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INVERSE PrROBLEMS — GAussiaN BEAMS AND COMPUTATIONS.

St.Ps
I am & representative of an  inverse

St.Petersburg Branch Hathematical
consists of three memberzs — M.

Furviev. At the beginning of my  tallk

results abtained by oOur groun
investigations.

1. The problem under consideration.

in  the domzin D

=

let’s consider the hyperbolic sgusition

o

uuix,t} — L ou{x, bt} = 0, (. .tle (R, {13
wherse L is one of the following slliptical operatorz (ses also
the paper of Belishevy & Furvisv and pregrint of Delishey %

Fatchalow)
. -1 ca s : .
il Lu = o "Au, pix} is a density,

ii? Lu = div{ pgradul, uix! is s tension,

ii3) Lo o= Au - gu. gix? is a potential,
- i a P ik 5 22} . . . :
o= =i ginteg (% i ih ltrami—-Laplace
ivy Lu 75T axx[‘%;.f:og b ek is he Beslirami-Laplac
. ‘ i i . . .
operator in local copordinstes x ., g, is =& metric tensor of  the
L
. ik L 2t
manifold Q, g o = & g = dst{ S
TETER * 9 it ket

The problem is to recover material parameters of media (density
o, tension p, potential q or metric tensor gu) in the domain Q
via inverse data. ’ -

2. Inverse data.

To solve these problems we use two type of data — spectral data
and dynamic {nonstationarvy! inverse dats {a nonstationary
response cperatorl.

i} Spectral inverse dats.

To describe spectral inverse data let’s consider & bounded
domain  and the sllipticsl differential operator
Dirichlet or Neumann houndary condition on [0 = 8Q. For the
Neumann boundary condition spectral inverse dat

L0

a
spectrum €Kk;k1 and traces on the boundary [ of normalized
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eigentunctions {& {(yp:¥ 7, ye I'. for the Dirichlet boundary

and iIraces of

1 ~ by =0 inOx{g,T:
tt
) =0 =
t<o
i =%

anlrx{oﬁri ) : ) au

i+or the casse ii we should replace 3 L 3 in the bBoundary
condition!. The boundary function fi{y.tle F* = inrxiég?}} or
contirol generate a socliution ufix,t} of the grshlea. {2} or wave
Fielid in Q, {d.,tle Quid,T). Let’s consider a cocontingous  Iinsar

ey
eat”
oy

(r.tr = | AU HE T Gyt et e e (3

Meto,. 11

de consider this operator {(or its kernell) a= dats Lo sclve  our
inverse problams.

Remark 1. Spectral variant of the problem can be reduced to a
nonstationary on=s. For example, for the Noumann boundary
condition we have the following sguality

x Si ﬁﬁwét—t' 3

(R™$) (pyt)=[ dr_,dt’¢
T o Vo
'<[o., Tl
This equality exoressss the non

£ @ {/I 2 ;I.ﬁ:f'-{"
@k.y) Qk Y rrek iy, Y. {4}

r
spectral inverse data. For the Dirichliet boundary o
there is analogous formula. So Ffurther we may considsr only
dvnamic inverse data to sclve inverse problems.

3. Formulation the problem. BCT approach.

bihere we can recover material parameters of the sediun for  the
. . T . . .
given response operator R ? To answer this guestion we should

. . T - e . . . . )
detfine a subdomain Q. Let vix: = infi disti{x,yi; ve '}, e O D=

& distance betwesn the point of the domzain O and thée boundary UL



v
normals to the bhoundary ') we have a semigecdssic fray)
t

2m (.71, ye I'. We can recover material parameters

VS
in O wvia given R . Doubling time is connected with very simple

s of the approasch.

