Gale's Theorem on an Infinite Network

椋 毅 (Takeshi MUKU) 山崎稀嗣 (Maretsugu YAMASAKI) 新潟大学自然科学研究科 島根大学理学部

1. Introduction with problem setting

Let X be a countable set of nodes, Y be a countable set of arcs and K be the node-arc incidence function. We assume that the graph $G = \{X, Y, K\}$ is connected, and has no self-loops as in [4]. Notice that G is not necessarily locally finite. Let R be the set of all real numbers and denote by L(X; Z) the set of all functions from X to a set Z. In particular, we set L(X) = L(X; R) and L(Y) = L(Y; R).

For each $y \in Y$, the nodes $x^+(y)$ and $x^-(y)$ are determined uniquely by the relation:

$$K(x^+(y), y) = 1$$
 and $K(x^-(y), y) = -1$.

Intuitively, $x^-(y)$ (resp. $x^+(y)$) is the initial (resp. terminal) node of y. For a nonempty subset A of X, we put for simplicity

$$Q_{-}(A) = \{ y \in Y; x^{-}(y) \in A \text{ and } x^{+}(y) \in X - A \}$$

$$Q_{+}(A) = \{ y \in Y; x^{-}(y) \in X - A \text{ and } x^{+}(y) \in A \}.$$

Notice that $Q_{-}(A) \cup Q_{+}(A)$ is a cut $A\Theta(X - A)$ in [4].

In this paper we always assume that the functions $V, W \in L(Y)$, $\lambda \in L(X; R \cup \{-\infty\})$ and $\mu \in L(X; R \cup \{\infty\})$ satisfy the following conditions:

$$V(y) \le W(y) \text{ on } Y;$$
 (1)

$$\sum_{y \in Y} |V(y)| < \infty, \sum_{y \in Y} |W(y)| < \infty; \tag{2}$$

$$\lambda(x) \le \mu(x) \text{ on } X, \sum_{x \in \Lambda} \lambda(x) < \infty, -\infty < \sum_{x \in \Gamma} \mu(x),$$
 (3)

where $\Lambda = \{x \in X; \lambda(x) > 0\}, \Gamma = \{x \in X; \mu(x) < 0\}.$

The feasibility problem of Gale is to find $w \in L(Y)$ which has the following properties:

$$(G.1) V(y) \le w(y) \le W(y) \text{ on } Y;$$

$$\begin{array}{ll} (G.1) & V(y) \leq w(y) \leq W(y) \text{ on } Y; \\ (G.2) & \lambda(x) \leq \sum_{y \in Y} K(x,y) w(y) \leq \mu(x) \text{ on } X. \end{array}$$

The algebraic operations and order relation of R are extended to $R \cup$ $\{-\infty\}$ or $R \cup \{\infty\}$ in the usual way, i.e.,

$$0 \cdot \infty = 0 \cdot (-\infty) = 0;$$

$$t + \infty = \infty, -\infty + t = -\infty \text{ for all } t \in R;$$

$$t \cdot \infty = \infty, t \cdot (-\infty) = -\infty \text{ for all } t > 0.$$

To state our main theorem, we introduce a notation. For a subset A of X and a function $f \in L(X; R \cup \{-\infty\}) \cup L(X; R \cup \{\infty\})$, we put

$$f(A) = \sum_{x \in A} f(x)$$

if the sum is well-defined and $f(\emptyset) = 0$ for the empty set \emptyset . The quantity w(Q) for a subset Q of Y and $w \in L(Y)$ is defined similarly.

Our aim of this paper is to prove the following theorem:

Theorem 1.1 The feasibility problem of Gale has a solution if and only if the given functions V, W, λ and μ satisfy the relation:

$$(H.1) \lambda(A), -\mu(X - A) \le W(Q_{+}(A)) - V(Q_{-}(A))$$

for every nonempty subset A of X.

