Linear independence results on values related to higher dimensional continued fractions

Jun-ichi TAMURA (International Junior College)

SUMMARY: We are intending to describe our results [T4,T6] in a rather self-contained fashion with some remarks. We shall give no proofs of our theorems. Let $s \ge 1$, $k \ge 1$ be fixed integers, $A := \{a_0, a_1, \dots, a_s\}$ be a set, and let $\sigma \in Hom(A^*, A^*)$ be a monoid homomorphism defined by

$$\sigma(a_0) := a_0 a_1, \quad \sigma(a_1) := a_{1+1} \quad (1 \le i \le s-1), \quad \sigma(a_s) := a_0,$$

where A^* denotes the free monoid generated by A. A homomorphism $\tau \in Hom(A^*, B^*)$ can be extended to $A^* \cup A^\infty$ by defining $\tau(u_1u_2 \cdots u_n \cdots) := \tau(u_1)\tau(u_2) \cdots \tau(u_n) \cdots (u_n \in A)$, where A^∞ denotes the set of all infinite words (to the right) over A. We denote by $\omega = \omega_0 \omega_1 \cdots \omega_n \cdots = \lim_{m \to \infty} \sigma^m(a_0)$ ($\omega_n \in A$) the fixed point of the σ prefixed by a_0 , where σ^m is the m-fold iteration of the σ (σ^0 is the identity map on $A^* \cup A^\infty$), and $\lim_{m \to \infty} \sigma^m(a_0)$ indicates the word $\omega \in A^\infty$ having $\sigma^m(a_0)$ as its prefix for all $m \geq 0$. We can show that there exists uniquely a number $\sigma = \sigma(s,k)$ such that

$$f(\alpha)=0$$
, $\alpha > 1$, $f(x) := x^{s+1}-kx^{s}-1 \in \mathbb{Z}[x]$.

Throughout the paper, $H(\underline{h})$ denotes the height of \underline{h} , i. e.,

$$H(h) := \max\{|h_0|, |h_1|, \dots, |h_s|\}, h := (h_0, h_1, \dots, h_s) \in \mathbb{Z}^{s+1}.$$

Theorem 1. Let $k \ge 1$, $2 \le g \in \mathbb{Z}$, and let θ_i be numbers defined by

$$\theta_i = \theta_i (g; s, k) := \sum_{\omega_n = a_i} g^{-n-1} (0 \le i \le s).$$

Then

$$|\sum_{i=0}^{s} h_i \theta_i| > \kappa_-/H(\underline{h})^{\alpha(\alpha^s-1)/(\alpha-1)}$$

for all $h \in \mathbb{Z}^{s+1}$ with $h \neq 0 := (0,0,\cdots,0)$, and

$$|\sum_{i=0}^{s} h_{i} \theta_{i}| < \kappa_{+}/H(\underline{h})^{\alpha(\alpha^{s}-1)/(\alpha-1)}$$

for infinitely many $\underline{h} \in \mathbb{Z}^{s+1}$, where κ_- , κ_+ are positive constants independent of h.

<u>Corollary 1</u>. The s+1 numbers θ_i are linearly independent over Q; the s+2 numbers 1, and θ_i are linearly dependent over Q.

For a given $\tau \in \text{Hom}(A^*, B^*)$ $(B := \{0, 1, \cdots, g-1\}, 2 \le g \in \mathbb{N})$, we denote by $M(\tau)$ the $(s+1) \times g$ matrix $(|\tau(a_i)|_i)_{0 \le i \le s, 0 \le j \le g-1}$, where $|u|_i$ is the number of ocurrences of $j(\in B)$ appearing in a word $u(\in B^*)$. For a given word $v \in B^\infty$, g(0,v) indicates the number defined by the g-adic expansion:

$$_{g}0.v:=\sum_{n=1}^{\infty}v_{n}g^{-n}$$
 ($2\leq g\in\mathbb{Z}$), $v=v_{1}v_{2}\cdots v_{n}\cdots$ ($v_{n}\in\mathbb{B}$).

