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密度成層流体中の物体により励起される 3次元非線形内部重力波
-Navier-Stokes方程式の解と外力項を持った KP方程式の解–

国立環境研究所 花崎秀史 (Hideshi HANAZAKI)

1.Introduction

Recent studies on the waves excited by an obstacle in the flow have revealed the basic
nonlinear wave-generation mechanism. The mechanism is now found to be essentially the
same for the water waves, internal gravity waves in stratified flows and for the inertial
waves in swirling flows. The two-dimensional waves excited near resonance are found to
be well described by the forced Boussinesq equation or the forced $KdV(fKdV)$ equation.
These model equations have been derived by Wu(1981) and Akylas(1984) for the water
waves, by Grimshaw&Smyth(1986) for the internal waves, and by Grimshaw(1990) for
the swirling flows. The applicability of these equations and their extensions has been
verified experimentally or numerically by Lee,Yates&Wu(1989) for the water waves, by
Zhu,Wu&Yates(1986), Melville&Helfrich(1987) and Hanazaki(1992) for the internal
waves, and Hanazaki$(1991, 1993a)$ for the swirling flows.

However, for the three-dimensional waves, sufficient results have not been obtained. In
an experiment for the water wave, Ertekin,Webster&Wehausen(1985) found that the
upstream waves become straight crested. To know the applicability of the weakly
nonlinear theories, Ertekin,Webster &Wehausen(1986) solved the Green-Naghdi
equation, Katsis & Akylas(1987) solved the forced KP(fKP) equation and
Pedersen(1988) solved the forced Boussinesq equation. They found that, near resonance,
upstream waves become two-dimensional and the generation period of the upstream wave
agrees with experiments. From their results, Katsis&Akylas(1987) and Pedersen(1988)
argued that the mechanism of the two-dimensionalisation is the Mach reflection of the
upstream waves at the side wall of the channel. However, Tomasson&Melville(1991)
solved an equation for the waves excited by a side wall perturbation in the two-layer
flow. The equation is similar to the $fKP$ equation, and with an additional assumption [see
their (21)] it becomes the $fKP$ equation. Because the solution of that equation agreed well
with the solution of the linearized version of that equation when the flow is subcritical,
they argued that the phenomenon can be explained by the differences in the group
velocity of the lateral modes of the linear wave. Since no experimental results exist that
can follow the time development of the three-dimensional patterns of the upstream wave,
quantitative verification of the $fKP$ or the forced Boussinesq equations as a time-
dependent weakly nonlinear model has not been done sufficiently.

For the waves in a flow of linearly stratified Boussinesq fluid, there are a number of
experiments, but none of these give three-dimensional perspective of the upstream wave.
Hanazaki(1989a) has found that the upstream waves become two-dimensional by solving
the three-dimensional Navier-Stokes equations. However, the channel width used was too
small for the understanding of the process of the two-dimensionalisation of the upstream
wave. Theoretically, Grimshaw&Yi(1991) derived a model finite-amplitude equation
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for the two-dimensional resonant flow and its quantitative verification was done
numerically by Hanazaki(1993b). However, corresponding theory for the three-
dimensional waves are not yet developed. Because the linearly stratified Boussinesq fluid
is one of the most typical type of density stratification that has been studied extensively,
the investigation of its three-dimensional flow is also of much interest.

In this study, time-dependent three-dimensional Navier-Stokes equations are solved
numerically. First, near resonant flow of the nearly two-layer fluid is considered. It is
shown if the waves resonantly excited by an obstacle are describable by the equations
derived by the weakly nonlinear theory and if the abnormal reflection similar to the Mach
reflection occurs at the side $waU$ and also if the process of two-dimensionalisation of the
upstream waves can be explained by the differences in the group velocity of the lateral
modes of the linear wave. In this case, the waves are expected to be governed by the $fKP$

equation or its extensions and the comparisons with their solutions are given. Next, the
results for the flow of the linearly stratified Boussinesq fluid is given.

2.$Theory$

The governing equations are the Navier-Stokes equations for an imcompressible stratified
fluid.

