sigma_{1}=\tanh k,$ $\sigma_{2}=\tanh kr$ .

The solution corresponding to positive sign $in\pm of$ the above expressions is
called surface mode, while that to negative sign is called internal mode.

It is well known that the surface mode of wavenumber $k_{0}$ interacts reso-
nantly with the long internal mode if

$c_{g}(k_{0})=c_{p}$ , (2.4)

is satisfied, where $c_{g}(k)=d\omega_{+}(k)/dk$ is the group velocity of the surface
mode, and

$c_{p}= \frac{\omega_{-}(k)}{k}|_{karrow 0}=\{[1+r-\sqrt{(1+r)^{2}-4\triangle r}]/2\}^{\frac{1}{2}}$ , (2.5)

is the phase speed of the internal mode in the long-wave limit.
Next, if the bottom is uneven and $V\approx c_{p}$ , the long internal mode is

generated resonantly by the unevenness. That is, since the group velocity of
the right-going wave of this mode relative to the bottom is very small, the
amplitude of the generated wave is expected to become much larger than the
height of the bottom unevenness.

Aiming at examining the system with not only the resonant interaction
but also the resonant generation, we assume that, using $\epsilon(\ll 1)$ , there exist
the surface mode of wavenumber close to $k_{0}$ and of amplitude $O(\epsilon)$ and the
long internal mode of amplitude $O(\epsilon^{4/3})$ over the bottom unevenness of height
$O(\epsilon^{2})$ . Furthermore, the horizontal scales of the surface-mode wave packet, of
the internal mode, and of the bottom unevenness, are assumed to be $O(\epsilon^{-2/3})$ .
Finally $V-c_{p}$ is assumed to be $O(\epsilon^{2/3})$ . Under these assumptions, an evolution
equation for the surface-mode wave packet and the long internal mode can
be derived using the reductive perturbation method, as shown below.
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First, we expand the variables as

$\phi_{j}=\sum_{n=0}^{\infty}\epsilon^{\frac{2+n}{3}}\phi_{j}^{(n)}$ , $\zeta_{j}=\sum_{n=0}^{\infty}\epsilon^{\frac{2\star n}{3}}\zeta_{j}^{(n)}$ , $(j=1,2)$ , (2.6)

where $\phi_{j}^{(n)}$ and $\zeta_{j}^{(n)}$ are assumed to depend not only on $t,$ $x$ and $z$ (only for
$\phi_{j}^{(n)})$ but also on a stretched horizontal coordinate $\xi=\epsilon^{2/3}$ (x–Vt) fixed to
the bottom and a stretched time $\tau=\epsilon^{4/3}t$ . Next, $V$ and $b$ are expressed in
the following forms :

$V=V_{0}+\epsilon^{2/3}V_{1}+\cdots$ , (2.7)

$b=\epsilon^{2}H(\xi)$ , (2.8)

where function $H$ , satisfying $Harrow 0$ as $\xiarrow\pm\infty$ , determines the localized
bottom unevenness.

The replacements of the differential operators

$\frac{\partial}{\partial x}arrow\frac{\partial}{\partial x}+\epsilon^{2/3}\frac{\partial}{\partial\xi}$ , $\frac{\partial}{\partial t}arrow\frac{\partial}{\partial t}-V\epsilon^{2/3}\frac{\partial}{\partial\xi}+\epsilon^{4/3}\frac{\partial}{\partial\tau}$ ,

in governing eq.(2.1), substitution of expressions (2.6) $\sim(2.8)$ , and the ex-
pansion of boundary conditions (2.1c) and (2.1d) around $z=1$ , conditions
(2.1e) $\sim(2.lg)$ around $z=0$ , and condition (2.1h) around $z=-r$ , result in
the following equations in $O(\epsilon^{\frac{2+n}{3}})$ :

where $n=0,1,2,$ $\cdots$ , and $N_{m}^{(n)}$ $(m=1,2, \cdots , 8)$ depend only on the lower-
order variables in eq.(2.6), or $H$ , or their derivatives.

