
22

Construction of Morse flows to a variational
functional of harmonic map type

NORIO KIKUCHI
菊池紀夫

Department of Mathematics,
Faculty of Science and Technology

Keio University
3-14-1 Hiyoshi Kohoku-ku Yokohama-shi

Kanagawa-ken Japan, 223

In this paper we shall construct solutions of the parabolic differential equations
associated to a simple variational functional, the Euler-Lagrange equations of which
are linear equations.

Let $\Omega$ be a bounded domain in $R^{m},$ $m\geq 2$ , with $C^{2}$-boundary $\partial\Omega$ . In the
following, a map $u$ means the one from $\Omega$ to $R^{M},$ $M\geq 1$ . For a map $u$ belonging
to Sobolev space $H^{1}(\Omega)$ , we consider the functional

$F(u)= \int_{\Omega}A_{ij}^{\alpha\beta}(x)D_{\alpha}u^{i}(x)D_{\beta}u^{j}(x)dx$ , (1)

where $u=(u^{i}),$ $D_{\alpha}u^{i}=\partial u^{i}/\partial x^{\alpha},$ $1\leq i\leq M,$ $1\leq\alpha\leq m$ . The summation
convention is used. The coefficients $A_{ij}^{\alpha\beta}(x),$ $A_{ij}^{\alpha\beta}=A_{ji}^{\beta\alpha}$ , are assumed to be bounded
measurable in $\Omega$ and to satisfy the elliptic condition: There exists a positive $\lambda$ such
that

$A_{ij}^{\alpha\beta}(x)\xi_{\alpha}:\xi_{\beta}^{j}\geq\lambda|\xi|^{2}$ for $\xi=(\xi_{\alpha}^{i})\in R^{mM}$ and $x\in\Omega$ .

Hereafter, we use the notation

$A(x)(Du, Du)=A_{ij}^{\alpha\beta}(x)D_{\alpha}u^{i}D_{\beta}u^{j}$ .

‘Morse flows’ of variational functional $F$ are defined as solutions of parabolic
partial defferential equations

$\frac{\partial u^{i}}{\partial t}=D_{\beta}(A_{ji}^{\alpha\beta}(x)D_{\alpha}u^{j})$ $(1 \leq i\leq M)$ . (2)
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Let $u_{0}$ be a given map belonging to $H^{1}(\Omega)$ and $T$ a positive number. We take a
positive integer $N$ and put

$h=T/N$ and $t_{n}=nh$ $(n=0,1, \cdots, N)$ . (3)

In the following, we use a function space

$H_{u_{O}}^{1}(\Omega)=\{u\in H^{1}(\Omega);u-u_{0}\in H_{0}^{1}(\Omega)\}$ ,

$H_{0}^{1}(\Omega)$ being the space obtained by taking the closure of $C_{0}^{\infty}(\Omega)$ in the space $H^{1}(\Omega)$ .
Beginning with $u_{0}$ , we inductively construct two sequences of maps $u_{n}$ and func-
tionals $F_{n},$ $1\leq n\leq N$ , as follows: For each $n,$ $1\leq n\leq N$ , we introduce the
functional

$F_{n}(u)= \int_{\Omega}(A(x)(Du, Du)+\frac{1}{h}|u-u_{n-1}|^{2})dx$ (4)

and define $u_{n}$ as a minimizer of $F_{n}$ in $H_{u_{0}}^{1}(\Omega)$ , the existence of which is assured by
the lower semi-continuity of $F_{n}$ with respect to weak convergence of $H^{1}(\Omega)$ . We
here remark the Euler-Lagrange equations of $F_{n}$ in $H_{u_{O}}^{1}(\Omega)$ are of the form: For $n$ ,
$1\leq n\leq N$ ,

$\frac{u_{n}^{i}-u_{n-1}^{i}}{h}=D_{\beta}(A_{ji}^{\alpha\beta}D_{\alpha}u_{n}^{j})$ $(1 \leq i\leq M)$ , (5)

which are Rothe’s approximate equations of (2). Upon comparing $u_{n-1}$ with a
minimizer $u_{n}$ of $F_{n}$ , we infer

$\int_{\Omega}A(x)(Du_{n}, Du_{n})dx+\int_{\Omega}\frac{1}{h}|u_{n}-u_{n-1}|^{2}dx\leq\int_{\Omega}A(x)(Du_{n-1}, Du_{n-1})dx$

and hence have the following result.