$\frac{\partial_{\mathcal{V}}^{\vee}}{\partial r}+(varrow\cdot\vec{\nabla})\vec{v}=-\frac{1}{\rho}\vec{\nabla}p-g^{\wedge}zarrow+\frac{\mu}{\rho}\nabla^{2}\vec{v}$ , (2.1a)

$\frac{\partial p}{\partial t}+(varrow\cdot\tilde{\nabla})p=0$ , (2.1b)

$divv=0$ (2.1c)
where $\vec{v}=(u,v,w)$ is the velocity, $p$ is the pressure, $r$ is the density, $m$ is the viscosity
coefficient, $g$ is the acceleration due to gravity and $\overline{z}\wedge$ is the unit vector along the $z$ axis.

To derive the forced KP(fKP) equation and the forced extended KP(flEKP) equation ffom
the inviscid form of (2.1), we rescale x,y and $t$ as

$X=\epsilon^{1/2}x,$ $Y=q,$ $T=\epsilon^{3/2}r$, (2.2)

where $\epsilon$ is a small parameter and expand the dependent variables in powers of $\epsilon$ .

At $O(\epsilon)$ , we obtain a Sturm-Liouville equation

$\frac{d}{dz}(\overline{\kappa}_{n}^{2}\frac{d\phi_{n}}{dz})-g\frac{d\overline{p}}{dz}\phi_{n}=0$,

$\}_{2.4}^{2.3}\{$

$\phi_{n}(0)=\phi_{n}(D)=0$ ,

where $C_{n}(C_{1}>C_{2}>\ldots)$ and $\phi_{n}(z)$ are respectively the nth eigenvalue and the nth
eigenfunction and $\overline{p}(z)$ is the undisturbed density.

If we scale the obstacle height $h$ as
$h=\epsilon^{2}H(X,Y,T)$ , (2.5)

we obtain the $fKP$ equation at $O(\epsilon^{2})$ , and if we consider also the effect of the cubic
nonlinearity of higher order, $O(\epsilon^{3})$ , we obtain the $fEKP$ equation

$- \frac{1}{C_{\hslash}}(A_{T}+\Delta A_{X})+a_{7}AA_{X}+\epsilon a_{2}A^{2}A_{X}+a_{3}A_{XXX}+\frac{1}{2}\int_{-\infty}^{X}dKA_{YY}+G_{X}=0$ , (2.6)

where
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$\Delta=\frac{U-C_{n}}{\epsilon}$ , (2.7a)

$a_{1}= \frac{3\int_{0^{D}}\overline{\rho}(\frac{d\phi_{n}}{dz})^{3}dz}{2L_{\hslash}}$

, (2.7b)

$a_{2}= \frac{3\int_{0^{D}}\overline{\rho}(\frac{d\phi_{n}}{dz})^{4}dz}{L_{n}}$

, (2.7c)

$a_{3}= \frac{\int_{0^{D}}\overline{\rho}\phi_{\hslash}^{2}dz}{2L_{\hslash}}$ , (2.7d)

$G(X,Y)=( \overline{\rho}\frac{d\phi}{dz})_{z=0}\frac{H(X,Y,T)}{2L_{n}}$ , (2.7e)

and $L_{\hslash}= \int_{0^{D}}\overline{\rho}(\frac{d\phi_{n}}{dz})^{2}dz$ . (2.7f)

The $fKP$ equation is obtained by neglecting the cubic nonlinear term $\epsilon a_{2}A^{2}A_{X}$ in (2.6). In
a two-dimensional two-layer flow, Melville&Helfrich(1987) found by experiments that
the effect of the cubic nonlinearity cannot be neglected. Later, Hanazaki(1992) showed
that the ratio $\epsilon a_{2}/a_{1}$ is very large compared to the case of the water wave and the waves
would be well described by the $fKP$ equation only when the amplitude of the wave is
very small. In the case of the linearly stratified Boussinesq fluid, (2.3) becomes

$\frac{d^{2}\phi_{\hslash}}{dz^{2}}-\frac{N^{2}}{C_{\hslash}^{2}}\phi_{\hslash}=0$ , (2.8a)

where the constant Brunt-Vaisala frequency is given by

$N^{2}=- \frac{g}{\overline{p}}\frac{d\overline{\rho}}{dz}$. (2.8b)