Gale [2] proved this theorem in the case where G is a finite graph without multiple arcs, i.e., for every two nodes, there exists at most one arc. An abstract Flow Theorem in B.Fuchssteiner and Lusky [1] and the theorem of Gale for infinite networks in M.M.Neumann [3] may be regarded as a generalization of the feasibility theorem of gale. In their problem settings, the set of nodes of the network is a nonempty set S endowed some algebra \sum of subsets and a flow is a biadditive set functions from $\sum \times \sum$ to an ordered real vector space which is Dedekind complete. Note that even if S = X, their infinite network is assumed not to have multiple arcs. Notice that the feasible solution in [1] and [2] does not give an answer to our flow even if G has no multiple arcs.

2. Reduction of Theorem 1.1

First we prove the only if part of Theorem 1.1. Let w be a feasible solution of (G.1) and (G.2) and A be a nonempty subset of X. Then

$$\lambda(A) \leq \sum_{x \in A} \sum_{y \in Y} K(x, y) w(y) \qquad \text{by } (G.2) \text{ and } (2)$$

$$= \sum_{y \in Y} w(y) \sum_{x \in A} K(x, y)$$

$$= \sum_{y \in Q_{+}(A)} w(y) - \sum_{y \in Q_{-}(A)} w(y)$$

$$\leq W(Q_{+}(A)) - V(Q_{-}(A)). \qquad \text{by } (G.1)$$

The inequality for $\mu(A)$ can be proved similarly.

To prove the "if" part, we may assume that V=0. In fact, let $\tilde{V}=0, \tilde{W}=W-V,$

$$\tilde{\lambda}(x) = \lambda(x) + \sum_{y \in Y} K(x, y) V(y),$$

$$\tilde{\mu}(x) = \mu(x) + \sum_{y \in Y} K(x, y) V(y).$$

If there exists $\tilde{w} \in L(Y)$ which satisfies the relation:

$$\begin{array}{c} 0 \leq \tilde{w}(y) \leq \tilde{W}(y) \text{ on } Y, \\ \tilde{\lambda}(x) \leq \sum_{y \in Y} K(x,y) \tilde{w}(y) \leq \tilde{\mu}(x) \text{ on } X, \end{array}$$

then $w(y) = \tilde{w}(y) + V(y)$ satisfies (G.1) and (G.2).

3. Preliminaries

A function $f \in L(X)$ is called simple if its range is a finite set. Denote by $L_S(X)$ the set of real valued simple functions on X. Hereafter we put

$$E = L_S(X)$$
 and $F = L_S(Y)$.

For a subset A of X and a subset Q of Y, denote by ϵ_A and φ_Q their characteristic functions respectively. Denote by $L_S(Y; E)$ the set of E-valued functions on Y, i.e., $\psi \in L_S(Y; E)$ can be written in the form $\psi = \sum_{i=1}^n f_i \varphi_{Q_i}$, where $f_1, \dots, f_n \in E$ and Q_1, \dots, Q_n are mutually disjoint subsets of Y.

For each $f \in L(X)$, let us define $\theta(f) \in L(Y)$ by

$$\theta(f)(y) = \max\{0, \sum_{x \in X} K(x, y) f(x)\}$$

as in [1] and [2]. The following properties are easily seen:

$$\theta(\epsilon_A) = \varphi_{Q_+(A)};$$

$$\theta(-\epsilon_A) = \varphi_{Q_-(A)};$$

$$\theta(f-g) = \theta(f) + \theta(-g)$$

for $f, g \in L^+(X) \cap E$ such that f(x)g(x) = 0 on X;

$$\theta(\sum_{i=1}^n t_i \epsilon_{A_i}) = \sum_{i=1}^n t_i \theta(\epsilon_{A_i})$$
 for all $t_1, \dots, t_n \ge 0$ and all A_i such that $A_1 \supset \dots \supset A_n$.