Since $N_{m}^{(0)}=N_{m}^{(1)}=0(m=1,2, \cdots,8)$ , we can assume that

$\zeta_{j}^{(0)}=0$ , $\phi_{i}^{(0)}=\Phi_{j},$ $(j=1,2)$ , (2.10)
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$\{\begin{array}{l}\phi_{1}^{(l)}=iA\nu_{+}(z,k_{0})e^{i_{\theta}}+c.c.,\phi_{2}^{(1)}=iA\chi_{+}(z,k_{0})e^{i_{\theta}}+c.c.\zeta_{l}^{(l)}=Ae^{i\theta}+c.c.,\zeta_{2}^{(1)}=\mu_{+}(k_{0})Ae^{i_{\theta}}+c.c.\theta=k_{0}x-\omega_{+}(k_{0})t\end{array}$ (2.11)

invoking eq.(2.2). Here $\Phi_{1},$ $\Phi_{2}$ and $A$ depend only on $\xi$ and $\tau$ . In $O(\epsilon^{4/3})$ ,
solving eq.(2.9) with $n=2$ , we obtain

$\{\begin{array}{l}\zeta_{1}^{(2)}=V_{0}\Phi_{1\xi},\zeta_{2}^{(2)}=\frac{V_{0}}{\Delta}[\Phi_{2\xi}-(1-\triangle)\Phi_{1\xi}]\phi_{j}^{(2)}=\hat{\Phi}_{j},(j=1,2)\end{array}$ (2.12)

where $\hat{\Phi}_{1}$ and $\hat{\Phi}_{2}$ depend only on $\xi$ and $\tau$ . Furthermore, we have

$V_{0}=c_{g}(k_{0})$ , (2.13)

$V_{0}=c_{p}$ , (2.14)

as the compatibility conditions in $O(\epsilon^{5/3})$ and $0(\epsilon^{2})$ . Therefore, if the values
of $\triangle$ and $r$ are given, wavenumber $k_{0}$ and resonance speed $V_{0}$ are deter-
mined from eqs.(2.13) and (2.14). Finally from the compatibility conditions
in $O(\epsilon^{7/3})$ and $O(\epsilon^{8/3})$ , we obtain an evolution equation :

$\{\begin{array}{l}iA_{\tau}-iV_{1}A_{\xi}-pA_{\xi\xi}+\alpha AB=0,(2.15a)B_{\tau}-V_{1}B_{\xi}-\beta(|A|^{2})_{\xi}+\kappa H_{\xi}=0,(2.15b)\end{array}$

where $B=\zeta_{2}^{(2)}$ and

$p=- \frac{1}{2}\frac{d^{2}\omega_{+}(k)}{dk^{2}}|_{k=k_{0}}$ $\kappa=\frac{V_{0^{3}}(V_{0^{2}}-1)}{2(V_{0^{4}}-\triangle r)}$ .

It is easily shown that the constants $p$ and $\kappa$ are positive. The coefficients of
interaction terms, $\alpha$ and $\beta$ , are complicated functions of $\Delta$ and $r$ , as given in
Appendix. Numerical computation shows that $\alpha$ and $\beta$ are positive.

Equation (2.15) can be written in a simpler form

$\{\begin{array}{l}iS_{T}-i\lambda S_{X}-S_{XX}+SL=0,(2.16a)L_{T}-\lambda L_{X}-(|S|^{2})_{X}+H_{X}=0,(2.l6b)\end{array}$

by the scale transformation

$S=A\sqrt{\beta/\kappa},$ $L=B(\alpha p/\kappa^{2})^{1/3},$ $X=\xi(\kappa\alpha/p^{2})^{1/3},$ $T=\tau(\kappa^{2}\alpha^{2}/p)^{1/3}$
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Here
$\lambda=V_{1}(\kappa\alpha p)^{-1/3}=\frac{V-c_{p}}{\epsilon^{2/3}}(\kappa\alpha p)^{-1/3}$ , (2.17)

expresses the small defference of $V$ from $c_{p}$ .
It should be noted that eq.(2.16) for flat bottom $(H=0)$ is exactly solv-

able through the inverse scattering method and admits an N-soliton solution
decaying at $infinity^{7,8)}$ . The one-soliton solution is