Theorem 2. Let $(s,k) \in \mathbb{N}^2$ with $(s,k) \neq (t,1)$ $(t \ge 2)$. Let $\tau \in \text{Hom}(A^*,B^*)$ such that the rank of $M(\tau)$ is greater than one. Then ${}_g0.\tau(\omega)$ is a transcendental number for all g with $2 \le g \in \mathbb{Z}$.

Corollary 2. Let θ_i be as in Theorem 1. Then the numbers θ_i (0 \le i \le s) are transcendental.

It is remarkable that the numbers θ_i have explicit digits in base g:

Example 1. (s,k)=(2,2): $\alpha^3-2\alpha^2-1=0$, $\alpha=2.2055694$. Put $a_0=a$, $a_1=b$, $a_2=c$. Then $\sigma(a)=aab$, $\sigma(b)=c$, $\sigma(c)=a$, and

$$\left|\sum_{i=0}^{2} h_{i} \theta_{i}\right| \gg 1/H(\underline{h})^{\mu}$$

holds for all $h \in \mathbb{Z}^3$ with $h \neq 0$, and

$$\left|\sum_{i=0}^{2} h_{i} \theta_{i}\right| \ll 1/H(\underline{h})^{\mu}$$

holds for infinitely many $\underline{h} \in \mathbb{Z}^3$, where $\mu = \alpha(\alpha+1) = 7.0701059 \cdots$.

Theorem 3. Let $(s,k) \in \mathbb{N}^2$, and let g, θ , α be as in Theorem 1. Put $\delta := \max\{1, |\beta|; f(\beta) = 0, (\alpha \neq \beta \in \mathbb{C})\}$. Then

$$|\sum_{i=0}^{s} h_i \theta_i| > \kappa_{-}/(H(\underline{h})^{\alpha(\alpha^{s}-1)/(\alpha-1)} \kappa^{(\log H(\underline{h}))^{(\log \delta)/\log \alpha}})$$

for all $\underline{h} \in \mathbb{Z}^{s+1}$ with $\underline{h} \neq \underline{0}$, and

$$|\sum_{i=0}^{s} h_{i}\theta_{i}| < \kappa_{+}(\kappa^{(\log H(\underline{h}))}^{(\log \delta)/\log \alpha})/H(\underline{h})^{\alpha(\alpha^{s}-1)/(\alpha-1)}$$

for infinitely many $\underline{h} \in \mathbb{Z}^{s+1}$, where $\kappa_+ > 0$, $\kappa_- > 0$, and $\kappa > 1$ are constants independent of h.

Remark 1. $1 \le \delta < \alpha$ holds. The polynomial f(x) is irreducible for all $s \ge 1$, $k \ge 1$. The α is not always a Pisot number, for instance, $\delta > 1$ if (s,k)=(5,1). If the α is a Pisot number, then $\delta = 1$, so that the estimates in Theorem 3 turn out to be exact ones as in Theorem 1.

Corollary 3. The number $\theta_i(g;s,k)$ is a non-Liouville number for all $0 \le i \le s$, $2 \le g \le \mathbb{Z}$, and $(s,k) \in \mathbb{N}^2$.

Let $s \ge 1$, and $k \ge 2$ be integers, and let $\widetilde{\mathfrak{g}} \in \operatorname{Hom}(\widetilde{A}^*, \widetilde{A}^*)$ ($\widetilde{A} := \{a_{-1}, a_0, \cdots, a_s\}$) be a monoid homomorphism defined by

$$\widetilde{\sigma}(a_{-1}) := a_{-1}^{k}, \quad \widetilde{\sigma}(a_{0}) := a_{0}a_{1}a_{-1}^{k-2},
\widetilde{\sigma}(a_{j}) := a_{-1}a_{j+1}a_{-1}^{k-2} \quad (1 \le j \le s-1), \quad \widetilde{\sigma}(a_{s}) := a_{0}a_{-1}^{k-1}.$$

