Construction of Morse flows to a variational functional of harmonic map type

In this paper we shall construct solutions of the parabolic differential equations associated to a simple variational functional, the Euler-Lagrange equations of which are linear equations.

Let Ω be a bounded domain in \mathbb{R}^m , $m \geq 2$, with C^2 -boundary $\partial\Omega$. In the following, a map u means the one from Ω to \mathbb{R}^M , $M \geq 1$. For a map u belonging to Sobolev space $H^1(\Omega)$, we consider the functional

$$F(u) = \int_{\Omega} A_{ij}^{\alpha\beta}(x) D_{\alpha} u^{i}(x) D_{\beta} u^{j}(x) dx, \qquad (1)$$

where $u = (u^i)$, $D_{\alpha}u^i = \frac{\partial u^i}{\partial x^{\alpha}}$, $1 \leq i \leq M$, $1 \leq \alpha \leq m$. The summation convention is used. The coefficients $A_{ij}^{\alpha\beta}(x)$, $A_{ij}^{\alpha\beta} = A_{ji}^{\beta\alpha}$, are assumed to be bounded measurable in Ω and to satisfy the elliptic condition: There exists a positive λ such that

$$A_{ij}^{lphaeta}(x)\xi^i_{lpha}\xi^j_{eta}\geq\lambda|\xi|^2 \ \ ext{for} \ \ \xi=(\xi^i_{lpha})\in\mathbf{R}^{mM} \ \ ext{and} \ \ x\in\Omega.$$

Hereafter, we use the notation

$$A(x)(Du, Du) = A_{ij}^{\alpha\beta}(x)D_{\alpha}u^{i}D_{\beta}u^{j}$$

'Morse flows' of variational functional F are defined as solutions of parabolic partial defferential equations

$$\frac{\partial u^i}{\partial t} = D_\beta(A_{ji}^{\alpha\beta}(x)D_\alpha u^j) \qquad (1 \le i \le M).$$
(2)

Let u_0 be a given map belonging to $H^1(\Omega)$ and T a positive number. We take a positive integer N and put

$$h = T/N$$
 and $t_n = nh$ $(n = 0, 1, \dots, N)$. (3)

In the following, we use a function space

$$H^{1}_{u_{0}}(\Omega) = \{ u \in H^{1}(\Omega); u - u_{0} \in H^{1}_{0}(\Omega) \},\$$

 $H_0^1(\Omega)$ being the space obtained by taking the closure of $C_0^{\infty}(\Omega)$ in the space $H^1(\Omega)$. Beginning with u_0 , we inductively construct two sequences of maps u_n and functionals F_n , $1 \leq n \leq N$, as follows: For each $n, 1 \leq n \leq N$, we introduce the functional

$$F_{n}(u) = \int_{\Omega} \left(A(x)(Du, Du) + \frac{1}{h} |u - u_{n-1}|^{2} \right) dx$$
(4)

and define u_n as a minimizer of F_n in $H^1_{u_0}(\Omega)$, the existence of which is assured by the lower semi-continuity of F_n with respect to weak convergence of $H^1(\Omega)$. We here remark the Euler-Lagrange equations of F_n in $H^1_{u_0}(\Omega)$ are of the form: For n, $1 \le n \le N$,

$$\frac{u_n^i - u_{n-1}^i}{h} = D_\beta(A_{ji}^{\alpha\beta} D_\alpha u_n^j) \qquad (1 \le i \le M),$$
(5)

which are Rothe's approximate equations of (2). Upon comparing u_{n-1} with a minimizer u_n of F_n , we infer

$$\int_{\Omega} A(x)(Du_n, Du_n)dx + \int_{\Omega} \frac{1}{h} |u_n - u_{n-1}|^2 dx \leq \int_{\Omega} A(x)(Du_{n-1}, Du_{n-1})dx$$

and hence have the following result.

