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Convergence of Numerical Interface Curves to

Nonlinear Diffusion Equation with Absorption

Kenji Tomoeda! and Tatsuyuki Nakakit

1. Introduction. .
We are concerned with difference approximations to the following initial value problem

for the nonlinear diffusion equation described by

(1.1) v = (V™) e — VP, zeR, t>0
with an initial condition

(1.2) ' v(0,z) = v°(z), z € RY,

where m(> 1), p(> 0) and ¢(> 0) are constants, and v°(z) has compact support. The
equation of the form (1.1) is known as a simple mathematical model for several physical
phenomena. .

The first model with ¢ = 0 describes the flow of an ideal gas through a homogeneous
porous medium, where v represents a density of the gas. Physically, v™ ! is the pressure
of the gas and (v™™1), is the velocity. ,

The second model with ¢ > 0 describes the transport of the thermal energy in plasma.
Here v means the temperature. The term —cv? is understood as volumetric absorption
caused by radiation. »

In both models with ¢ = 0 and with ¢ > 0 the most interesting phenomenon is the
occurrence of finite propagation of the initial support. It is already shown that there are
three cases of the behavior of supp v(t,-).

Case 1. Positivity. For c=0and m > 1, or ¢ > 0 and p > m > 1 supp v(¢, -) expands as ¢
increases and supp v(oo,-) = R* ([1],[3],[4],[8],[9],[15]).
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Barenblatt and Pattle’' s exact solution and interface curve .
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Bertsch, Kersner and Peletier's solution.
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Case 2. Localization. For ¢ > 0 and m > p > 1 supp v(t,-) expands as ¢ increases and is
uniformly bounded with respect to ¢ ([7],[9],[11]).

Exact Interface Curves

el
Vt—(V )XX - 0.5V
Exact solution (Gurtin and MacCamy).

Case 3. Total Extinction. For ¢ > 0, m > 1 and 0 < p < 1 supp v is compact in
[0, 00) x R! and v(t, z) extincts in finite time ([9],[10],[11]).

A v t

Exact Interface Curve

P 0.5
Ve (V‘ )Xx -V

Kersner's solution
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From a numerical point of view, it is interesting to determine the behavior of supp v(t,-),
that is, interface curves appearing between v > 0 and v = 0.

Several difference schemes to (1.1)—(1.2) with ¢ = 0 have been investigated. In [6)
Graveleau and Jamet proved the finite propagation of the support by using their difference
scheme. However, their scheme does not give good approximations to the exact interface
curves. DiBenedetto and Hoff’s scheme [5] and Mimura, Nakaki and Tomoeda’s scheme
[13] give the convergence of numerical interface curves. It is observed that the numerical
interface curves by the latter scheme are more accurate rather than the former’s .

Numerical computations to (1.1)-(1.2) with ¢ > 0 are investigated by Rosenau and
Kamin [16], Mimura, Nakaki and Tomoeda [13] and Nakaki[14]. In [13] the convergence of
numerical solutions is proved for Cases 1 and 2,and the convergence of numerical interface
curves is also proved for Case 1 and Case 2 with p = 1. In Case 3 Rosenau and Kamin
numerically examined the problem of the pulse splitting into several sub-pulses, but the
theoretical results of the numerical scheme are not discussed. In Case 3 with m+p = 2
it is shown in [14] that not only numerical solutions but also interface curves converge to

exact ones under
Condition A: (v°(z))™ ! is concave downward on its support.

In this paper we show the convergence of numerical interface curves without Condition A
for Case 3 with m+p = 2. However, instead of Condition A we have to impose the following

condition on numerical results.

Condition B: There exist positive numbers M, T* and h* such that
: . . d
(1.3) bi(t)<M and m(t)>-M (= E)
for almost all ¢ € [0,7*] and for all & € (0, h*). Here £,(t) and r4(t) denote left and right
numerical interface curves, respectively, and A is a space mesh width.

We now state the existence and uniqueness of weak solution of (1.1)-(1.2) in Section 2.
In Section 3 we present Mimura, Nakaki and Tomoeda’s scheme for Cases 1 and 2, and
demonstrate some numerical solutions and interface curves. In Section 4 we introduce the
modified Mimura, Nakaki and Tomoeda’s scheme for Case 3 with m +p =2 and ¢ > 0,
and show the convergence of numerical interface curves under the Condition B.

2. Existence and Uniqueness.

To show the convergence of the difference approximation to the exact solution, we
prepare the existence and uniqueness of the weak solution of (1.1)—(1.2) with m 4+ p > 2
and ¢ > 0.