Theorem $0$ ([4]). For $\{u_{n}\}(1\leq n\leq N)$ constructed as above, there hold
the estimates

$\int_{\Omega}A(x)(Du_{n}, Du_{n})dx\leq\int_{\Omega}A(x)(Du_{0}, Du_{0})dx$ for any $n(1\leq n\leq N)$ (6)

and

$h \sum_{n=1}^{N}\int_{\Omega}|\frac{u_{n}-u_{n-1}}{h}|^{2}dx\leq\int_{\Omega}A(x)(Du_{0}, Du_{0})dx$. (7)
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We define a map $u(t)\in H_{u_{O}}^{1}(\Omega),$ $-h\leq t\leq T$, by means of the identities :

$u(t)=u_{n}$ for $t_{n-1}<t\leq t_{n}(1\leq n\leq N)$

and (8)

$u(t)=u_{0}$ for $-h\leq t\leq 0$ .

We put

$\partial_{t}u(t)=\frac{1}{h}(u_{n}-u_{n-1})$ for $t_{n-1}<t\leq t_{n}(1\leq n\leq N)$

and (9)

$u\sim(t)=u(t-h)$ for $0\leq t\leq T$ .

For the gradient of $u$ constructed as above, we have the estimate of higher
integrability. To state the result, we shall prepare the notations as follows. We set

$Q=(0, T)\cross\Omega$ .

For $z_{0}=(t_{n_{0}}, x_{0})\in Q,$ $1\leq n_{0}\leq N$ and positive $s$ , we put

$Q_{s}(z_{0})=\{t\in(O, T);t_{n_{o}}-s^{2}<t<t_{n_{0}}\}xB_{\theta}(x_{0})$ ,

where $B_{s}(x_{0})=\{x\in\Omega;|x-x_{0}|<s\}$ .

Theorem 1. For the map $u$ defined as in (8), there exist positive $C$ and
$\epsilon$ not depending on $h$ such that

$(\neq_{Q_{r/2}(z_{O})}|Du|^{2+e}dz)^{1/(2+\epsilon)}\leq C(\#_{Q_{r/2}(z_{0})}|Du|^{2}dz)^{1/2}$

$+ch^{(\overline{p}-1)(m+2)/2m}(\#_{Q_{r}(z_{O})}|\partial_{t}u|^{(1+e/2)\overline{p}}|^{\sim}u-u|^{(1+\epsilon/2)(2-\overline{p})}dz)^{1/(2+\text{\’{e}})}$

(10)

holds for any $Q_{r}(z_{0})\subset Q$ and any $\overline{p},$ $1<\overline{p}<2$ .

Noting the estimates in Theorem $0$ and 1 are vaild uniformly in $h$ , there holds the
existence theorem of a weak solution to (2) with the gradient of higher integrability.



25

By a weak solution to parabolic system(2), we mean a map $u\in L^{\infty}((0, \infty)$ ,
$H^{1}(\Omega))\cap H^{1}((0, T),$ $L^{2}(\Omega))$ such that

$\int_{Q}\frac{\partial u^{i}}{\partial t}\varphi^{i}dz+\int_{Q}A_{ij}^{\alpha\beta}(x)D_{\alpha}u^{i}D_{\beta}\dot{\psi}dz=0$

for any $\varphi\in C_{0}^{\infty}(Q)$ .