$\{\begin{array}{l}S=\sqrt{2(\lambda+v)}ssech[s(X-vT-\hat{X}_{0})]\cross exp\{i[-\frac{1}{2}(\lambda+v)X-\hat{\Omega}T+\psi_{0}]\}L=-2s^{2}sech^{2}[s(X-vT-\hat{X}_{0})]\end{array}$ (2.18)

where $v,$
$s,\hat{X}_{0}$ and $\psi_{0}$ are arbitrary constants ‘and

$\hat{\Omega}=s^{2}-\frac{1}{4}v^{2}+\frac{1}{4}\lambda^{2}$ .

Also $\lambda+v\geq 0$ must be satisfied.
\S 3. Steady Trapped Solutions

For localized bottom unevenness ( $Harrow 0$ as $Xarrow\pm\infty$ ), we define steady
trapped solutions to eq.(2.16) as those satisfying

$|S|=f(X)$ , $L=g(X)$ , (3.1)

where
$f(X)arrow 0$ , $g(X)arrow 0$ , as $Xarrow\pm\infty$ . (3.2)

The solutions are composed of a trapped long-wave solution and a trapped
coupled solution, as shown below.
3.1 Trapped long-wave solution

The trapped long-wave solution is expressed as

$S=0$ , $L= \frac{1}{\lambda}H(X)$ . (3.3)

The divergence of this solution as $\lambdaarrow 0$ means that the difference between $V$

and $c_{p}$ should be neither large nor too small in order that waves are described
well by eq.(2.16) (For very small 1 $V-c_{p}|$ , the adoption of a different scaling or
the introduction of damping effect may be required. ). Hereafter, we assume
that $\lambda$ is non-zero.
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3.2 Trapped coupled solution
We assume that

$S=f(X)\exp\{i[\varphi(X)-\Omega T]\}$ , $L=g(X)$ , (3.4)

where $f,$ $\varphi$ and $g$ are real functions and $\Omega$ is a real constant. Only the T-
dependence given in eq.(3.4) is allowed by eq.(2.16). Substituting eq.(3.4)
into eq.(2.16), we have

$\{\begin{array}{l}(2\varphi’+\lambda)f’+\varphi’’f=0,(3.5a)f’-(\Omega+\varphi^{2}+\lambda\varphi’)f-fg=0,(3.5b)f^{2}-H+\lambda g=0,(3.5c)\end{array}$

invoking eq.(3.2), where primes denote differentiation with respect to $X$ .
Equation (3.5a) can be integrated to give

$f^{2}( \varphi’+\frac{1}{2}\lambda)=a$ ,

where $a$ is a constant. If $a\neq 0$ , the condition (3.2) demands that $\varphi’arrow\pm\infty$ as
$Xarrow\pm\infty$ . Since this situation contradicts with the assumption that surface-
mode wavenumber is close to $k_{0}$ , we choose that $a=0$ . Therefore, we have

$\varphi(X)=-\frac{1}{2}\lambda X+X_{0}$ , (3.6)

where $X_{0}$ is a constant. Substituting eqs.(3.5c) and (3.6) into $eq.(3.5b)$ , we
obtain an equation for $f$ :

$f”+ \frac{1}{\lambda}f^{3}+(-\frac{1}{\lambda}H+\frac{1}{4}\lambda^{2}-\Omega)f=0$ . (3.7)

Boundary condition (3.2) and eq.(3.7) produce an eigenvalue problem with
eigenvalue $\Omega$ for specified function $H$ and value $\lambda$ . Here it should be noted
that $\Omega$ must satisfy the condition

$\Omega>\frac{1}{4}\lambda^{2}$ , (3.8)

because the main terms in eq.(3.7) at infinity are

$f”+( \frac{1}{4}\lambda^{2}-\Omega)f=0$ . (3.9)
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\S 4. Trapped Coupled Solutions for Sech2-Type Bottom Unevenness
Hereafter, we restrict our study to the following symmetric bottom un-

evenness :
$H=\alpha sech^{2}qX$ , (4.1)

where $\alpha=1$ (corresponding to a mountain) or $\alpha=-1$ (a valley), and $q$ is
a positive constant.
4.1 Analytic solutions