Definition. (Herrero and Vézquez[8]). A function v(¢,z) defined on S = [0,00) x R' is
said to be a weak solution of (1.1)-(1.2), if
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(i) veC(S)NL>(S) and v>0 on S;
(ii) for any z € R', v(0,2) = v%(z) ;

(i) for any function ¢(z) € C*?(S) with compact support in S, the following integral
relation holds:

(2.1) //S(v"‘(ﬁm + vy — cvP¢)dadt + /R‘ Q(O, z)¢(0,z)dz = 0.

To show the stability of our difference scheme, we set u = v™1 and rewrite (1.1)-(1.2)

as

3 2 Pt g _mtp—2
(2.2) U = MUtlgy + a(Uz)" ~ (M — D)ewt, a= ——0, 1
(2.3) u(0,z) = u%(z) = (v°(z))™".

Definition . A function u(¢,z) defined on S is said to be a weak solution of (2.2)—(2.3), if
() ueC%S)NL®(S), u,€L®(S)and u>0 on S;
(ii) for any z € RY, u(0, z) = v%(2) ;

(iii) for any function ¢(z) € C**(S) with compact support in S, the following integral
relation holds:

(2.4) //S(uqﬁt — muugd, — (m — a)(uz)?¢ — (m — 1)cudd)dzdt + /Rl u(0,2)¢(0, z)dz = 0.

Theorem 2.1 (Herrero and Vazquez [8]). Let m > 1, m+p > 2, p > 0 and let v° be
a continuous, nonnegative and bounded real function. Then there exists a unique weak
solution v of (1.1)-(1.2) and v is smooth in the set {(¢,z) : v(¢,z) > 0}.

Remark. Let D be the space of all continuous functions with compact support in S, and
D' be its dual. If a weak solution u of (2.2)—(2.3) with m > 1 satisfies

‘ /
Upy, Ut eD)

then v = 4!/(™=1) is the unique weak solution of (1.1)-(1.2) (see [6]).
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3. Difference Schemes to (1.1)—(1.2) with m > 1 and p > 1.
Our difference scheme approximates the problem (2.2)—(2.3) instead of (1.1)—(1.2). The

difference scheme is constructed based on splitting the equation (2.2) into three parts:

(3.1) uy = Pu= muuy,, A
(3.2) s = Hu =ka(,ux)2, a=mf(m— 1),
(3.3) u; = Du=—(m—1)cul, g=(m+p-2)/(m-1).

We denote by V), the set of the nonnegative continuous functions u;, with the following

properties:
(1) up has compact support [£(us), r(usn)] ;
(1) up is linear on each interval [z;,z;41] (¢ € Z), where
T; = z'h‘ for all ih € (U(up),r(up)) (i=L,L+1,---,R—1,R),
Tp-1 = Uup), zpe1 = r(up)
Let by = ;41 —z; and u; = u(z;). Then our difference scheme [13] is described as follows:
Find the sequence {u} }n=012,. C Vi such that
(3.4) uptt = Spxuh = (Duap)” - (Pagyn)” - Hupuh forn=0,1,2,---.

Here k = ko471 = tn41 — t, is a variable time step , 4 = pn41 and v = v, 4, are integers

depending on k,4;.
Difference operator Hj
We define the operator H}, , mapping from V, to V, by

(3.5) u, = (Hpxup)(z:) = exact solution u(k,z;) of u; = Hu

with the initial value u(0,z) = us(z).
Let {L', L'+ 1,-+--,R' — 1, R'} be the set of integers such that

z; =1h forall ih € (l(u,),r(u,)) (=L ,L'+1,---,R —1,R.
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Then
(u; +a(bu;)2k  if i€ St=5fUSg,
u; + a(bu;—1)%k if €57 =55 USg,
; if i€S°
3.6 T ! )
(36) “h (L'h—)oug—, if 1= L'=1L-1,
(R'h—r"Your if i=R =R+1,
| 0 if ieZ\{L’,---,R’},
where ‘

{z' € {L, -+, R} : bui_y < bu; and du;—1 > —5ui},
Sg = {z € {L,---,R}:6uiy < by; and du;—; < —-5u,—},
{

i€{L,--+, R} : bu_y > Su; > 0},

A
I

{i€{L,-++,R}:0> buy > Suif,

s° = {ie{L,---,R}: 6ui1 202 Su;}.
Stability Condition: k = kn41 is the largest number satisfying the following inequality:

(3.7) all(un)allook < min{h/4, Lh — £(us), 7(us) — RR}.
(3.8) k < Ch* (For simplicity we put C =1, s = 1/2).
Difference operator P/,
k
(3.9) (Pagfutin)(z) = u; + pmuiézui for all 1 € Z,

6u,~ = (u,'+1 —_ u,‘)/hi, (5211,,' = 2(5% - 6u,~_1)/(h¢ + h,‘_l),

Stability Condition: u satisfies the following inequalities:

(3.10) il (E/W)L/B + 2/{h(h+ RN S 1 forj=L -1 R,
(311) am)|(wn)alloo (/1) (h+ hy) S 1 forj = L= LR

Difference operator Dy ;.