Therefore, $\phi_{\hslash}(z)$ and $C_{n}$ become

$\phi_{n}(z)=\sin\frac{n\pi z}{D}$ , (2.9a)

and

$C_{n}= \frac{ND}{n\pi}$ . (2.9b)

Substituting (2.9a) into ($2.7b,f\gamma$ and setting $\overline{\rho}(z)$ constant in the integrand, we know that
$a_{1}=0$ , which means that the quadratic nonlinear term in the $fKP$ and the $fEKP$ equation
vanishes. In this case the nonlinear correction of the linear wave speed would be very
small. This can be expected from the solution of the equation derived by Grimshaw&
Yi(1991) and from the numerical solution of the two-dimensional Navier-Stokes
equations [Hanazaki(1992,1993b)].

3.Numerical method

The numerical method is essentially the same as in the previous
studies[Hanazaki(1989a,b),(1992)]. The computation was done in the domain of
$x_{\min}\leq x\leq x_{\max}$ , $0\leq y\leq y_{\max}=W$ , $h(x,y)\leq z\leq z_{\max}=D$, (3.1)
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where $W(=40D)$ is the half width of the channel, $D$ is the channel depth and the obstacle
shape is given by

$h(x,y)=h_{m*x} \cross\frac{1}{2}[1+\cos(\pi\{(\frac{X}{5D})^{2}+(\frac{y}{10D}I^{2}\}^{\frac{1}{2}}]]$ ,

where $( \frac{X}{5D})^{2}+(\frac{y}{10D}I^{2}\leq 1$ (3.2)

and $h(x,y)=0$ elsewhere [ $h_{mx}=0.1D$ , see Figure 1].

The computation is done only for $y\geq 0$ because we assume the symmetry of the flow
against the plane of $y=0$ . At $y=W$ and $z=D$, rigid walls exist and the waves are
reflected by these walls. The boundary conditions for the nearly two-layer flow are the
three-dimensional counterpart of the previous studies [Hanazaki(1989a,b), (1992)].

The undisturbed density distribution $\overline{p}(z)$ is given by

$\overline{p}(z)=\frac{1}{2}[\overline{\rho}(0)+\overline{\rho}(D)]-\frac{1}{2}[\overline{\rho}(0)-\overline{\rho}(D)]\tanh[\frac{50(z-f_{b})}{D}]$,
(3.3)

with $\overline{\rho}(D)=0.9\overline{p}(0)$ , and $h_{2}=0.3D$.

In this study, Froude number is defined by

$F= \frac{U}{C_{1}}$ . (3.4)

where $C_{1}$ is the maximum eigenvalue of the Sturm-Liouville problem (2.4). Specifically,
in the case of the linearly stratified Boussinesq fluid, $C_{1}$ is given by (2.9b) (with $n=1$ ).

The Froude number is varied as $0.6\leq F\leq 1.4$ . The Reynolds number is defined by
${\rm Re}=^{\underline{\overline{\rho}(0)Uh_{\max}}}$. (3.5)

$\mu$

and is fixed to be 1000.

4.Results

In Figure 2, time development of the resonant(F$=1.0$) flow of a nearly two-layer fluid
over topography is described. Here $A(x,y,t)=Al$ (x,y,t) is calculated using the horizontal
velocity $u(x,y,z,t)$ . In the initial time development(Ut/D$=40$) the upstream waves are
curved backwards [Figure $2(a)$]. At around $Ut/D=60$, the far side end of the upstream
waves reaches the side wall and it begins to be reflected. After that, the upstream waves
become gradually straight crested as time proceeds. Downstream of the obstacle, flat
depression is formed and it becomes longer as time proceeds. Further downstream, lee
waves are generated[Figure $2(d)$].

To compare this solution with the weakly nonlinear theory, the solutions of the $fKP$ and
the $fEKP$ equation [see (2.6)] when $F=1.0(UUD=200)$ are shown in Figure 3. The over
all qualitative feature agree with the solution of the fully nonlinear Navier-Stokes
equations. However, there are some quantitative differences. Nearly flat depression just
downstream of the obstacle(x $>0,$ $y\equiv 0$ ), which is typical in the two-dimensional waves
and also seen in the three-dimensional solution of the Navier-Stokes equations, does not
appear in the solutions of the $fKP$ and the $fEKP$ equation. In addition, in the solution of
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the $fKP$ equation[Figure $3(a)$], the generation period of the upstream waves is shorter and
the upsffeam-advancing speed is larger. Although the upstream waves have comparable
amplitude, lee-wave amplitude is highly over predicted. In the solution of the $fEKP$