Equations (3.7) and (3.5c) with $H$ given in eq.(4.1) have a symmetric
analytic solution

$\{\begin{array}{l}f=\sqrt{\alpha+2\lambda q^{2}}sechqX,(4.2a)\Omega=\frac{l}{4}\lambda^{2}+q^{2},(4.2b)g=-2q^{2}sech^{2}qX,(4.2c)\end{array}$

if $\lambda$ satisfies $\alpha+2\lambda q^{2}\geq 0$ .
Next, if $f$ is much smaller than 1 for all $X$ , the nonlinear term in eq.(3.7)

can be neglected. Then eq.(3.7) with eq.(4.1) is transformed into the Legen-
dre’s associated differential equation:

$(1- \eta^{2})\frac{d^{2}f}{d\eta^{2}}-2\eta\frac{df}{d\eta}+[\nu(\nu+1)-\frac{\mu^{2}}{1-\eta^{2}}]f=0$, (4.3)

where $\eta=\tanh qX$ , and

$\nu(\nu+1)=-\frac{\alpha}{\lambda q^{2}}$ , $\mu^{2}=\frac{1}{q^{2}}(\Omega-\frac{1}{4}\lambda^{2})$ . (4.4)

Here we assume that $\mu>0$ without loss of generality. Symmetric localized
solutions to eq.(4.3) exist only when

$\mu=\nu-2N+2>0$ , $(N=1,2, \cdots)$ , (4.5)

is satisfied, whereas antisymmetric ones exist only when

$\mu=\iota/-2N+1>0$ , $(N=1,2, \cdots)$ , (4.6)

is satisfied. We refer to these solutions for each $N$ as the N-th symmetric
and antisymmetric modes. The N-th (symmetric or antisymmetric) mode
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has $N-1$ positive zeros if $\mu$ and $\nu$ are integers. This seems to be true also for
non-integer $\mu$ and $\nu$ . Using eq.(4.4) in condition (4.5), we find that the first
symmetric mode exists for all $\lambda$ satisfying $\lambda/\alpha<0$ , while the N-th symmetric
mode $(N\geq 2)$ exists only for

$0> \frac{\lambda}{\alpha}\geq-\frac{1}{2q^{2}(2N-1)(N-1)}$. (4.7)

Whereas, eqs.(4.4) and (4.6) give that the N-th antisymmetric mode $(N\geq 1)$

exists only for
$0> \frac{\lambda}{\alpha}\geq-\frac{1}{2q^{2}N(2N-1)}$ . (4.8)

Therefore, more (symmetric or antisymmetric) modes are found for smaller
$positive-\lambda/\alpha$ . Moreover, the $\Omega$ values for the N-th symmetric and antisym-
metric modes are

$\Omega=\frac{1}{4}\lambda^{2}-\frac{\alpha}{\lambda}+\frac{1}{2}q^{2}(8N^{2}-12N+$ (4.9)

and

$\Omega=\frac{1}{4}\lambda^{2}-\frac{\alpha}{\lambda}+\frac{1}{2}q^{2}(8N^{2}-4N+$ (4.10)

respectively.

4.2 Method of numerical computation
The trapped coupled solutions for $q=1$ were computed numerically. That

is, solutions to the equation

$f^{u}+ \frac{1}{\lambda}f^{3}+(-\frac{\alpha}{\lambda}sech^{2}X+\frac{1}{4}\lambda^{2}-\Omega)f=0$, (4.11)

satisfying $farrow 0$ as $Xarrow\pm\infty$ , were computed for each $\lambda,$ $\alpha$ and $\Omega$ values by
the following method. We first assume that $f$ approximately satisfies eq.(3.9)
for $X\geq x_{e}>0$ , using a large constant $x_{e}$ . Then we obtain

$f=\nu_{0}\exp(-\sqrt{\Omega-\lambda^{2}/4}X)$ , for $X\geq x_{e}$ , (4.12)

where $\nu_{0}$ is a constant. If we integrate eq.(4.11) from $X=x_{e}$ to $X=0$ with
the initial condition computed from eq.(4.12), we have $f(O)$ and $f’(O)$ values
for each $\nu_{0}$ (Hereafter, we refer to $f(O)$ and $f’(O)$ as $f_{0}$ and $f_{0}’$ ). Therefore,
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by computing them for a wide range of $\nu_{0}$ , we obtain a curve drawn on the
$(f_{0}, f_{0})$ plane. We call this the $(f_{0}, f_{0}’)$ curve.

