<table>
<thead>
<tr>
<th>Title</th>
<th>NP-completeness of Minimum Binary Decision Diagram Identification Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TAKENAGA, Yasuhiko; YAJIMA, Shuzo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 833: 242-249</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83398</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
NP-completeness of Minimum Binary Decision Diagram Identification Problems

Yasuhiko TAKENAGA and Shuzo YAJIMA

Faculty of Engineering, Kyoto University

1 Introduction

An Ordered Binary Decision Diagram (or simply BDD) [1, 2] is a graph representation of a Boolean function. The BDD representation of Boolean functions has the following good properties: there exists a unique canonical form for any Boolean function, many of practical Boolean functions are represented in feasible size, various basic operations such as reduction (minimization) and Boolean operations are executed efficiently.

Owing to the excellent properties, BDD’s have come to be indispensable in application programs of logic design verification fault diagnosis of logic circuits, logic synthesis and so on. In the applications, the use of BDD’s enabled us to deal with large scale circuits efficiently.

On the other hand, researches on the properties of BDD’s from theoretical aspects have come to be made at last recently. [3] and [4] deal with the number of nodes necessary to represent various Boolean functions. [3] proves that the function to represent the output of a multiplier cannot be represented within polynomial size. [5] and [6] define a class of languages expressed by polynomial size BDD’s and discuss the relation to various complexity classes. [7] and [8] take up the efficiency of basic operations on BDD’s. They show that there are NC algorithms for the operations.

In this paper, we consider the problems to identify the minimum BDD that satisfies given positive examples and negative examples. Although the size of BDD’s may largely vary according to the variable ordering, we assume in this paper that the variable ordering is fixed. The width and the number of nodes are used as the measure of minimality. We prove that, in both cases, the minimum BDD identification problem is NP-complete. If we regard that the values for the assignments which are not in the examples to be undefined, this problem is to find a simple completely specified Boolean function that is consistent with a given incompletely specified function.

This problem is also closely related to computational learning theory. In the PAC(Probably Approximately Correct)-learning model [9, 10], the learner generates a hypothesis based on the examples given by the teacher. It is known that k-term DNF, k-clause CNF, μ-formulas are not learnable under the PAC-learning model unless NP = RP [11]. In the same manner, we can observe from the above result that k-width BDD and k-size BDD are not learnable in polynomial time under PAC-learning model unless NP = RP.
2 Binary Decision Diagrams

An Ordered Binary Decision Diagram (BDD) [1, 2] is a directed acyclic graph that represents a Boolean function. The nodes of a BDD consist of variable nodes and two value nodes. The outdegree of a variable node is 2. The edges are called 0-edge and 1-edge. One of the variable node is called a root node whose indegree is 0. Two value nodes are called 0-node and 1-node.

A BDD is represented by a root node and a set of 4-ples \((i, \text{index}(i), \text{low}(i), \text{high}(i))\) that correspond to variable nodes, where
- \(i\) is a node number,
- \(\text{index}(i) \in \{1, 2, \cdots N\}\) \((N\) is the number of variables\) is an index of the variable that is assigned to the node, and
- \(\text{low}(i), \text{high}(i)\) are the numbers of the nodes pointed by the 0-edge and the 1-edge respectively. The node number of 0-node is 0 and that of 1-node is 1.

The Boolean function that is represented by node \(i\), denoted by \(f_i\), is defined as follows by Shannon’s expansion.

\[
f_0 = 0, \quad f_1 = 1,
\]
\[
f_i = x_{\text{index}(i)} \cdot f_{\text{high}(i)} + \overline{x_{\text{index}(i)}} \cdot f_{\text{low}(i)}.
\]

When the root node of a BDD \(A\) is \(a\), the function represented by \(A\) is \(f_{A} = f_{a}\).