equation[Figure $3(b)$], the amplitude of the upstream wave is over predicted although the
lee wave amplitude is smaller than the solution of the $fKP$ equation. The generation
period of the upsffeam wave is longer and the upsffeam-advancing speed is smaller than
the solution of the Navier-Stokes equations. It seems that, except just upstream of the
obstacle(x $\leq 0,$ $y\leq 20D$ ), the $fEKP$ equation shows better agreement with the Navier-
Stokes equations compared to the $fKP$ equation. However, solution of the $fEKP$ equation
shows large differences just upstream of the obstacle(x $\leq 0,$ $y\leq 20D$ ) where we have the
most concern. Therefore, we can not say straightforwardly that the $fEKP$ equation is a
sufficiently accurate model of the phenomenon. We note that, although the comparisons
are made here only for $F=1.0$, typical qualitative differences were the same for the other
Froude numbers near resonance.

To see the Froude-number dependence of the wave, results for various Froude numbers at
$UuD=2\alpha\}$ are shown in Figure 4. When $F=0.9$ , upstream waves are weak compared to the
case of $F=1.0$ [Figure $2(c)$]. The upstream-advanCing speed is faster because of the faster
linear-wave speed and the wave-generation period is shorter. The length of the
downstream depression is smaller and the lee-wave amplitude is larger. When $F=1.05$ , the
upstream waves have larger amplitude and longer wave-generation period. Even when
$F\geq 1$ , upstream waves are generated in a long-time development as has been predicted
by the weakly nonlinear theories. When $F=1.1$ , the upstream waves have even larger
amplitude but have further longer wave-generation period. When $F=1.4$ and the flow is
supercritical, the upstream waves are no longer generated and an elevation of fluid just
above the topography is trailing obliquely downstream.

A controversial issue raised here has been the mechanism of the two-dimensionaliSation
of the upstream wave. To see the two-dimensionalisation more clearly, the contours of
$A(x,y,t)$ corresponding to Figure 2 are shown in Figure 5. At first $[UUD=40,Figure5(a)]$ ,
the upstream wave is curved backwards, but after the wave reaches the side wall at about
$UD=60$, the wave is reflected and a third wave whose wave crest is perpendicular to the
side wall appears [Figure $5(b)$]. This third wave is similar to the Mach stem that appears
in the Mach reflection. The length of this third wave becomes longer as time proceeds
forming a straight-crested wave front. The upstream-advancing speed of the Mach-stem
like wave is faster than the wave near the center plane because the amplitude is larger. In
addition, the length of the stem becomes longer roughly proportional to time. Therefore,
the upstream front becomes two-dimensional as time proceeds. The amplitude of the
reflected wave is very weak compared to the incident wave. Also, the angle of reflection
is larger than the incident angle in Figure 5(b), (c) and (d) [see also Table 1]. These all
features agree with the Mach reflection mechanism.

In Figure 6, the contours of $A(x,y,t)$ for various Froude numbers when a short time has
passed after the foremost upstream wave begins to be reflected are shown. When
upstream advancing waves are generated ($F=1.0,1.05$ and 1.1) [see Figure $5(b),6(a,b)$],
the reflection angle is larger than the incident angle and the reflection pattern is
qualitatively the same for all the Froude numbers near resonance$(F\cong 1)$ . The reflection
angle is consistently more than 5 degree larger than the incident angle as shown Table 1.
As is typical in the Mach reflection, the amplitude of the reflected wave is weaker
compared to the incident wave, although the reflection process is unsteady and the
amplitude of the reflected wave is still growing in these figures. It should be noted that
the Miles‘ theory is intended for a Boussinesq solitary wave of $\sec h^{2}$ profile. In this
study, the upstream wave profile does not agree with the solution of the $fKP$ equation and
the upstream wave may not have the exact $\sec h^{2}$ profile. However, this is similar to the
Boussinesq solitary wave and would show a qualitatively similar reflection pattern. When
the flow is supercritical and no upstream waves are generated [$F=1.4$ , Figure $6(c)$], the
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incident angle and the reflection angle agree$(41^{o})$ [see Table 1] and the amplitude of the
reflected wave is comparable to the incident wave. This means that the reflection is a
normal reflection. Note that the wave patterns are quite similar to the solution of the
forced Boussinesq equation at the same Froude number [Pedersen(1988), Figure 1 (a,b)].