(3.12) (Dagpotin)(z:) = {[un — (m — 1c(un)?(k/v)]* }(z:), [f] = max{f,0}.
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Stability Condition: v satisfies the following inequality:
(3.13) (k/v)(m = DeglluallS? < 1.
We note that the interfaces of Dy, i/, up and P,y ,us are same ones of u;. From the

property of the operator Hj the numerical interfaces of solutions given by (3.4) can be

expressed as follows:

(3.14) lpy1 = L, — abuy_k,

(3.15) Tp41 = T — abufk,

where

(3.16) b, =4(u}), ron=r(u}) forn=0,1,2,---.

To start the scheme (3.4), we take
(3.17) to=0, Lo=4w), ro=r(u)), ud(z:)=1u"(z),
and impose the following assumptions on the initial value u°(z).

Assumption I. v € C°(R!) N BV(R') has compact support [¢(u®), r(u°)] and satisfies
w0 € L*(RY) N BV(RY). |

Assumption II. u° satisfies

(3.18) ul_(z) > —C, where C is some positive constant.

Theorem 3.1 (Stability [13], [18]). Under Assumption I letm > 1, p > 1 and c> 0. Then

(3.19) 0<uf <||u'll for all n>0,

(3.20) | lim ¢, = oo.

n—0oo
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Moreover, for each T > 0, the following estimates

Iup)elloo, M)l mry  V((©R)),
(3.21)
I(up™ — up) [kntillpry < Ci(T) forall 4,41 < T,

hold for all n > 0 satisfying t,4+1 € [0,T], where C1(T') is a constant depending on T, but

independent of h.
Remark. The conclusion of this theorem is also valid for ¢ = 0.
To state the convergence, we define a function u,(¢,z) by
(3.22) up(t,z) = up(z) on [tn,tp41)  foralln >0.
Theorem 3.2 ( Convergence [13],[18]). Under the same assumptions as stated in Theo-

rem 3.1, (up)™V converges uniformly in any bounded domain of [0,00) x R to the
g

unique weak solution of (1.1)-(1.2).

By piecewise-linearly interpolating (%, £,,) (resp.(tn, 72)) (n > 0) we define the left (resp.

right) numerical interface curve £,(t) (resp. r4(t)).

Theorem 3.3 (Numerical Interface Curves [13],[18]). Under Assumptions I and I let
(myp) € {(m,p) :p>m >1}U{(m,1): m > 1}.

Then, for any T > 0,

(3.23) 1€n — £*||Leoo,ry — 0 as h — 0,

(3.24) lrn = r*[lLeoo, oy — 0 as  h — 0,
where £* and r* are the eract interface curves.

Remark. (3.23) and (3.24) also hold for ¢ = 0.
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Exact interface curve

\

1 I} ! | ! 1 I
0.0

Numerical interface curves to
Barenblatt and Pattle’s solution.

B: Baklanovskaya's scheme [2] h=0.057

G-J: Graveleau and Jamet’s scheme [6] h=0.114

B-H: DiBenedetto and Hoff’s scheme [5] h=0.125

M-N-T: Mimura, Nakaki and Tomoeda’ scheme[17, 18] h=0.125
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_..—Exact Interface Curves

t
r20.0

-

Numerical Interface Curves

T

h=0.516~—____
| h=0. 164 ~—__

0.0 5.0

(2 2
Vem(Vix =V

The initial value 1is the same one as Bertsch, Kersner
and Peletier's solution at t=0.

) "7 Exact Interface Curves ————___
/ t ™
. 1r20.0
N Numerical} Interface Curves
O ~|. - h=0.556 ——————>||&
k +—h=0.142—u
¥ T T I T T T 1 X
-3.0 0.0 3.0
V.=(v?) - 0.5V
t XX ‘

The initial value is the same one as the exact solution
at t=0 (CGurtin and MacCamy).
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4. Difference Schemes to (1.1)-(1.2) with m +p = 2.

In this section we assume that m 4+ p = 2, m > 1 and p > 0. The solution (1.1)-
(1.2) extincts in finite time. The front of support may expand and/or shrink. Taking this
property into consideration, we approximate (2.2) in the following way [14]: |

Find the sequence {u}}n=012,. C V4 such that -
(41) UZ-H = Sh,kuz = (Ph,k/p,)” . Hh,k . Dh,kuz for n = 05 1, 2, s

The difference operators Hj; and Py, are given by (3.5) and (3.9), respectively. Since

q = 0, the difference operator Dy, is written as

(42)  (Dapn)(@:) = {fun = (m = ek} H(z),

Stability Condition:

1) k = ky41 is the largest number satisfying the inequality (3.7)—(3.8) with u, = Dy, 4u} ;

2) Every connected component of the set [supp up] \ [supp Dy xun] has at most one point

z such that z/h is an integer;

3) u satisfies the stability conditions (3.10)—(3.11).

