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Gale’s Theorem on an Infinite Network
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1. Introduction with problem setting

Let X be a countable set of nodes, Y be a countable set of arcs and K be
the node-arc incidence function. We assume that the graph G = {X,Y, K’}
is connected, and has no self-loops as in [4]. Notice that G is not necessarily
locally finite. Let R be the set of all real numbers and denote by L(X; Z) the
set of all functions from X to a set Z. In particular, we set L(X) = L(X; R)
and L(Y) = L(Y; R).

For each y € Y, the nodes 27 (y) and z™(y) are determined uniquely by
the relation: .

K(z*(y),y) =1 and K(z™(y),y) = 1.

Intuitively, 27 (y)(resp. z*(y)) is the initial (resp. terminal) node of y. For
a nonempty subset A of X, we put for simplicity

Q-(A)={yeY;a7(y) € Aand 2¥(y) € X — A}
Q+(A)={yeY;27(y) € X — Aand z¥(y) € A}.

Notice that Q_(A) U @+(A) is a cut AO(X — A) in [4].
In this paper we always assume that the functions VW € L(Y), X €
L(X;RU{—00}) and x € L(X; RU {oo}) satisfy the following conditions:

V(y) < W(y) onY; (1)

Z; V()] < oo, ZY W (y)] < oo; (2)
ye ve
AMz) < pu(z) on X, ) AMz) < 00, —00 < Y p(z), (3)
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where A = {z € X;A(z) > 0},T = {z € X;u(z) < 0}.
The feasibility problem of Gale is to find w € L(Y) which has the following
properties:

(G.1) V(y) Sw(y) <W(y) onY;
(G-2) Az) £ Tyey K(z,y)w(y) < p(z) on X.

The algebraic operations and order relation of R are extended to R U
{—o0} or RU {00} in the usual way, i.e.,

0'0020'(—00):0,
t+00=00,—00+1t=—00 for all t € R;
t-00=00,t:(—00)=—o0 forall t>0.

To state our main theorem, we introduce a notation. For a subset A of

X and a functionf € L(X; RU {—o00}) U L(X; RU {oc0}), we put

F(A) = Toea f(2)

if the sum is well-defined and f(@) = 0 for the empty set . The quantity
w(Q) for a subset @ of Y and w € L(Y) is defined similarly.

Our aim of this paper is to prove the following theorem:

Theorem 1.1 The feasibility problem of Gale has a solution if and only if
the given functions V,W, X and p satisfy the relation:

(H.1) MA), =X — A) S W(Q+(A4)) - V(Q-(4))
for every nonempty subset A of X.

Gale [2] proved this theorem in the case where G is a finite graph without
multiple arcs, i.e., for every two nodes, there exists at most one arc. An
abstract Flow Theorem in B.Fuchssteiner and Lusky [1] and the theorem
of Gale for infinite networks in M.M.Neumann [3] may be regarded as a
generalization of the feasibility theorem of gale. In their problem settings,
the set of nodes of the network is a nonempty set S endowed some algebra 3
of subsets and a flow is a biadditive set functions from )~ x 3~ to an ordered
real vector space which is Dedekind complete. Note that even if S = X,
their infinite network is assumed not to have multiple arcs. Notice that the
feasible solution in [1] and [2] does not give an answer to our flow even if G
has no multiple arcs.



2. Reduction of Theorem 1.1

First we prove the only if part of Theorem 1.1. Let w be a feasible solution
of (G.1) and (G.2) and A be a nonempty subset of X. Then

A(A) < ZAX;K(%y)w(y) by (G.2) and (2)
= Zyw(y)X%K(fv,y)
= X wy) - Y w()
yEQ+(4) vEQ-(4)
< W(Q4(4)) - V(Q-(4)). by (G.1)

The inequality for p(A) can be proved similarly. i
‘To prove the “if” part, we may assume that V' = 0. In fact, let V =
oLWwW=w-V,

>

(z) = M) + Zyey K (2,y)V(y),
i(z) = p(z) + Tyey K(z,9)V(y).