To see if the two-dimensionalization is a result of the linear dispersion relation, we
consider the dispersion relation of the unforced linearized KP equation as done by
Tomasson&Melville(1991). If we substitute
$A(X,Y,T) \propto e^{i(b-ox)}\cos\frac{l_{J}U}{W}$ , (4.1)

into the linearized KP equation without a forcing term $[c.f.(2.6)]$ noting that x,y, and $ta\infty$

scaled as in (2.2), we obtain the dispersion relation

$\omega=C_{*}(a_{3}k^{3}-\frac{l^{2}\pi^{2}}{2W^{2}k})+\epsilon\Delta k$ . (4.2)

To see if the linear dispersion relation can be applied to the solution of the Navier-Stokes
equations, the time development of the lateral wave modes $l=0$ and $l=1$ when $F=1.0$ is
shown in Figure 7. Because $A(x,y,t)$ can be decomposed by complete orthogonal
functions as

$A(x,y,t)= \sum_{\iota\underline{\sim}0}^{\infty}\tilde{A}_{l}(x,t)\cos\frac{lv}{W}$ , (4.3)

the amplitude of the each lateral wave mode is calculated by
$\tilde{A}_{l}(x,t)=\frac{2}{W}\int_{0^{W^{r}}}A(x,y,t)\cos\frac{\iota v}{W}dy$. (4.4)

At $UD=2\alpha$}, the distance between the position of the foremost upstream wave of mode
$l=0$ and $l=1$ estimeated by (4.2) is 7. $2D$ . However, we see in Figure 7 that the
propagation speed of the upstream front is almost the same in modes $l=0$ and $l=1$ In

the initial time development, not only the lowest mode $l=0$ but also higher modes$(l\geq 1)$

are excited and propagate upstream at an equal speed. Therefore, the upstream wave is
not governed by the linear dispersion relation at least near resonance. Although
Tomasson&Melville(1991) showed the separation of transverse modes when $F=0.6$

which may be the result of the linear dispersion relation, they did not report such a
separation when the flow is near resonance $(F=1.05)$ . They argued that only the lowest
mode $(l=0)$ can be resonant and develop nonlinearly to forn two-dimensional upstream
waves. However, the present solution of the Navier-Stokes equations shows that also the
higher modes$(l\geq 1)$ develop nonlinearly and propagate upstream.

Next we consider the case of the linearly stratified Boussinesq flow. Because the two-
dimensionalisation of the upstream wave has been shown also in the subcritical flow of
the linearly stratified Boussinesq fluid [Hanazaki(1989a), Figure 8], it is of interest to see
what occurs in these flows. As an example, we show the case of $F=0.6$ in Figure 8. We
see the clear separation of the mode $l=0$ and $l=1$ in this case. This causes the two-
dimensionalisation of the upstream wave. By assuming
$\rho\propto e^{i(k-\alpha)}\cos\frac{lv}{W}\sin\frac{n\pi z}{D},$ $etc.$ , (4.5)

we can derive a dispersion relation as
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$\omega=N[\frac{k^{2}+(\frac{l\pi}{W})^{2}}{k^{2}+(\frac{l\pi}{W})^{2}+(\frac{n\pi}{D})^{2}}]^{\frac{1}{2}}$ (4.6)

At time $UVD=80$, the difference in the position of the foremost wave of mode $l=0$ and
$l=1(n=1, F=0.6, W=20D)$ is 7.$9D$. The wavelength of the foremost wave of mode $l=1$

is $11.9D_{;}$ These values are consistent with Figure 8. Because the upstream wave in this
case is sinusoidal and not similar to the Boussinesq solitary wave, abnormal reflection
similar to the Mach reflection does not occur. We know that the nonlinear correction of
the linear wave speed is small in the case of the two-dimensional linearly stratified
Boussinesq fluid. This would be applied also to the three-dimensional fluid. Therefore,
although the propagation speed is consistent with the prediction of the linear theory, this
does not mean directly that the upstream waves are governed by the linear equations.

