Construction of Morse flows to a variational functional of harmonic map type

NORIO KIKUCHI
Department of Mathematics,
Faculty of Science and Technology
Keio University
3-14-1 Hiyoshi Kohoku-ku Yokohama-shi
Kanagawa-ken Japan, 223

In this paper we shall construct solutions of the parabolic differential equations associated to a simple variational functional, the Euler-Lagrange equations of which are linear equations.

Let Ω be a bounded domain in \mathbb{R}^m, $m \geq 2$, with C^2-boundary $\partial \Omega$. In the following, a map u means the one from Ω to \mathbb{R}^M, $M \geq 1$. For a map u belonging to Sobolev space $H^1(\Omega)$, we consider the functional

$$F(u) = \int_{\Omega} A_{ij}^{\alpha \beta}(x) D_{\alpha}u^i(x) D_{\beta}u^j(x) dx,$$ (1)

where $u = (u^i), D_{\alpha}u^i = \partial u^i / \partial x^\alpha, 1 \leq i \leq M, 1 \leq \alpha \leq m$. The summation convention is used. The coefficients $A_{ij}^{\alpha \beta}(x), A_{ij}^{\alpha \beta} = A_{ji}^{\beta \alpha}$, are assumed to be bounded measurable in Ω and to satisfy the elliptic condition: There exists a positive λ such that

$$A_{ij}^{\alpha \beta}(x) \xi_{\alpha}^i \xi_{\beta}^j \geq \lambda |\xi|^2 \text{ for } \xi = (\xi_{\alpha}^i) \in \mathbb{R}^{mM} \text{ and } x \in \Omega.$$

Hereafter, we use the notation

$$A(x)(Du, Du) = A_{ij}^{\alpha \beta}(x) D_{\alpha}u^i D_{\beta}u^j.$$

'Morse flows' of variational functional F are defined as solutions of parabolic partial differential equations

$$\frac{\partial u^i}{\partial t} = D_{\beta}(A_{ji}^{\alpha \beta}(x) D_{\alpha}u^j) \quad (1 \leq i \leq M).$$ (2)
Let u_0 be a given map belonging to $H^1(\Omega)$ and T a positive number. We take a positive integer N and put

$$h = T/N \quad \text{and} \quad t_n = nh \quad (n = 0, 1, \cdots, N).$$

(3)

In the following, we use a function space

$$H^1_{u_0}(\Omega) = \{u \in H^1(\Omega); u - u_0 \in H^1_0(\Omega)\},$$

$H^1_0(\Omega)$ being the space obtained by taking the closure of $C_0^\infty(\Omega)$ in the space $H^1(\Omega)$. Beginning with u_0, we inductively construct two sequences of maps u_n and functionals F_n, $1 \leq n \leq N$, as follows: For each n, $1 \leq n \leq N$, we introduce the functional

$$F_n(u) = \int_{\Omega} \left(A(x)(Du, Du) + \frac{1}{h}|u - u_{n-1}|^2 \right) dx$$

(4)

and define u_n as a minimizer of F_n in $H^1_{u_0}(\Omega)$, the existence of which is assured by the lower semi-continuity of F_n with respect to weak convergence of $H^1(\Omega)$. We here remark the Euler-Lagrange equations of F_n in $H^1_{u_0}(\Omega)$ are of the form: For n, $1 \leq n \leq N$,

$$\frac{u_n^i - u_{n-1}^i}{h} = D\beta(A_{ji}^\alpha\partial A_{\alpha}u_n^j) \quad (1 \leq i \leq M),$$

(5)

which are Rothe's approximate equations of (2). Upon comparing u_{n-1} with a minimizer u_n of F_n, we infer

$$\int_{\Omega} A(x)(Du_n, Du_n) dx + \int_{\Omega} \frac{1}{h}|u_n - u_{n-1}|^2 dx \leq \int_{\Omega} A(x)(Du_{n-1}, Du_{n-1}) dx$$

and hence have the following result.

Theorem 0 ([4]). For \{\{u_n\}(1 \leq n \leq N) constructed as above, there hold the estimates

$$\int_{\Omega} A(x)(Du_n, Du_n) dx \leq \int_{\Omega} A(x)(Du_0, Du_0) dx$$

(6)

for any n $(1 \leq n \leq N)$ and

$$h \sum_{n=1}^{N} \int_{\Omega} \left(\frac{u_n - u_{n-1}}{h} \right)^2 dx \leq \int_{\Omega} A(x)(Du_0, Du_0) dx.$$

(7)
We define a map $u(t) \in H_{u_{O}}^{1}(\Omega), -h \leq t \leq T$, by means of the identities:

\[u(t) = u_{n} \quad \text{for} \quad t_{n-1} < t \leq t_{n} \quad (1 \leq n \leq N) \]

and

\[u(t) = u_{0} \quad \text{for} \quad -h \leq t \leq 0. \]

(8)

We put

\[\partial_{t}u(t) = \frac{1}{h}(u_{n} - u_{n-1}) \quad \text{for} \quad t_{n-1} < t \leq t_{n} \quad (1 \leq n \leq N) \]

and

\[\tilde{u}(t) = u(t - h) \quad \text{for} \quad 0 \leq t \leq T. \]

(9)

For the gradient of u constructed as above, we have the estimate of higher integrability. To state the result, we shall prepare the notations as follows. We set

\[Q = (0, T) \times \Omega. \]

For $z_{0} = (t_{n_{0}}, x_{0}) \in Q, 1 \leq n_{0} \leq N$ and positive s, we put

\[Q_{s}(z_{0}) = \{t \in (0, T); t_{n_{0}} - s^{2} < t < t_{n_{0}}\} \times B_{s}(x_{0}), \]

where $B_{s}(x_{0}) = \{x \in \Omega; |x - x_{0}| < s\}$.