Next, if there is a trapped coupled solution, it can be considered as the
connection of a solution $f_{p}(X)$ for $X\geq 0$ and a solution $f_{n}(X)$ for $X\leq 0$ . The
connection conditions to be satisfied are that $f_{p}(0)=f_{n}(0)$ and $f_{p}’(0)=f_{n}’(0)$ .
Here, if $f(X)$ is a solution to eq.(4.11), then $f(-X)$ and $-f(-X)$ are also
solutions. Therefore, $f_{r1}(X)\equiv f_{n}(-X)$ and $f_{r2}(X)\equiv-f_{n}(-X)$ are also the
solutions for $X\geq 0$ , and they satisfy $f_{r1}(0)=f_{p}(0),$ $f_{r1}’(0)=-f_{p}’(0)$ , and
$f_{r2}(0)=-f_{p}(0),$ $f_{r2}’(0)=f_{p}’(0)$ . Consequently, the intersection between the
original $(f_{0}, f_{0}’)$ curve and either of the $(f_{0}, -f_{0}’)$ curve and the $(-f_{0}, f_{0}’)$ curve
implies the existence of a trapped coupled solution. Among the intersections,
those satisfying $f_{0}’=0$ correspond to symmetric solutions, whereas those
satisfying $f_{0}=0$ correspond to antisymmetric ones. Other intersections with
$f_{0}\neq 0$ and $f_{0}’\neq 0$ imply the solutions which are neither symmetric nor
antisymmetric. Hereafter, we refer to the solutions as asymmetric solutions.

In the numerical computations, Adams predictor-corrector method was
used to integrate eq.(4.11). Here $x_{e}$ was determined as the minimum value
satisfying both

$\frac{\nu_{0}^{2}}{|\lambda|}\exp[-2\sqrt{\Omega-\lambda^{2}/4}X_{e}]\leq\epsilon_{1}(\Omega-\frac{1}{4}\lambda^{2})$,

and
$\frac{4}{|\lambda|}\exp(-2X_{e})\leq\epsilon_{2}(\Omega-\frac{1}{4}\lambda^{2})$ ,

for small $\epsilon_{1}$ and $\epsilon_{2}$ . Here $\epsilon_{1}=\epsilon_{2}=10^{-8}$ was usually used, and the accuracy
was checked by comparing with the result for $\epsilon_{1}$ and $\epsilon_{2}$

$10^{-1}$ times smaller
than the previous value.
4.3 Solutions for negative unevenness $(\alpha=-1)$

4.3.1 The case of $\lambda>0$

For $\lambda>0$ , in addition to symmetric solutions, antisymmetric and asym-
metric solutions are obtained. Figure 2 shows the $(\sqrt{f_{0^{2}}+f_{0^{2}}’}, \Omega)$ values of
these solutions for $\lambda=0.5$ . The solutions on the main branches of sym-
metric and antisymmetric solutions, expressed by $S_{1}$ and $A_{1}$ , asymptote to
the first symmetric and antisymmetric modes introduced in \S 4.1 in the limit
$\sqrt{f_{0^{2}}+f_{0^{2}}’}arrow 0$ , respectively. Also the $\Omega$ values in this limit agree with those
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computed from eqs.(4.9) and (4.10) with $N=1$ and $q=1$ . Moreover, these
solutions have no positive zero even for non-small $\sqrt{f_{0^{2}}+f_{0^{2}}’}$ , similarly to
these modes. As $\sqrt{f_{0^{2}}+f_{0^{2}}’}$ increases, a few subbranches appear near the
main branches. Most of them are always close to the main branches. The
solutions on the subbranches are close to the superposition of the solutions
on the main branches and one or more one-soliton solutions (2.18) for flat
bottom with $v=0$ and $\hat{\Omega}=\Omega$ , as shown in the inlets of Fig.2. Two sub-
branches of asymmetric solutions, however, part from the main branches as
$\sqrt{f_{0}^{2}+f_{0}^{\prime 2}}$ increases. The solutions on this part of these branches are quite
different from symmetric or antisymmetric solutions near $X=0$ .