5.Conclusion

We have found that the three-dimensional waves excited by an obstacle near resonance in
nearly two-layer flow are described qualitatively by the $fKP$ or the $fEKP$ equation. In the
process of the two-dimensionalisation of the upstream wave, it was found that the
abnormal reflection similar to the Mach reflection of a Boussinesq solitary wave plays an
important role. The phenomenon could not be explained by the difference in the group
velocity of the lateral mode of the linear wave.

In the case of the linearly stratified Boussinesq flow, the two-dimensionalisation of the
upstream wave could be explained by the difference in the group velocity of the lateral
mode of the linear wave, because the upstream wave had a sinusoidal structure and the
abnormal reflection that is typical to the Boussinesq solitary waves could not occur.
However, this does not directly mean that the upstIeam waves can be described governed
by the linear theory because the nonlinear correction of the linear wave speed would be
very small in analogy with the results for the two-dimensional waves.
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$U$

Figure 1. Schematlcal view of the flow geometry.

40 $D$

$(b)$

$40D$

Figure 2. Time development of $A(x.y.r)ob\mathfrak{c}alned$ from the solution of
the Navier-Stokes equations when $P\Rightarrow 1.0$ ( $\mathfrak{c}wo$-layer flow). (a) $U\iota/D=40$ ;
$(b)U\iota/D\Rightarrow 80;(c)Ut/D=20,$ $(d)Ut/0=4\propto)$ .
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$(a)$

40 $D$

$(b)$

40$D$

Figure 3. Time development of $A(x.y.\iota)$ obtained from the solution of
the weakly nonlinear equations when $Farrow 1.0$ (two-layer flow,
$U\iota/D=20)$ . $(a)fKP$ equation; (b) $fEKPeqUaQon$ .

$(a)$
$(c)$

40$D$

$(b)$

Figure 4. $A(x.y,\iota)$ obtained from the solution of the Navier-Stokes
equations for various Froude numbers (two-layer flow, $Ut/D=2\infty$ ).
$(a)F-O.9,\cdot\langle b)F-1.05;(c)Farrow 1.1;\langle d)F\approx 1.4$ .
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$(c)$

Figure 5. Time development of the contour $ofA(x.y.\iota)$ obtained fromthe solution of the Navier-Stokes equations when $F\Leftrightarrow 1.0$ (two-layerflow). $ta$) $Ut/D–40;(b)Ut/D=80,\cdot(c)U\iota/D=20;(d)U\iota/D=40$.

Figure 6. The contour of $A(x,y.t)$ obtained from the solutlon of the
Navier-Stokes equations for various Froude numbers (two-layer
flow). $(a)F\approx 1.05(Ut/D=\iota\alpha));(b)F=1.1(Ut/D=120);(c)F\approx 1.4(Ur/D=200)$.
The interval of the contour is $\Delta(\epsilon A)=0.01D$ and the broad Une shows
$A=0$.
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Froude tune channel inciden$t$ reflection difference
number $(U\iota/D)$ width angle angle

(degree) (degree) (degree)

0.6 70 $20D$ 11 18 7

0.9 80 $40D$ 29 36 7

1.0 80 $40D$ 36 45 9

1.05 100 $40D$ 33 39 6

1.1 120 $40D$ 38 43 5

1.4 200 $40D$ 41 41 $0$

Table 1. Incident and reflecdon angles of $\iota he$ upstream wave at che
side $waU$ for vanous Froude numbers.

$(0)$

$(b)$

$(b)$

$(c,)$

$(c)$

Figure 7. $T_{1}me$ development of the lateral mode $\overline{4}_{0}(x.r)$ and 4 $(x.t)$ in
che solutlon of the Navier-Stokes equations when $F-1.0$ (two-layer
flow) $ta$) $Ut/D\simeq 40;(b)Ur/D=1\alpha);(c)U\iota/D=20$.

Figure 8. Time development of $A(x,y.\iota)$ obtained from the solution of
the Navier-Stokes equations when $F-0.6$ (linearly stratified
Boussinesa flow). $(a1U\prime\prime D=20;(b)U’/0=50(c)Ut/D=\partial 0$