Theorem 0 ([4]). For $\{u_n\}(1 \le n \le N)$ constructed as above, there hold the estimates

$$\int_{\Omega} A(x)(Du_n, Du_n)dx \leq \int_{\Omega} A(x)(Du_0, Du_0)dx \quad \text{for any } n \ (1 \leq n \leq N) \tag{6}$$

and

$$h\sum_{n=1}^{N}\int_{\Omega}\left|\frac{u_n-u_{n-1}}{h}\right|^2 dx \leq \int_{\Omega}A(x)(Du_0,Du_0)dx.$$
(7)

We define a map $u(t) \in H^1_{u_0}(\Omega), -h \leq t \leq T$, by means of the identities :

$$u(t) = u_n$$
 for $t_{n-1} < t \le t_n \ (1 \le n \le N)$

(8)

and

$$u(t) = u_0$$
 for $-h \le t \le 0$.

We put

$$\partial_t u(t) = \frac{1}{h} (u_n - u_{n-1}) \quad \text{for } t_{n-1} < t \le t_n \ (1 \le n \le N)$$
(9)

and

 $\widetilde{u}(t) = u(t-h)$ for $0 \le t \le T$.

For the gradient of u constructed as above, we have the estimate of higher integrability. To state the result, we shall prepare the notations as follows. We set

$$Q = (0,T) \times \Omega.$$

For $z_0 = (t_{n_0}, x_0) \in Q, 1 \le n_0 \le N$ and positive s, we put

$$Q_s(z_0) = \{t \in (0,T); t_{n_0} - s^2 < t < t_{n_0}\} \times B_s(x_0),$$

where $B_s(x_0) = \{x \in \Omega; |x - x_0| < s\}.$

Theorem 1. For the map u defined as in (8), there exist positive C and ε not depending on h such that

$$\left(\begin{array}{c} \int_{Q_{r/2}(z_0)} |Du|^{2+\varepsilon} dz \right)^{1/(2+\varepsilon)} \leq C \left(\begin{array}{c} \int_{Q_{r/2}(z_0)} |Du|^2 dz \right)^{1/2} \\ + ch^{(\overline{p}-1)(m+2)/2m} \left(\begin{array}{c} \int_{Q_r(z_0)} |\partial_t u|^{(1+\varepsilon/2)\overline{p}} |u-\widetilde{u}|^{(1+\varepsilon/2)(2-\overline{p})} dz \right)^{1/(2+\varepsilon)} \end{array}$$
(10)

holds for any $Q_r(z_0) \subset Q$ and any \overline{p} , $1 < \overline{p} < 2$.

Noting the estimates in Theorem 0 and 1 are vaild uniformly in h, there holds the existence theorem of a weak solution to (2) with the gradient of higher integrability.

By a weak solution to parabolic system(2), we mean a map $u \in L^{\infty}$ ($(0, \infty)$, $H^1(\Omega)$) $\cap H^1((0,T), L^2(\Omega))$ such that

$$\int_{Q} \frac{\partial u^{i}}{\partial t} \varphi^{i} dz + \int_{Q} A_{ij}^{\alpha\beta}(x) D_{\alpha} u^{i} D_{\beta} \varphi^{j} dz = 0$$

for any $\varphi \in C_0^\infty(Q)$.

Theorem 2. There exists a weak solution u to (2) satisfying the initial and boundary conditions:

 $u(t) \in H^1_{u_0}(\Omega)$ for almost every $t \in (0,T)$

and

$$\lim_{t \downarrow 0} u(t) = u_0 \qquad \text{in } L^2(\Omega).$$

The solution u satisfies the estimate :

$$\left(-\int_{Q_{r/2}(z_0)} |Du|^{2+\varepsilon} dz\right)^{1/(2+\varepsilon)} \leq C \left(-\int_{Q_r(z_0)} |Du|^2 dz\right)^{1/2}$$

for $Q_r(z_0) \subset Q$, where C and ε are positive numbers as in Theorem 1. Furthemore, if $A_{ij}^{\alpha\beta}(x)$ are continuous in Ω , u is Hölder continuous in Q with any component $\alpha, 0 < \alpha < 1$.