Figure 3 shows the solutions for smaller $\lambda(\lambda=0.07)$ . The solutions on
branches $S_{1}$ and $S_{2}$ asymptote to the first and second symmetric modes in
the limit $\sqrt{f_{0^{2}}+f_{0^{2}}’}arrow 0$ , whereas those on $A_{1}$ and $A_{2}$ to the first and second
antisymmetric modes. Moreover, even for non-small $\sqrt{f_{0}^{2}+f_{0}^{\prime 2}}$ , the solutions
on branches $S_{1}$ and $A_{1}$ have no zero, and those on $S_{2}$ and $A_{2}$ have one zero,
similarly to the corresponding modes. Although there exist many subbranches
near these four main branches, they are not shown in Fig.3 as long as they are
close to the main branches. Only an asymmetric subbranch diverging from
$S_{2}$ is shown. Moreover, a symmetric branch $S_{2,3}$ is found just below $S_{2}$ . The
solutions on this branch are not related to the symmetric mode. They have
two non-small peaks at $X$ far from $0$ , as shown in the inlets. The peaks move
to $X=\pm\infty$ , as $f_{0}$ tends to $0$ .

As illustrated in Figs.2 and 3, for each $\lambda$ , the numbers of symmetric and
antisymmetric main branches and the asymptotic $\Omega$ values of these branches
as $\sqrt{f_{0}^{2}+f_{0^{2}}’}arrow 0$ can be predicted from the localized solutions to eq.(4.3)
(except for the branches such as $S_{2,3}$ ).

4.3.2 The case of $\lambda<0$

For negative unevenness with $\lambda<0$ , we find no solutions. This is consistent
with the non-existence of the localized solution to eq.(4.3) for $\lambda/\alpha>0$ .
4.4 Solutions for positive unevenness $(\alpha=1)$

4.4.1 The case of $\lambda<0$

For each negative $\lambda$ , one or more branches of symmetric or antisymmetric
solutions are found. The number of branches and the $\Omega$ value in the limit
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$\sqrt{f_{0^{2}}+f_{0^{2}}’}arrow 0$ can be predicted from the solutions to eq.(4.3), as in the case
of negative unevenness with $\lambda>0$ . Since $\lambda$ appears in the form $\lambda/\alpha$ in
eqs.(4.7) and (4.8), the range $of-\lambda$ for the existence of each mode for positive
unevenness is the same as the range of $\lambda$ for negative unevenness. Therefore,
as in \S 4.3.1, more branches are found for smaller $|\lambda|$ .

The $(f_{0}, \Omega)$ values of the solutions for fairly large $|\lambda|(\lambda=-3)$ are shown
in Fig.4. Only one symmetric branch $S_{1}$ is obtained for this $\lambda$ . The solution
asymptotes to the first symmetric mode as $f_{0}arrow 0$ . Whereas, unlike the case
of negative unevenness with $\lambda>0,$ $\Omega$ decreases with the increase of $f_{0}$ . Then
the branch finishes by arriving at $\Omega=\lambda^{2}/4$ , where the solution cease to decay
exponentially as $Xarrow\pm\infty$ . An example of the slow-decay solution is shown
in the inlet of Fig.4.

For smaller I $\lambda|$ , more branches are found, as illustrated in Fig.5. Figure
5 shows the existence of three symmetric branches ( $S_{1},$ $S_{2}$ and $S_{3}$ ) and
two antisymmetric branches ( $A_{1}$ and $A_{2}$ ) for $\lambda=-1/30$ . The number of
zeros of the solution on each branch is the same as that of the corresponding
mode. All branches have smaller $\Omega$ values for larger $\sqrt{f_{0^{2}}+f_{0^{2}}’}$ and finish at
$\Omega=\lambda^{2}/4$ . Analytic solution (4.2) is located on branch $S_{1}$ .