Theorem 2. There exists a weak solution $u$ to (2) satisfying the initial
and boundary conditions:

$u(t)\in H_{u_{O}}^{1}(\Omega)$ for almost every $t\in(O, T)$

and

$\lim_{t\downarrow 0}u(t)=u_{0}$ in $L^{2}(\Omega)$ .

The solution $u$ satisfies the estimate:

$(\#_{Q_{r/2}(z_{O})}|Du|^{2+e}dz)^{1/(2+e)}\leq C(\neq_{Q_{r}(z_{O})}|Du|^{2}dz)^{1/2}$

for $Q_{f}(z_{0})\subset Q$ , where $C$ and $\epsilon$ are positive numbers as in Theorem 1.
Furthemore, if $A_{:j}^{\alpha\beta}(x)$ are continuous in $\Omega,$ $u$ is Holder continuous in $Q$ with
any component $\alpha,$ $0<\alpha<1$ .

The existence proof of solutions follows from the estimates in Theorem $0$ . Noting
the higher integrability (10) of $Du$ and the estimate (7) and paralleling the method
developed in [2], it follows from Campanato’s fundamental result [1] that H\"older

continuity of $u$ is derived. The estimate (10) in Theorem 1 is derived from the
following estimate of Caccioppoli type, for the verification of which we have only to
follow the method due to Giaquinta-Stuwe([3]).

For positive $s$ satisfying $B_{s}(x_{0})\subset\Omega$ and $u\in L^{1}(Q))$ we put ([6])

$u_{s}=u_{\theta}(t)= \int_{B_{s}(x_{0})}\eta(x)u(t, x)dx$ for $0<t<T$, (11)

where $\eta(x)=1$ on $B_{s/2}(x_{0})$ and $|D\eta|\leq 4/s$ .
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Lemma (Caccioppoli type estimate). For the map $u$ defined as in (8),
there exists a positive $C$ not depending on $h$ such that

$\int_{Q_{r}(z_{O})}|Du|^{2}dz\leq Cr^{-2}\int_{Q_{2r}(z_{O})}|u-u_{2r}|^{2}dz$

$+Ch^{\overline{p}-1} \int_{Q_{2r}(z_{O})}|\partial_{t}u|^{\overline{p}}|u^{\sim}-u|^{2-\overline{p}}dz$

holds for any $Q_{2r}(z_{0})\subset Q,$ $z_{0}=(t_{n_{0}}, x_{0}),$ $1\leq n_{0}\leq N$ and for any $\overline{p},$ $1<\overline{p}<2$ ,
where $|\partial_{t}u|^{\overline{p}}|u-\sim u|^{2-\overline{p}},$ $1<\overline{p}<2$ , belongs to $L^{p}(Q)$ with some $p,p>1$ , satisfying
$p\leq m/(m-2+\overline{p})$ .

We shall only sketch our proof. Let $k$ and $l$ be positive numbers satisfying
$r<k<l<2r$ . As a comparison map in functional $F_{n}$ , we adopt $v_{n},$ $1\leq n\leq N$ ,
defined by

$v_{n}=u_{n}-h\eta(u_{n}-u_{n,l})’$ ’

where $u_{n}$ is a minimizer of $F_{n}$ in $H_{u_{0}}^{1}(\Omega)$ and $u_{n,1}$ is defined as in (11).
We make the classification between $(l-k)^{2}$ and $h$ ([5]):

$(l-k)^{2}\leq 4h$ , (12)

$(l-k)^{2}>4h$ . (13)

We treat each case of (12) and (13) and follow the iteration procedure ([2]) to obtain
each estimate. By adding both the estimates, we arrive at the estimate in Lemma,
which is available under no restriction of (12) and (13).

The term $|\partial_{t}u|^{\overline{p}}|u-\sim u|^{2-\overline{p}}$ is assured to belong to $L^{p}(Q)$ with some $p,p>1$ ,
satisfying $p\leq m/(m-2+\overline{p})$ , which is verified to hold from the global estimates
(6) and (7).
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