We prepare

Lemma 3.1 For each $\psi \in L_S(Y; E)$, the function $\hat{\psi}$ defined by

$$\hat{\psi}(y) := \theta(\psi(y))(y)$$

belongs to F.

Proof. By definition,

$$\psi(y) = \sum_{i=1}^{n} f_i \varphi_{Q_i}(y)$$

with $f_i \in L_S(X)$ and mutually disjoint subsets Q_i of Y. In case y does not belong any one of Q_i , $\psi(y) = 0 \in L(X)$ and $\theta(\psi(y))(y) = 0$. If $y \in Q_i$, then $\psi(y) = f_i$ and $\psi(y) = \theta(f_i)(y)$. Thus

$$\hat{\psi}(y) = \sum_{i=1}^{n} [\theta(f_i)(y)] \varphi_{Q_i}(y)$$

and $\hat{\psi} \in F$.

Lemma 3.2 Let $f \in L_S^+(X) := L_S(X) \cap L^+(X)$ and assume that the number of elements in the range of f is equal to n. Then there exist non-negative numbers t_1, \dots, t_n and subsets A_1, \dots, A_n of X such that $A_1 \supset \dots \supset A_n$ and

$$f(x) = \sum_{i=1}^{n} t_i \epsilon_{A_i}(x).$$

Proof. There exists a class $\{B_i\}$ of mutually disjoint subsets of X such that $f(x) = \alpha_i$ on $B_i (i = 1, \dots, n)$ and $\alpha_i \neq \alpha_j$ if $i \neq j$. Clearly we have

$$f(x) = \sum_{i=1}^{n} \alpha_i \epsilon_{B_i}(x).$$

Without any loss of generality, we may assume that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$. Define A_i and t_i as follows:

$$A_i = \bigcup_{j=i}^n B_j (1 \le i \le n);$$

$$t_1 = \alpha_1 \text{ and } t_i = \alpha_i - \alpha_{i-1} (2 \le i \le n).$$

Then our assertion is easily seen.

4. Proof of Theorem 1.1

To prove the reduced "if" part of Theorem 1.1, we assume that condition (H.1) holds and V=0.

Let us put

$$G = L_S(Y; E).$$

Then G is a linear space. We shall identify each $f \in E$ with $\psi_f = f\varphi_Y \in G$. In this sense, $E \subset G$.

Let us introduce the convex cones K_{λ} and K_{μ} in E:

$$K_{\lambda} = \{ f \in L_S^+(X); \sum_{x \in X} f(x) | \lambda(x) | < \infty \};$$

 $K_{\mu} = \{ g \in L_S^+(X); \sum_{x \in X} g(x) | \mu(x) | < \infty \}.$

Now assume that $W \in L^+(Y)$ and $W(Y) = \sum_{y \in Y} W(y) < \infty$. We shall consider a functional ρ on G as in [1] and [3]:

$$\rho(\psi) := \sum_{y \in Y} \hat{\psi}(y) W(y).$$

To verify $\rho(\psi)$ is finite, let $\psi = \sum_{i=1}^n f_i \varphi_{Q_i}$ as in Lemma 3.1. Let $m_i = \min\{f_i(x); x \in X\}$ and $M_i = \max\{f_i(x); x \in X\}$. Then

$$\theta(f_i)(y) \le M_i - m_i,$$

$$0 \le \hat{\psi}(y) \le \max\{\theta(f_i)(y); i = 1, \dots, n\} \le c(\hat{\psi}) \text{ on } Y,$$

where $c(\hat{\psi}) = \max\{M_i - m_i; i = 1, \dots, n\}$. Therefore

$$0 \le \rho(\psi) \le c(\hat{\psi})W(Y) < \infty.$$

Notice that θ is sublinear, i.e., $\theta(\alpha f + \beta g)(y) \leq \alpha \theta(f)(y) + \beta \theta(g)(y)$ on Y for every $f, g \in L_S(X)$ and $\alpha, \beta \geq 0$. Therefore for $\psi = \psi_1 + \psi_2, (\psi_1, \psi_2 \in G)$, we have

$$\hat{\psi}(y) \le \hat{\psi}_1(y) + \hat{\psi}_2(y)$$
 on Y .