For a permutation \(\pi\) on \(\{1, 2, \cdots N\}\), every node of a BDD satisfies

\[
\pi(\text{index}(i)) < \pi(\text{index}(\text{low}(i))),
\]
\[
\pi(\text{index}(i)) < \pi(\text{index}(\text{high}(i))),
\]

except when \(\text{low}(i)\) or \(\text{high}(i)\) is a value node. \(\pi\) is called a variable ordering. \(\pi(\text{index}(i))\) is denoted by \(\text{level}(i)\) and is called the level of node \(i\) or the level of \(x_{\text{index}(i)}\).

When two nodes \(i\) and \(j\) represent the same function, they are called to be equivalent and denoted by \(i \equiv j\). \(i \equiv j\) iff

\[
\text{level}(i) = \text{level}(j), \quad \text{high}(i) \equiv \text{high}(j), \quad \text{low}(i) \equiv \text{low}(j).
\]

Node \(i\) is called to be redundant when

\[
\text{high}(i) = \text{low}(i).
\]

A BDD is called a dense BDD when all the variable nodes satisfy

\[
\text{level}(i) + 1 = \text{level}(\text{low}(i)) = \text{level}(\text{high}(i)).
\]

Any BDD can be transformed to a dense BDD by adding redundant nodes.

A dense BDD which has no equivalent nodes is called a quasi-reduced BDD [12]. A BDD which has no equivalent nodes and no redundant nodes is called a reduced BDD.

Let \(\text{width}(k)\) be the sum of the number of nodes in level \(k\) and the number of edges that passes through level \(k\). The width of a BDD is defined by \(\max_{1 \leq k \leq n} \text{width}(k)\).

BDD’s defined above have following good properties.

- A Boolean function is uniquely represented by a reduced BDD or a quasi-reduced BDD, provided that the variable ordering is fixed. Therefore, the equivalence of Boolean functions is easily checked.
• For \(n \)-variable Boolean functions, the number of nodes is \(O(2^n/n) \), however, many practical Boolean functions are compactly represented.

3 Minimum Binary Decision Diagram Identification

3.1 NP-completeness of Minimum Binary Decision Diagram Identification Problems

In this section, we consider the complexity of identifying minimum BDD’s from positive examples and negative examples. We assume in this paper that the variable ordering of a BDD is fixed. As the measures of the size of BDD’s, we consider both the width and the number of nodes.

Definition: MINIMUM WIDTH BDD IDENTIFICATION

Input: A set \(EX \) of examples and a positive integer \(k \).

Output: Is there a BDD of width less than or equal to \(k \) that satisfies all the examples?

Definition: MINIMUM BDD IDENTIFICATION

Input: A set \(EX \) of examples and a positive integer \(k \).

Output: Is there a BDD which has less than or equal to \(k \) nodes that satisfies all the examples?

Note that an example is a pair \(\langle x, f(x) \rangle \), where \(x \in \{0,1\}^n \) is an assignment for variables \(x_1, x_2, \ldots, x_n \), and \(f(x) \in \{0,1\} \) is the value of \(f \) for the assignment. The variable ordering of the BDD is fixed as \(\pi(x_i) = i, 1 \leq i \leq n \).

When we assign values to \(x_1, x_2, \ldots, x_n \), a function that satisfies \(EX \) is considered as \((n-k) \)-variable incompletely specified Boolean function. Let \(f, g, h \) be incompletely specified Boolean functions. We denote \(f \subseteq g \) when \(g(x) = 1 \) if \(f(x) = 1 \) and \(g(x) = 0 \) if \(f(x) = 0 \) for all \(x \). \(f \) and \(g \) can be unified iff there exists \(h \) s.t. \(f \subseteq h \), \(g \subseteq h \). Let \(H = \{ h | f \subseteq h, g \subseteq h \} \), then \(h' = \bigcup \{ f, g \} \) is defined as \(h' \in H \), \(\forall h \in H \ h \subseteq h' \).

Theorem 1 MINIMUM WIDTH BDD IDENTIFICATION is NP-complete.

Proof First, we show a nondeterministic polynomial time algorithm for MINIMUM WIDTH BDD IDENTIFICATION.

Let \(\text{prefix}_i(x) \) denote the \(i(0 \leq i \leq n) \) highest bits of \(x \).