For positive unevenness with $\lambda<0$ , the solution similar to those on the
subbranches in Fig.2 is not found. This is probably because the one-soliton
solution (2.18) with $v=0$ does not exist for $\lambda<0$ . Moreover, no asymmetric
solution is obtained in this case.
4.4.2 The case of $\lambda>0$

For positive unevenness with $\lambda>0$ , symmetric and asymmetric solutions
are found, although eq.(4.3) has no localized solution for $\lambda/\alpha>0$ . Antisym-
metric solution is not obtained in this case. Figure 6 shows the $(f_{0},\Omega)$ values
of the solutions for fairly small $\lambda(\lambda=0.2)$ . There is a main branch $S_{M}$ whose
$\Omega$ value decreases at first and then increases as $f_{0}$ increases. Analytic solution
(4.2) is on this branch. The solutions on $S_{M}$ have only one peak for $f_{0}>1.13$ ,
whereas they have two peaks for $f_{0}<1.13$ . There are also subbranches of
symmetric and asymmetric solutions near $S_{M}$ , as shown in Fig.6. The solu-
tions on these subbranches are close to the superposition of the solution on $S_{M}$

and one or more one-soliton solutions (2.18) for flat bottom with $v=0$ and
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$\hat{\Omega}=\Omega$ , like the case of negative unevenness with $\lambda>0$ . However, unlike this
case, the peaks at $X$ far from $0$ always have the same sign as the central part
of the solutions, as shown in the inlets of Fig.6. In addition to branch $S_{M}$ and
its subbranches, there are branches of asymmetric solutions connecting the
right-hand and the left-hand parts of $S_{M}$ . These branches may be associated
with their subbranches. Moreover, the solutions on the central part of these
branches are quite different from those on branch $S_{M}$ or its subbranches.
\S 5. Conclusions

In a two-layer fluid system, the forced long-short interaction equation
(2.15) describes both the resonant interaction between long internal mode
and short surface mode, and the wave generation by the resonant motion of
the fluid relative to a bottom topography of large horizontal scale. For local-
ized symmetric bottom unevenness of $sech^{2}$-type, this equation has coupled
solutions corresponding to steady waves trapped by the unevenness. When
the unevenness is negative, the steady trapped solutions, computed as the
localized solutions to eq.(3.7), are found only for $\lambda>0$ . The solutions are
composed of one or more branches of symmetric, antisymmetric, or asymmet-
ric (neither symmetric nor antisymmetric) solutions. Some of them have many
peaks in short-wave envelope $f$ . For positive unevenness, steady trapped so-
lutions exist both for $\lambda>0$ and $\lambda<0$ . The solutions for $\lambda>0$ are either
symmetric or asymmetric. Moreover, a variety of solutions with many peaks
in $f$ are obtained for this case. The solutions for $\lambda<0$ are composed of
one or more branches of symmetric or antisymmetric solutions. For positive
unevenness with $\lambda<0$ or for negative unevenness with $\lambda>0$ , the range of
$\lambda$ for the existence of each branch of the steady trapped solutions is partly
predicted by the solutions to the linearized eq.(4.3).

The one-soliton solution (2.18) for flat bottom can be thought as a steady
progressive wave far from the localized bottom unevenness. Moreover, $S=$

$0,$ $L=\psi(X+\lambda T)$ ( $\psi$ is an arbitrary function), the solution to eq.(2.16) with
$H\equiv 0$ , is also a steady progressive wave far from the bottom unevenness.
The interaction between the steady trapped waves shown in this paper and
these two kinds of progressive waves coming to the bottom unevenness may
be an interesting theme. Its characteristics will be shown in the near future.
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Appendix

The constants $\alpha$ and $\beta$ in eq.(2.15) are given by
$\alpha=k_{0}\hat{\omega}\{\Delta(1-k_{0}^{2}/\hat{\omega}^{4})(\hat{\sigma}_{2}-\hat{\sigma}_{1})+2\Delta(k_{0}\hat{\sigma}_{1}/\hat{\omega}^{2}-1)/\hat{\omega}V_{0}$