Namely the mapping $\psi \longrightarrow \hat{\psi}$ is sublinear.

Lemma 4.1 Assume that condition (H.1) holds with V = 0. Then

$$\sum_{x \in X} \lambda(x) f(x) - \sum_{x \in X} \mu(x) g(x) \le \rho(f - g)$$

holds for every $f \in K_{\lambda}$ and $g \in K_{\mu}$.

Proof. For $f \in K_{\lambda}$ and $g \in K_{\mu}$, we put $\tilde{f} = (f - g)^{+}$ and $\tilde{g} = (f - g)^{-}$. Then

$$\tilde{f} \in K_{\lambda}, \tilde{g} \in K_{\mu}, \tilde{f}(x)\tilde{g}(x) = 0 \text{ on } X \text{ and}$$

$$f - \tilde{f} = g - \tilde{g} \in K_{\lambda} \cap K_{\mu}.$$

By Lemma 3.2, \tilde{f} and \tilde{g} can be expressed as follows:

$$\tilde{f} = \sum_{i=1}^{m} \alpha_i \epsilon_{A_i}$$
 and $\tilde{g} = \sum_{j=1}^{n} \beta_j \epsilon_{B_j}$,

where $\alpha_i, \beta_j \geq 0, A_1 \supset \cdots \supset A_m$ and $B_1 \supset \cdots \supset B_n$. By using the properties of θ , we have

$$\begin{split} \rho(f-g) &= \rho(\tilde{f}-\tilde{g}) \\ &= \sum_{y\in Y} [\theta(\tilde{f}-\tilde{g})(y)\varphi_Y(y)]W(y) \\ &= \sum_{y\in Y} [\theta(\tilde{f})(y) + \theta(-\tilde{g})(y)]W(y) \\ &= \sum_{y\in Y} [\theta(\sum_{i=1}^m \alpha_i\epsilon_{A_I})(y) + \theta(-\sum_{j=1}^n \beta_j\epsilon_{B_j})(y)]W(y) \quad \text{by } (\theta.4) \\ &= \sum_{y\in Y} \sum_{i=1}^m \alpha_i [\theta(\epsilon_{A_i})(y)]W(y) + \sum_{y\in Y} \sum_{j=1}^n \beta_j [\theta(-\epsilon_{B_j})(y)]W(y) \text{ by } (\theta.1) \text{ and } (\theta.2) \\ &= \sum_{i=1}^m \alpha_i W(Q_+(A_i)) + \sum_{j=1}^n \beta_j W(Q_-(B_j)) \\ &\geq \sum_{i=1}^m \alpha_i \lambda(A_i) - \sum_{j=1}^n \beta_j \mu(B_j) \\ &= \sum_{x\in X} \lambda(x)\tilde{f}(x) - \sum_{x\in X} \mu(x)\tilde{g}(x) \quad \text{by } (3) \\ &\geq \sum_{x\in X} \lambda(x)f(x) - \sum_{x\in X} \mu(x)g(x). \end{split}$$

For each $h \in K := K_{\lambda} - K_{\mu}$, define $\Phi(h)$ by

$$\Phi(h) = \sup\{\sum_{x \in X} \lambda(x) f(x) - \sum_{x \in X} \mu(x) g(x); h = f - g, f \in K_{\lambda}, g \in K_{\mu}\}.$$