[Algorithm MinIdent]

1: \(P = \{ \text{prefix}_i(x) \mid \langle x, f(x) \rangle \in EX, 1 \leq i \leq n \} \). For all \(y \in P, 1 \leq |y| < n \), guess \(g(y) \in \{1,2,\ldots, \min(k,2^{|y|})\} \). For \(y \in P \) s.t. \(|y| = n \), let \(g(y) = f(y) \).

2: For \(1 \leq i \leq n, 1 \leq j \leq k \), let \(P_{i,j} = \{ \text{prefix}_i(x) | g(\text{prefix}_i(x)) = j \} \).

3: For \(1 \leq i \leq n, 1 \leq j \leq k \), check whether the following conditions are satisfied. 1) \(g(r \cdot 0) = g(s \cdot 0) \) for all \(r, s \) s.t. \(r, s \in P_{i,j}, r \cdot 0 \in P \) and \(s \cdot 0 \in P, 2) g(r \cdot 1) = g(s \cdot 1) \) for all \(r, s \) s.t. \(r, s \in P_{i,j}, r \cdot 1 \in P \) and \(s \cdot 1 \in P \).

If the conditions are satisfied for all \(i,j,r,s \), then there exists a BDD of width less than or equal to \(k \).
We can see that $|P| \leq |EX| \times n$ and $|P_{i,j}| \leq |EX|$. Therefore the time requirement of Algorithm MinIdent is bounded by a polynomial of n and $|EX|$.

We shall claim the correctness of Algorithm MinIdent. We can construct a BDD as follows. The path corresponding to an assignment x is on the $g(prefix i_{i-1}(x))$-th node in level i. For each $1 \leq i \leq n$, $r \in P(|r| = i - 1)$, the 0-edge from the $f(r)$-th node of level i points $f(r \cdot 0)$-th node of level $i + 1$ if $r \cdot 0 \in P$, and the 1-edge points $f(r \cdot 1)$-th node if $r \cdot 1 \in P$.

If the conditions of 3: are not satisfied, there exists a node that has more than one 0-edges or 1-edges. Otherwise, each node has at most one 0-edge and 1-edge, and the generated graph is a subgraph of a k-width BDD. Moreover, we can easily see that there are paths from the root node to constant nodes for all the assignments given as examples. The edges which are not generated by the above method may point any node.

Next, we show the NP-hardness of MINIMUM WIDTH BDD IDENTIFICATION by the reduction from GRAPH K-COLORABILITY.

Definition: GRAPH K-COLORABILITY

Input: An undirected graph $G(V, E)$ and a positive integer k.

Output: Is there a function $f : V \rightarrow \{1, 2, \cdots, k\}$ s.t. $f(i) \neq f(j)$ for all the edges $(i, j) \in E$?

Let N denote the number of nodes in G. We can assume without loss of generality that N is a power of 2.

The Boolean function of the reduced problem has $6\log N + 2$ variables. The set of examples are as follows:

$\langle B_{i} \cdot B_{j} \cdot B_{p} \cdot B_{q} \cdot 00 \cdot B_{r} \cdot B_{s}, f_{i}(r, s) \rangle \ (r < s),$

$\langle B_{i} \cdot B_{j} \cdot B_{p} \cdot B_{q} \cdot 01 \cdot B_{r} \cdot B_{s}, f_{j}(r, s) \rangle \ (r < s),$

$\langle B_{i} \cdot B_{j} \cdot B_{p} \cdot B_{q} \cdot 10 \cdot B_{r} \cdot B_{s}, f_{p}(r, s) \rangle \ (r < s),$

$\langle B_{N-1} \cdot B_{N-1} \cdot B_{N-1} \cdot B_{q} \cdot 11 \cdot B_{r} \cdot B_{s}, g_{q}(r, s) \rangle \ (r < s, (r, s) \in E)$ and