4. Recovering c’ operator.

iet’s congider the functional spaces H in the domain O finner
r

2 ated by Lthe operator L For

the problem 1) for sxampls it iz L QY. Usming the solution  of
‘g A U J ¢ T,
define a control operator W F »H, #Wf =

£ )

3
i
Wl

igar that ®BF <€ H,where H = {fue M, supsp ue

¥
W
o
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~T . . ; . . .
where 5§ 1is an operator of odd continuation through the time T

. iy, b te (0,T)
S Fiy,t) = . {(9)
L —F (3, 2Tt te (T,2T)

and Y77 i= & 1Hfag ~ating opsrator.

S« Recovering the set of orthoprojectors.
Let s conzider the set of orthoprajectors FE, £<T on the

subspace mf: ?E: H — mf an Egrresﬁanéiﬁg set of

orthoprojectors in the C norm on the space 3" QE: ] —_— &,

=
r+

o QE = ?fﬁ - It is important that we can reconstruct the set  of
o . . T
arthoprojectors gf {but mot Pfﬁ via L operator. We cann do that

sing the following orocedure.
] =3

in
fade’}
ey
L,
i
ul
164
®

i} Lets taks a basis of contrnol

ii} By means of the Shmidt orthogonalizing procedure we can

E 0 ET

reconstruct the orthonormal hasis of controls k s a in orm
T T T,
iCh 3 hg = iH hggﬁ HE) = & .
k kT L kL
iii} The orthoproiector Ef can be sxpresssd in a term of the bas

i
e g s & _ 4 4
%’3 S =2 — LS p: E—i =
h s £ z < (bk! M

6. Wave fields reconstruction.

The third step of th= approach consist in the reconstruction of

weighted wave fislds ;f{y,r;?} = ﬁoiy513ouf{y5T;T} corresgonding
to a control f. It is sxpressed in the =semigeodesic coordinates
{y.7). The weighted wave field u is a product of wave field o

The field zziygr;T} can be sxprecsed

on some factor 3 {y.71i.
T

o
through © operator; projisctors B and control
L™
f . a T £ . , e .
Wiperets = —~ { == L %i Fy by T-E-G) . HERS)

Thisz formula can be obitained using the singularities ocropagation

transformastion & = 3 {p,73. It is individual for any type o

n



g A

constant

Zan find

corresponding controls qT and P? via ©f operator. Using thesse
cantrols in the formuls (143 we obitasin 80 and ﬁi{y,vk. Bo for  any
contral f we can recover thz wave fiesld sﬁfxgt} i cartssian
conrdinates xt. FPutting it in an souation (1) it iz sisplis o

obtain the density p in the domsin Q.
7. The Riemannian manifold recons

The described variant of the last step of the procedurse can™t
e anplied to the case iv: of rec the RHismannian manifold.
The method of =sclution in that cass bases upon the existence of
zome special tyvpe of solutions for hivoerbolic sgustions.  Thess
c=plutions are known 23 Baussian bsams or guasighotons. They have

the following properities
3

i} The guasiphoton is ray tvps asyvmpiotic soluticon with a
comnlex phase and without singuiarities.
ii} The guasiphoton is concentrated nesr the bicharacteristic of

il
the wave eguation. thsi:ally. speaking 1t is & wave field
concentrated near a2 peoint . moving siong & geodesic with  the
velocity equal 1.

The sslution depends upon a parameter ¢ characterizing the
dlametmr of the guasiphoton and some other parameters  {initial
coordinates and impulszses of the guasiphoton stc.l.

It iz convenient to describes thg sclution in a wicinity of
geodesic ¥ = X{L} in & coordinate system in,t}., n = x — {{ti. The

guasiphoton can be expressed as follows

£ - -1, s v -
H {u, k) = supi—ige Gin,ftii- §ﬂb{n.z}i1£2 s {132
= :
whers
1 J
it = @ (¥ + =T {EInm + a::a {13}
< i)
U An,tr = i (£} + ... {14}
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the wave fieid is not smaill nesr the point moving slong 2

i
geodesic with fthe wvelocity esgusl i. EChanging parameisrs of

b recavesr

8. Results of comput

computation for one
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