Then it is easily seen that Φ is superlinear on K, i.e.,

$$\Phi(\alpha h_1 + \beta h_2) \ge \alpha \Phi(h_1) + \beta \Phi(h_2)$$

for every $h_1, h_2 \in K$ and $\alpha, \beta \geq 0$. Notice that by Lemma 4.1

(4.1)
$$\Phi(h) \le \rho(h) \text{ for all } h \in K.$$

Clearly K is a convex subset of G. For a sublinear functional ρ on G and a superlinear functional Φ on K which satisfy (4.1), we can apply the Sandwich Theorem in [1]. Thus there exists a linear functional ξ on G such that

$$(4.2) \Phi(h) \le \xi(h) \text{ for every } h \in K,$$

$$\xi(\psi) \leq \rho(\psi) \text{ for every } \psi \in G.$$

For each $y \in Y$, let us put

$$\psi_y^+ := \epsilon_{\{x^+(y)\}} \varphi_{\{y\}} \text{ and } \psi_y^- := \epsilon_{\{x^-(y)\}} \varphi_{\{y\}}.$$

Then we have $\psi_y^+, \psi_y^- \in G$ and $\psi_y^+ + \psi_y^- = \epsilon_{e(y)} \varphi_{\{y\}}$ with $e(y) = \{x^+(y), x^-(y)\}$, so that

$$\rho(\psi_y^+) = W(y), \rho(-\psi_y^+) = 0 \text{ and }$$

$$\rho(\psi_y^+ + \psi_y^+) = \rho(-(\psi_y^+ + \psi_y^-)) = 0$$

Now we define $w \in L(Y)$ by

(4.4)
$$w(y) := \xi(\psi_y^+) = \xi(\epsilon_{\{x^+(y)\}}\varphi_{\{y\}}).$$

By (4.3) and the above observation, we obtain

$$0 \le w(y) \le W(y)$$
 on Y and $\xi(\psi_y^-) = -w(y)$.

Our next goal is to prove that w satisfies (G.2) with V=0. Let $a \in X$ be any node such that $\lambda(a) \in R$ and put

$$Y' = \{ y \in Y; a \notin e(y) \}.$$

Then, for every $y \in Y'$

$$\theta(\epsilon_{\{a\}}(y)) = \theta(-\epsilon_{\{a\}}(y)) = 0,$$

so that

$$\rho(\epsilon_{\{a\}}\varphi_{Y'}) = \rho(-\epsilon_{\{a\}}\varphi_{Y'}) = 0.$$

Therefore, by (4.4), $\xi(\epsilon_{\{a\}}\varphi_{Y'})=0$. For simplicity, put

$$Y_{+}(a) = \{y \in Y; K(a, y) = 1\}$$

 $Y_{-}(a) = \{y \in Y; K(a, y) = -1\}.$

By (4.2), we have

$$\lambda(a) = \sum_{x \in X} \lambda(x) \epsilon_{\{a\}}(x)
\leq \xi(\epsilon_{\{a\}} \varphi_Y)
= \sum_{y \in Y_+(a)} \xi(\psi_y^+) + \sum_{y \in Y_-(a)} \xi(\psi_y^-) + \xi(\epsilon_{\{a\}} \varphi_{Y'})
= \sum_{y \in Y_+(a)} w(y) - \sum_{y \in Y_-(a)} w(y)
= \sum_{y \in Y} K(a, y) w(y).$$

Similarly we have

$$\sum_{y \in Y} K(a, y) w(y) \le \mu(a)$$

for every $a \in X$ such that $\mu(a) \in R$. The resulting estimates are obvious if $\lambda(a) = -\infty(\mu(a) = \infty)$. This completes the proof.

Reference

- [1] B.Fuchssteiner and W. Lusky, *Convex cones*, North-Holland Mathematics Studies **56**, North-Holland, 1981.
- [2] D.Gale, A theorem on flows in networks, Pacific J. Math. 7(1957), 1073-1082.
- [3] M.M.Neumann, The theorem of Gale for infinite networks and applications In: Infinite Programming, E.J.Anderson and A.B.Philpott (ends.), Lecture Note in Economics and Mathematical Systems **259**, Springer-Verlag, 1984.
- [4] M.Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223-250.