$\langle B_{i} \cdot B_{j} \cdot B_{p} \cdot B_{q} \cdot 11 \cdot B_{r} \cdot B_{s}, f_{q}(r, s) \rangle \ (r < s, \text{excepting } i = j = p = N - 1),$

where $0 \leq i, j, p, q, r, s \leq N - 1$ and B_{i} is a binary representation of an integer i. $f_{0}, f_{1}, \cdots, f_{N-1}$ and $g_{0}, g_{1}, \cdots, g_{N-1}$ are defined as follows:

$f_{i}(B_{i}, B_{s}) = 0 \text{ iff } t < s,$

$f_{i}(B_{r}, B_{t}) = 1 \text{ iff } r < t,$

$g_{i}(B_{r}, B_{s}) = 0 \text{ iff } t < s \text{ and } (t, s) \in E \text{ and}$

$g_{i}(B_{r}, B_{t}) = 1 \text{ iff } r < t \text{ and } (r, t) \in E.$

The positive integer to bound the width of the BDD is $N^{4} - N + k$.

The number of examples is

$\binom{N - 1}{2}(4N^{4} - N) + 2|E| = O(N^{5}).$

The examples can be generated using $O(\log n)$ space.

We shall prove that there exists a $(N^{4} - N + k)$-width BDD that satisfy all the examples iff graph G is k-colorable. In order to count the width of each level, we use the following propositions.

Propositions 1. For any $i, j \ (i \neq j, 0 \leq i \leq N - 1)$, f_{i} and f_{j} cannot be unified.

2. g_{i} and $g_{j} \ (i \neq j)$ can be unified iff $(i, j) \not\in E$.

3. $g_{i} \sqsubseteq f_{i} \ (0 \leq i \leq N - 1)$.

4. If $g_{i_{1}}, g_{i_{2}}, \cdots g_{i_{m}}$ can be unified, $g' = \sqcup\{g_{i_{1}}, g_{i_{2}}, \cdots g_{i_{m}}\}$ can be unified with any of $f_{i_{j}} \ (0 \leq j \leq m)$.
Proof 1. When \(i < j, f_i(i,j) = 0, f_j(i,j) = 1 \).

4. We have only to prove the case where \(m = 2 \). \(f_i \) and \(f_j \) \((i < j)\) differ only when the parameters are \(i \) and \(j \). However, \(g_i \) and \(g_j \) can be unified, because \((i, j) \notin E\), that is, \(g_i(i, j) \) and \(g_j(i, j) \) are undefined. Therefore, \(f_i \) and \(g_j \) \((f_j \text{ and } g_i)\) can be unified. \(\square \)

The next lemma follows from Proposition 2.

Lemma 1 \(g_i(0 \leq i \leq N - 1) \) can be divided into \(k \) subsets all of whose elements can be unified iff \(G \) is \(k \)-colorable.

The width of each level is as follows.

1. \(1 \leq \text{level} \leq 4 \log N \)

\[\text{width(level)} \leq 2^{\text{level} - 1} \]. Especially, \(\text{width(level)} \leq N^4/2 \) when \(\text{level} = 4 \log N \).

2. \(\text{level} = 4 \log N + 1 \)

There are \(N^4 \) nodes in this level, some of which can be unified. In case \(i = j = p = N - 1 \), there are \(N \) functions of the form \(x_{4 \log N + 1} \cdot x_{4 \log N + 2} \cdot g_a + \overline{x_{5 \log N + 1}} \cdot \overline{x_{5 \log N + 2}} \cdot f_{N - 1}, 0 \leq a \leq N - 1 \). Therefore, the functions differ only when \(x_{4 \log N + 1} = x_{4 \log N + 2} = 1 \). From Lemma 1, these \(N \) nodes can be reduced to \(k \) nodes.

Otherwise, for at least one assignment to \(x_{4 \log N + 1} \) and \(x_{4 \log N + 2} \), different functions are selected among \(f_a, 0 < a < N - 1 \). From proposition 1, the functions cannot be unified.

Hence, \(\text{width}(4 \log N + 1) = N^4 - N + k \). The following discussions show that we may minimize the width in this level.