If there exists @ € L(Y) which satisfies the relation:

- 0 < d(y) < W(y)onY,
AMz) < Tyey K(z,y)w(y) < i(z) on X,

then w(y) = @(y) + V(y) satisfies(G.1) and (G.2).

3. Preliminaries

A function f € L(X) is called simple if its range is a finite set. Denote
by Ls(X) the set of real valued simple functions on X. Hereafter we put

E = Ls(X) and F = Ls(Y).

For a subset A of X and a subset () of Y, denote by ¢4 and ¢¢ their character-
istic functions respectively. Denote by Ls(Y'; ) the set of E-valued functions
onY,ie., ¢ € Lg(Y; E) can be written in the form ¢ = Y1, fipg,, where
fi,, fa € E and @4, -+, @), are mutually disjoint subsets of Y.

For each f € L(X), let us define 8(f) € L(Y) by
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0(f)(y)=max{0,L,ex K(z,y)f(z)}

as in [1] and [2]. The following properties are easily seen:

(6.1) 0(ea) = Pqgu(a);

(6.2) 0(—€4) = Pq_(a);

(6.3) 0(f —g9) =0(f) +0(—9g)
for f,g € L*(X) N E such that f(z)g(z) =0 on X;
(9.4) 9(2?:1 tiCA,') = ?:1 tie(eAi)

for all ¢1,---,%, > 0 and all A; such that A; D --- D A,.
We prepare
Lemma 3.1 For each ¢ € Ls(Y; E), the function b defined by

P(y) =0 (y))(v)
belongs to F'.

Proof. By definition,

YY) = Xiey fivo:(y)

with f; € Lg(X) and mutually disjoint subsets @); of Y. In case y does not
belong any one of Q;, ¥(y) = 0 € L(X) and 0(y(y))(y) = 0. If y € @i, then
¥(y) = fi and (y) = 0(f:)(y). Thus

P(y) = T [0(£) (v)lea. ()
and 1$ e F. .

Lemma 3.2 Let f € LE(X) := Ls(X)NL*(X) and assume that the number
of elements in the range of f is equal to n. Then there exist non-negative

numbers ty,- -, t, and subsets Ay,---, A, of X such that Ay D --- D A, and

f(z) = Thy tiea, (2).
Proof. There existe a class {B;} of mutually disjoint subsets of X such
that f(z) = a; on B;(t =1,---,n) and o; # «; if ¢ # j. Clearly we have

f(z) = ilaieBi(x).

Without any loss of generality, we may assume that o < a3 < -+ < ay.
Define A; and t; as follows:



Ai = U?’ziBj(l S 1 S n);
t1 = and t,' = Q; — a,-_l(2 S 1 S n)

Then our assertion is easily seen. .

4. Proof of Theorem 1.1

To prove the reduced “if” part of Theorem 1.1, we assume that condition
(H.1) holds and V = 0.
Let us put
G = Ls(Y; E).

Then G is a linear space. We shall identify each f € E with ¢y = foy € G.
In this sense, £ C G.
Let us introduce the convex cones K and K, in E:

Ky ={f € L{(X); Zeex f(2)|Mz)] < 00}
Ky ={g € LE(X); Toex 9(z)|u(z)| < oo}

Now assume that W € L*(Y) and W(Y) = ¥ oy W(y) < oco. We shall
consider a functional p on G as in [1] and [3]:

p(¥) = Tyer PHIW(y).
To verify p(1) is finite, let ¢ = SF, fipo, as in Lemma 3.1. Let m; =
min{f;(z);z € X} and M; = max{f;(z);z € X}. Then
0(fi)(y) < M; —m;,

0<9(y) < max{8(fi)(y)ii=1,---,n} S () on Y,

where ¢(¥) = max{M; — m;;i = 1,---,n}. Therefore

0 < p(¥) < e(H)W(Y) < oo.