Theorem 1. For the map u defined as in (8), there exist positive C and ε not depending on h such that

\[
\left(\frac{1}{Q_{r/2}(z_{0})} |Du|^{2+\varepsilon} dz \right)^{1/(2+\varepsilon)} \leq C \left(\frac{1}{Q_{r/2}(z_{0})} |Du|^{2} dz \right)^{1/2} + ch^{(\overline{p}-1)(m+2)/2m} \left(\frac{1}{Q_{r}(z_{0})} |\partial_{t}u|^{(1+\varepsilon/2)\overline{p}} |u - \tilde{u}|^{(1+\varepsilon/2)(2-\overline{p})} dz \right)^{1/(\overline{p}+2)} \]

holds for any $Q_{r}(z_{0}) \subset Q$ and any $\overline{p}, 1 < \overline{p} < 2.$

(10)

Noting the estimates in Theorem 0 and 1 are valid uniformly in h, there holds the existence theorem of a weak solution to (2) with the gradient of higher integrability.
By a weak solution to parabolic system (2), we mean a map $u \in L^\infty \cap H^1 \cap H^1 (0, T, L^2 (\Omega)$ such that

$$
\int_Q \frac{\partial u^i}{\partial t} \varphi^i \, dz + \int_Q A_{ij}^{\alpha\beta}(x) D_{\alpha} u^i D_{\beta} \varphi^j \, dz = 0
$$

for any $\varphi \in C_0^\infty (Q)$.

Theorem 2. There exists a weak solution u to (2) satisfying the initial and boundary conditions:

$$u(t) \in H^1_u (\Omega) \quad \text{for almost every } t \in (0, T)$$

and

$$\lim_{t \downarrow 0} u(t) = u_0 \quad \text{in } L^2 (\Omega).$$

The solution u satisfies the estimate:

$$
\left(\frac{\int_{Q_r(z_0)} |Du|^{2+\varepsilon} \, dz}{\int_{Q_{r/2}(z_0)} |Du|^2 \, dz} \right)^{1/(2+\varepsilon)} \leq C \left(\frac{\int_{Q_r(z_0)} |Du|^2 \, dz}{\int_{Q_{r/2}(z_0)} |Du|^{2+\varepsilon} \, dz} \right)^{1/2}
$$

for $Q_r(z_0) \subset Q$, where C and ε are positive numbers as in Theorem 1.

Furthermore, if $A_{ij}^{\alpha\beta}(x)$ are continuous in Ω, u is Hölder continuous in Q with any component $\alpha, 0 < \alpha < 1$.

The existence proof of solutions follows from the estimates in Theorem 0. Noting the higher integrability (10) of Du and the estimate (7) and paralleling the method developed in [2], it follows from Campanato’s fundamental result [1] that Hölder continuity of u is derived. The estimate (10) in Theorem 1 is derived from the following estimate of Caccioppoli type, for the verification of which we have only to follow the method due to Giaquinta-Stuwe([3]).

For positive s satisfying $B_s(x_0) \subset \Omega$ and $u \in L^1 (Q)$, we put ([6])

$$
u_s = u_s(t) = \int_{B_s(x_0)} \eta(x) u(t, x) \, dx \quad \text{for } 0 < t < T,
$$

for $0 < t < T$, (11)

where $\eta(x) = 1$ on $B_{s/2}(x_0)$ and $|D\eta| \leq 4/s$.

Lemma (Caccioppoli type estimate). For the map u defined as in (8), there exists a positive C not depending on h such that

$$
\int_{Q_{r}(z_{0})} |Du|^{2}dz \leq Cr^{-2} \int_{Q_{2r}(z_{0})} |u-u_{2r}|^{2}dz
$$

$$
+Ch^{\overline{p}-1} \int_{Q_{2r}(z_{0})} |\partial_{t}u|^{\overline{p}}|u-u|^{2-\overline{p}}dz
$$

holds for any $Q_{2r}(z_{0}) \subset Q, z_{0} = (t_{n_{0}}, x_{0}), 1 \leq n_{0} \leq N$ and for any $\overline{p}, 1 < \overline{p} < 2,$ where $|\partial_{t}u|^{\overline{p}}|u-u|^{2-\overline{p}}, 1 < \overline{p} < 2,$ belongs to $L^{p}(Q)$ with some $p, p > 1,$ satisfying $p \leq m/(m - 2 + \overline{p}).$

We shall only sketch our proof. Let k and l be positive numbers satisfying $r < k < l < 2r.$ As a comparison map in functional F_{n}, we adopt $v_{n}, 1 \leq n \leq N,$ defined by

$$
v_{n} = u_{n} - h\eta(u_{n} - u_{n,l}),
$$

where u_{n} is a minimizer of F_{n} in $H^{1}_{u_{0}}(\Omega)$ and $u_{n,l}$ is defined as in (11).

We make the classification between $(l - k)^{2}$ and h ([5]):

$$
(l - k)^{2} \leq 4h, \quad \text{(12)}
$$

$$
(l - k)^{2} > 4h. \quad \text{(13)}
$$

We treat each case of (12) and (13) and follow the iteration procedure ([2]) to obtain each estimate. By adding both the estimates, we arrive at the estimate in Lemma, which is available under no restriction of (12) and (13).

The term $|\partial_{t}u|^{\overline{p}}|u-u|^{2-\overline{p}}$ is assured to belong to $L^{p}(Q)$ with some $p, p > 1,$ satisfying $p \leq m/(m - 2 + \overline{p}),$ which is verified to hold from the global estimates (6) and (7).

References