The existence proof of solutions follows from the estimates in Theorem 0. Noting the higher integrability (10) of Du and the estimate (7) and paralleling the method developed in [2], it follows from Campanato's fundamental result [1] that Hölder continuity of u is derived. The estimate (10) in Theorem 1 is derived from the following estimate of Caccioppoli type, for the verification of which we have only to follow the method due to Giaquinta-Stuwe([3]).

For positive s satisfying $B_s(x_0) \subset \Omega$ and $u \in L^1(Q)$, we put ([6])

$$u_s = u_s(t) = \int_{B_s(x_0)} \eta(x) u(t, x) dx \quad \text{for } 0 < t < T, \quad (11)$$

where $\eta(x) = 1$ on $B_{s/2}(x_0)$ and $|D\eta| \le 4/s$.

Lemma (Caccioppoli type estimate). For the map u defined as in (8), there exists a positive C not depending on h such that

$$\int_{Q_r(z_0)} |Du|^2 dz \leq Cr^{-2} \int_{Q_{2r}(z_0)} |u - u_{2r}|^2 dz$$
$$+ Ch^{\overline{p}-1} \int_{Q_{2r}(z_0)} |\partial_t u|^{\overline{p}} |u - \widetilde{u}|^{2-\overline{p}} dz$$

holds for any $Q_{2r}(z_0) \subset Q$, $z_0 = (t_{n_0}, x_0)$, $1 \leq n_0 \leq N$ and for any \overline{p} , $1 < \overline{p} < 2$, where $|\partial_t u|^{\overline{p}} |u - \widetilde{u}|^{2-\overline{p}}$, $1 < \overline{p} < 2$, belongs to $L^p(Q)$ with some p, p > 1, satisfying $p \leq m/(m-2+\overline{p})$.

We shall only sketch our proof. Let k and l be positive numbers satisfying r < k < l < 2r. As a comparison map in functional F_n , we adopt $v_n, 1 \le n \le N$, defined by

$$v_n = u_n - h\eta(u_n - u_{n,l}),$$

where u_n is a minimizer of F_n in $H^1_{u_0}(\Omega)$ and $u_{n,l}$ is defined as in (11).

We make the classification between $(l-k)^2$ and h ([5]):

 $(l-k)^2 \le 4h,\tag{12}$

$$(l-k)^2 > 4h.$$
 (13)

We treat each case of (12) and (13) and follow the iteration procedure ([2]) to obtain each estimate. By adding both the estimates, we arrive at the estimate in Lemma, which is available under no restriction of (12) and (13).

The term $|\partial_t u|^{\bar{p}}|u-\tilde{u}|^{2-\bar{p}}$ is assured to belong to $L^p(Q)$ with some p, p > 1, satisfying $p \leq m/(m-2+\bar{p})$, which is verified to hold from the global estimates (6) and (7).

References

- [1] Campanato, S., Equazioni paraboliche del secondo ordine e spazi $\mathcal{L}^{2,\theta}(\Omega, \delta)$, Ann. Mat. Pura Appl. 73. (1966) 55–102.
- [2] Giaquinta, M. and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148. (1982) 31-46.

- [3] Giaquinta, M. and M. Struwe, On the partial regularity of weak solutions of non-linear parabolic systems, Math. Zeit. 142. (1982) 473-451.
- [4] Kikuchi, N., An approach to the construction of Morse flows for variational functionals, in Nematics-Mathematical and Physical Aspects, ed. J-M.Coron, J-M.Ghidaglia and F.Hélein (NATO Adv. Sci. Inst. Ser.C: Math.Phys. Sci. 332. Kluwer Acad. Publ., Dordrecht-Boston-London) (1991) 195-198,
- [5] Kikuchi, N., Hölder estimates of solutions for defference-differntial equations of elliptic-parabolic type, Reseach Report (1992) 1-23.
- [6] Struwe, M., On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, manus. math. 35. (1981) 125-145.