3. \(\text{level} = 4 \log N + 2 \)

In this level, there are \(N^2 \) functions of the form \(\overline{x_{4 \log N + 1}} \cdot \overline{x_{4 \log N + 2}} \cdot f_a + x_{4 \log N + 2} \cdot f_b, 0 \leq a, b \leq N - 1 \) and \(k \) functions of the form \(\overline{x_{4 \log N + 2}} \cdot f_{N - 1} + x_{4 \log N + 2} \cdot h_c, 0 \leq c \leq k \), where \(h_c = \bigcup \{g_{i_1}, g_{i_2}, \cdots g_{i_m}\} \). The former ones cannot be unified each other. The latter ones can be unified with one of the former functions from proposition 4. Therefore, \(\text{width}(4 \log N + 2) = N^2 \).

Even though the width is not minimized in level \(4 \log N + 1 \), the width of this level is \(N^2 \) by the same argument.

4. \(\text{level} = 4 \log N + 3 \)

As is the case of 3, \(\text{width}(4 \log N + 3) = N \).

5. \(4 \log N + 4 < \text{level} \leq 6 \log N + 2 \)

In general, the width of a level is at most twice the width of the preceding level. Therefore \(\text{width(level)} \leq N \times 2^{\text{level} - 4 \log N - 3} \leq N^3 \).

As \(N^4 - N + k > N^4/2 \geq 3/2N^3 \) for \(N \geq 2 \), the width of this BDD is \(N^4 - N + k \). \(\square \)

The proof shows that it is still NP-complete to minimize the width of a specified level.

Theorem 2 MINIMUM BDD IDENTIFICATION is NP-complete.
Proof We can easily see that MINIMUM BDD IDENTIFICATION is in NP by extending Algorithm MinIdent. For the proof of NP-hardness, we use a reduction from GRAPH K-COLORABILITY. The basic idea of this proof is similar to that of Theorem 1.

The Boolean function of the reduced problem has $7\log N + 4$ variables. The set of examples are as follows:

$$\begin{align*}
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 000 \cdot B_r \cdot B_s , f_i(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 001 \cdot B_r \cdot B_s , f_j(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 010 \cdot B_r \cdot B_s , f_p(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 011 \cdot B_r \cdot B_s , f_q(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 0100 \cdot B_r \cdot B_s , f_m(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 1100 \cdot B_r \cdot B_s , g_m(r, s) \rangle \quad (r < s, (r, s) \in E), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 0101 \cdot B_r \cdot B_s , f_0(r, s) \rangle \quad (r < s), \\
&\langle B_i \cdot B_j \cdot B_p \cdot B_q \cdot B_m \cdot 1101 \cdot B_r \cdot B_s , f_1(r, s) \rangle \quad (r < s),
\end{align*}$$

where $0 \leq i, j, p, q, m, r, s \leq N - 1$ and $*$ means both 0 and 1. $f_0, f_1, \cdots, f_{N-1}$ and $g_0, g_1, \cdots, g_{N-1}$ are the same as those defined in the proof of Theorem 1. The positive integer to bound the number of nodes is $3N^5 + (k + 2)N^4 - 2$.

The number of examples is

$$11N^5(N - 1) + 2|E|N^4 = O(N^6).$$

To count the number of nodes, we must remove redundant nodes from the width of each level.

The minimum number of nodes in each level, denoted by node(level), is as follows.

Let G be k'-colorable, that is, $g_i, 0 \leq i \leq N$ be devided into k' subsets $G_i = \{g_{i_1}, g_{i_2}, \cdots, g_{i_m}\}$, $1 \leq l \leq k'$ s.t. all the elements of G_i can be unified. Then $g_{i_1}, g_{i_2} \cdots g_{i_m}$ of the examples can be substituted by $h_i = \cup\{g_{i_1}, g_{i_2}, \cdots, g_{i_m}\}$. We claim that, in this case, the minimum number of nodes can be realized at the same time for $level \leq 5\log N + 5$.