Notice that 6 is sublinear, i.e., 8(af + B9)(y) < ab(f)(y)+ B0(g)(y) on Y for
every f,g € Ls(X) and a,f > 0. Therefore for ¢ = 1, + ¥, (¢1, 9, € G),

we have ) ) A
P(y) < ¥1(y) + a(y) on Y.
Namely the mapping ¢p — 1& is sublinear.
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Lemma 4.1 Assume that condition (H.l) holds with V = 0. Then

ST M@2)f(z) = Y p(z)g(@) < p(f—9)

zeX zeX
holds for every f € K, and g € K,,.
Proof. For f € K and g € K, we put f=(f —g)tandg=(f-g)".

Then i )
fekKygeK,, f(z)jz)= 0 on X and

f-f=g-ge Kxn K,
By Lemma 3.2, f and § can be expressed as follows:
f= Ea,-eA'. and § = ZﬂjéBj,
=1 Jj=1

where o;, 3; > 0,A; D -+ D Apand By D+ D B.. By using the properties
of 0, we have

p(f—9) = p(f~3)
= g["(f—é)(y)w(y)]W(y) by (0-3)
= T +I-DWW )
- > [@ ciea;)(y) +e(_iﬂjesj><y>]W(y> by (8.4)
_ yezy ;’:aiwe +y; Zﬂ —e5,)(y)]W (y) by (0.1) and (.2)
= ZaW Q+(A +JZlﬁJ
> ;aik(Ai)—gﬂm(BJ)
= Z Az)f(2) ]—-Z u(2)j(e) by (3)

zeX zeX

> > Ma)f(z) = 3 wa)g(e)

rzeX zeX .
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For each h € K := K, — K, define ®(h) by

@(h):sup{z Mz)f(z) = > ple)g(z);h=f—g,f € Ky g€ K,}.

zeX zeX

Then it is easily seen that @ is superlinear on K, i.e.,
(I)(ahl + ﬂhg) 2 oz‘I)(hl) + ﬂ@(hg)
for every hy,hy € K and a, 8 > 0. Notice that by Lemma 4.1

(4.1) ®(h) < p(h) for all h € K.

-Clearly K is a convex subset of G. For a sublinear functional p on G
and a superlinear functional ® on K which satisfy (4.1), we can apply the
Sandwich Theorem in [1]. Thus there exists a linear functional £ on G such
that

(4.2) ®(h) < &(h) for every h € K,
(4.3) E() < p(v) for every ¢ € G.

For each y € Y, let us put

Vi = ot (1)) Py a0d Yy = € ()Pl

Then we have ¥}, ¢, € G and ¥f +1, = ey)p(yy With e(y) = {z*(y), =~ (v)},
so that

P( ) ( )ap( "/"+) =0 a'nd
p(¢'++¢+) p(=(¥f +9,)) =

Now we define w € L(Y) by
(4.4) w(y) = E(Py) = E(efe @) Piw))-

By (4.3) and the above observation, we obtain
0 < w(y) < W(y) on Y and £(85) = —w(y).

Our next goal is to prove that w satisfies (G.2) with V = 0. Let a € X
be any node such that A(a) € R and put



34

Y'={y €Y;a&e(y)}.
Then, for every y € Y’

0(ea}(y)) = 0(—€ga3(y)) = 0,

so that
p(eqaypy) = p(—€@ypyr) = 0.
Therefore, by (4.4), {(efa3y7) = 0. For simplicity, put

Yi(a) = {y€Y;K(a,y) =1}
Yo(a) = {yeY;K(a,y)= -1}

By (4.2), we have

Ma) = Y Mz)eay(e

zeX
¢(etaypy)
Yo N+ DD E()) + Eleqaypyr)

y€Yy (a) yeY_(a)

= > wy) - Y, wy)

v€Yy (a) y€Y_(a)

= Y K(a

y€Y

Similarly we have

> K(a,y)w(y) < p(a)

yeY

for every a € X such that u(a) € R. The resulting estimates are obvious if
Ma) = —oo(u(a) = o0). This completes the proof.
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