$+V_{0}^{2}[(1-k_{0}^{2}/\hat{\omega}^{4})(\hat{\sigma}_{1}+\hat{\sigma}_{2}-\Delta\hat{\sigma}_{2}(1+k_{0}\hat{\sigma}_{1}/\hat{\omega}^{2}))$

$-2((1-\triangle)(1+\hat{\sigma}_{1}\hat{\sigma}_{2})+\triangle k_{0}\hat{\sigma}_{1}(1-k_{0}\hat{\sigma}_{2}/\hat{\omega}^{2})/\hat{\omega}^{2})/\hat{\omega}V_{0}]$

$/(V_{0^{2}}-1)\}/[4(1+(1-\triangle)\hat{\sigma}_{1}\hat{\sigma}_{2})-2k_{0}(\hat{\sigma}_{1}+\hat{\sigma}_{2})/\hat{\omega}^{2}]$ ,
$\beta=-r\{(1-\triangle)V_{0}(\hat{\omega}^{2}-k_{0^{2}}/\hat{\omega}^{2})-2(1-\triangle)k_{0}V_{0}^{2}/\hat{\omega}$

$-2\hat{\omega}V_{0}^{2}(1-\Delta)(\hat{C}_{1}-k_{0}\hat{S}_{1}/\hat{\omega}^{2})(\hat{S}_{1}-k_{0}\hat{C}_{1}/\hat{\omega}^{2})$

$-[\hat{\omega}^{2}V_{0}(V_{0}^{2}-1)(1/\hat{\sigma}_{2^{2}}-1)+2\hat{\omega}(V_{0}^{2}-\Delta)/\hat{\sigma}_{2}](\hat{C}_{1}-k_{0}\hat{S}_{1}/\hat{\omega}^{2})^{2}\}$

$/2(\Delta r-V_{0}^{4})$ ,
where $\hat{\omega}=\omega_{+}(k_{0}),\hat{C}_{1}=\cosh k_{0},\hat{S}_{1}=\sinh k_{0},\hat{\sigma}_{1}=\tanh k_{0},\hat{\sigma}_{2}=\tanh k_{0}r$ .
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Figure 1. Schematic
diagram of a two-layer
fluid over uneven bot-
tom.

Figure 2.
$(\sqrt{f_{0^{2}}+f_{0^{2}}’}, \Omega)$ values
of trapped solutions
for $\alpha=-1$ and $\lambda=$

0.5. – : sym-
metric solutions ( $S$ in
inlets), ——: an-
tisymmetric solutions
(A), – $\cdot$ – $\cdot$ –: asym-
metric solutions (N).
Several typical solu-
tions are shown in in-
lets. $O$ : analytic solu-
tion (4.2).

Figure 3. $(\sqrt{f_{0^{2}}+f_{0^{2}}’}, \Omega)$ values
of trapped solutions for $\alpha=-1$

and $\lambda=0.07$ . –: sym-
metric ( $S$ in inlets), —— :
antisymmetric (A), – $\cdot$ – $\cdot$ –:
asymmetric (N). Several typical
solutions are shown in inlets.
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Figure 4. $(f_{0}, \Omega)$ values of
trapped symmetric solutions for
$\alpha=1$ and $\lambda=-3$ . Two typical
solutions are shown in inlets.

Figure 5. $(\sqrt{f_{0^{2}}+f_{0^{2}}’} , \Omega)$ values
of trapped solutions for $\alpha=1$

and $\lambda=-1/30$ . –: sym-
metric, ——: antisymmet-
ric. Several typical solutions are
shown in inlets. $0$ : analytic so-
lution (4.2).

Figure 6. $(f_{0}, \Omega)$ val-
ues of trapped solu-
tions for $\alpha=1$ and
$\lambda=0.2$ .
–: symmetric $(S$

in inlets), $-\cdot-$ :
asymmetric (N). Sev-
eral typical solutions
are shown in inlets. $0$ :
analytic solution (4.2).