1. $1 \leq level \leq 5\log N + 1$

There are N^5 nodes and any two nodes cannot be unified. Therefore, $node(level) = 2^{level-1}$. The total number of nodes is $\sum_{1 \leq level \leq 5\log N + 1} node(level) = 2N^5 - 1$.

2. $level = 5\log N + 2$

When i, j, p, q are fixed and $x_{5\log N + 1} = 1$, there are N functions which differ only when $x_{5\log N + 2} = 1, x_{5\log N + 3} = x_{5\log N + 4} = 0$. They can be reduced to k functions iff G is k-colorable. In any other cases, the nodes in this level cannot be unified. Hence $node(5\log N + 2) = N^5 + kN^4$ iff G is k-colorable.

3. $level = 5\log N + 3$

In this level, there are N^4 different functions of the form $\langle x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot f_a + x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot f_b + x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot f_c + x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot f_d, 0 \leq a, b, c, d \leq N - 1 \rangle$ and k functions of the form $\langle x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot h_a + x_{5\log N + 3} \cdot x_{5\log N + 4} \cdot f_1, 0 \leq a \leq k \rangle$. The former ones cannot be unified each other. Among them, N^2 nodes can be removed as redundant nodes. The latter ones can be unified with the former ones from Proposition 4. Therefore, for any G, $node(5\log N + 3) = N^4 - N^2$.
4. \(\text{level} = 5 \log N + 4 \)

As is the case of 3, \(\text{node}(5 \log N + 4) = N^2 - N \).

5. \(5 \log n + 5 \leq \text{level} \leq 7 \log N + 4 \)

\(\text{node}(5 \log N + 5) = N \). Then the total number of nodes is less than \(\sum_{1 \leq i \leq 2 \log N} N \cdot 2^{i-1} = N^3 - N \).

From the above discussion, when \(G \) is exactly \(k \)-colorable, the total number of nodes is at least

\[
\text{num}_{\min}(N, k) = (2N^5 - 1) + (N^5 + kN^4) + (N^4 - N^2) + (N^2 - N) + N
\]

and is not more than

\[
\text{num}_{\max}(N, k) = (2N^5 - 1) + (N^5 + kN^4) + (N^4 - N^2) + (N^2 - N) + (N^3 - N)
\]

As \(\text{num}_{\min}(N, k + 1) > 3N^5 + (k + 2)N^4 - 2 > \text{num}_{\max}(N, k) \), the number of nodes is less than \(3N^5 + (k + 2)N^4 - 2 \).

\[\square\]

3.2 Hardness of Learning Binary Decision Diagrams

The identification of the minimum BDD from examples is closely related to computational learning theory. On the PAC-learning model [9, 10], the goal is to find a good approximation of an unknown Boolean function from random examples. When the learner requests an example, it is drawn according to an arbitrary distribution \(P \) on \(\{0,1\}^n \). The error of a hypothesis \(g \) for unknown \(f \) is defined to be the probability that \(f(x) \neq g(x) \) for an assignment \(x \in \{0,1\}^n \) drawn randomly according to \(P \).

We call that a Boolean function is learnable by a class \(X \) of concepts if there is a learning algorithm that runs in polynomial time and outputs, with probability at least \(1 - \delta \), a hypothesis that approximates the unknown Boolean function with error at most \(\epsilon \).

From Theorem 1 and 2, we can make the same discussion as [11] on the learnability of \(k \)-width BDD and \(k \)-node BDD. If there is a polynomial time learning algorithm, we can solve GRAPH \(K \)-COLORABILITY using the learning algorithm and the examples shown in the reduction, which implies \(NP = RP \).

Corollary 1 \(k \)-width BDD and \(k \)-node BDD are not learnable under PAC-learning model unless \(NP = RP \).

We note that \(k \)-decision tree, a tree representation of a Boolean function, is learnable in polynomial time.

4 Conclusion

In this paper, we proved the NP-completeness of identifying the minimum BDD. The results also imply the hardness of learning \(k \)-width BDD and \(k \)-node BDD. It is our future work to
consider the case when we allow to change the variable ordering because the size of a BDD greatly varies according to the variable ordering.

References