From this stability condition the numerical interface curves can be expressed as fol-

lows:
(4.3) Lpy1 = Lo+ (%;_—n_l)c_k — abu}_ik if z7-1 <Dyyup) <z,
-1
u} (m — 1)ck — u}

—abutk if zp <Dy ul) <z
s su I L < UDnyup) < Tr41,

(4.5) Thy1 = 7T+ — abupk if zgp < r(Dpiuy) < Tge1,
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: - — 1)ck — u¥
(4.6) rpy1 = 7o+ uh , (m—1e YR _

Sl S abup_k if zp_y <r(Dppuy) < zg,

where ¢,, and r,, are given by (3.16) .

Theorem 4.1. Under Assumption I let m+p =2, m > 1 andp > 0. Then (8.19) and

(3.21) hold for all n > 0, where the constant C is independent of T and h.

Theorem 4.2. Under Assumption II and the same assumptions as stated in Theorem 4.1
let Condition B be satisfied. Then there exist Lipschitz continuous functions £*(t) and r*(t)

on [0,T*] such that

(4.7) llon — v|lLeory — 0 as  h — 0,
(4.8) €h = £\ Leoorsp — 0 as R —0,

(4.9) ‘ : lrn = ™| Lo, z+)) — O as h— 0,

where H = [0,T*] x R}, vy, = (up)™ ™V and v(t, z) is the unique weak solution of (1.1)-

(1.2). Moreover, £* and r* become the left and right interface curves, respectively.



Numerical interface curves and numerical extinction time with m=1.5,
p=0.5 and c=1. The initial value is the same one as Kersner' s solution:

/(m-1)

vt 0=t +b) (22w - <]

2/(mt+1)
A () =%[a; (bt + by)

' c(m—l)4 n? c(m—l)2
aq = , 89 T 5

1/(m-1)

21
= 3.2( blt + bz) :l

for

/2

Ix|= 2 (1),
h Numgricql
Extinction
Time

973 2. 013478

974 2. 044670

970 9. 059979

976 2. 087771

165

on(m+1) 971 9. 071648
b= ———, by =@l 978 2. 073709
m-1 e
9 9. 074431
Exact Extinction
Time 2.07531...
3.00
t —
2.00 —
]
1.00 —
0.00 I I I ] T T | 1 |
00 -3.00  -2.00 . -1.00 .

0.00
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Numerical solutions and interface curves with m=1.5, p=0.5, c=1 and .

0.75(% - D% 4% - D(% - 0.125) for X2 = 1,
v(0,x) = { ' ’

0 for x2 > 1

h=1/16 h=1/32  h=1/64 = h=1/128

~3.00 -1..00 ‘ 0.00 1.00 2.00



167

o

1.30 —

i %O
¥ %

x % ®

¥ &

1.20 . : : ; : -
273 274 27® 276 277

@ :Numerical extinction time.

Y¢:Numerical time T; with M=50 for each h such that 'é’h , = 'rh < M on [0, T; 1.

*:Nunerical time Ty with H=25 for each h such that £y , -1 = H on [0, T} 1.

Numerical
h Extinction
Time

2 1. 234850
2 1. 258987
2 1.270498
2 1.276316
2 1.279211
2 1.280641
2 1.281343
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Numerical interface curves and extinction time with m=1.5, p=0.5 and c=1. The initial
value is given by

Numerical
1-1.8|x] for x| = 0.5 , h Extinction
0.1 for 0.5 =< |x| < 0.9, e
u(0,%) = ’ : - _ 2 0. 976625
10(1 - IXI) for 0.99: IXI =1 N 2_5 0.947809
B 0 for x| = 1. 28 | 0.934905
9T | 0.928547
¢ 978 | 0.924544
1.00 — _9
, A 0. 922440
o710 | 0.921301
0.80 —
0.60 —
0.40
0.20 4
0.00]
t
1.00
B .
— *
0.95 — °
X
%
[ ]
>
1 ¥ g
F °
- Py g
0.90 7 | [ ! t | 7
974 279 976 277 978 979 9710 b

@ :Numerical extinction time.

¥c:Nunerical time T; with M=50 for each h such that £, , - r,< M on [0, Tp 1.

v :Numerical time T; with M=25 for each h such that éh , - }hé M on [0, T; 1
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