We denote by $\widetilde{\omega} = \widetilde{\omega}_0 \widetilde{\omega}_1 \cdots \widetilde{\omega}_n \cdots (\widetilde{\omega}_n \in \widetilde{A})$ the fixed point of the $\widetilde{\sigma}$ prefixed by a_0 . Then we can show

Theorem 4. Let
$$\varphi_i = \varphi_i(g; s, k)$$
 be numbers defined by
$$\varphi_i := \varphi(g^{-k^i}) \quad (0 \le i \in \mathbb{Z} , \ 2 \le g \in \mathbb{Z}),$$

$$\varphi(z) = \varphi(z; k, s) := \sum_{\widetilde{\omega}_n \in \{a_0, a_s\}} z^n.$$

Then

$$|\sum_{i=0}^{s} h_i \varphi_i| > \kappa_-/H(\underline{h})^{k(k^s-1)/(k-1)}$$

for all $h \in \mathbb{Z}^{s+1}$ with $h \neq 0$, and

$$|\sum_{i=0}^{s} h_i \varphi_i| < \kappa_+/H(\underline{h})^{k(k^s-1)/(k-1)}$$

for infinitely many $\underline{h} \in \mathbb{Z}^{s+1}$, where κ_+ , κ_- are positive constants independent of h.

Corollary 4. The number $\varphi(g^{-1})$ is a non-Liouville number for all g with $2 \le g \in \mathbb{Z}$.

Corollary 5. Let $i \ge 0$ be an integer. Then, the s+1 numbers φ_i , φ_{i+1} , \cdots , φ_{i+s} are linearly independent over $\mathbb Q$; the s+2 numbers 1, and φ_i , φ_{i+1} , \cdots , φ_{i+s} are linearly dependent over $\mathbb Q$.

Example 2. (s,k)=(1,2): Put $a_{-1}=c$, $a_0=a$, $a_1=b$. Then, $\tilde{\mathfrak{g}}(a)=ab$, $\tilde{\mathfrak{g}}(b)=ac$, $\tilde{\mathfrak{g}}(c)=c^2$, and the base-g expansion of the numbers φ_i ($i \ge 0$) is given by ω̃=a $\varphi_0 = 1$. 1 1 1 0 0 1 1 1 01 01 . The base-g expansion of φ_i/g^{2^i} is written by $g_0.\tau(\tilde{\omega})$ with $\tau \in \text{Hom}(\tilde{A}^*, B^*)$ defined by $\tau(a) = \tau(b) := 0^{2^{i}-1}1$, $\tau(b) := 0^{2^{i}}$.

We denote by $\underline{\omega} = \underline{\omega}_0 \omega_1 \cdots \underline{\omega}_n \cdots$ ($\underline{\omega}_n \in A$) the fixed point of $\underline{\sigma}$ prefixed by \underline{a}_0 with $\underline{\sigma} \in \text{Hom}(\widetilde{A}^*, \widetilde{A}^*)$ defined by

Then, we can show

by

Theorem 5. Let $\eta_i = \eta_i(g; s, k)$ be numbers defined

$$\eta_{i} := \eta(g^{k^{i}}) \quad (0 \le i \le s, 2 \le g \in \mathbb{Z}),$$

$$\eta(z) = \eta(z; s, k) := \sum_{\omega_{n} = a_{0}} z^{-(n+1)/(k-1)}.$$

Then the same assertion with η_i in place of φ_i in Theorem 4 holds.

Corollary 6. The number $\eta(g)$ is a non-Liouville number for all g with $2 \le g \in \mathbb{Z}$.

Corollary 7. Let $i \ge 0$ be an integer. Then, the s+1 numbers η_i , η_{i+1} , ..., η_{i+s} are linearly independent over \mathbb{Q} ; the s+2 numbers 1, and η_i , η_{i+1} , ..., η_{i+s} are linearly dependent over \mathbb{Q} .

We refer to the fact that our results have some connection with higher dimensional continued fractions, and certain Boolean equations, cf. [T4, T6]. For instance, let $\chi = \chi$ ($\widetilde{\omega}$; a₀, a_s) with $\widetilde{\omega}$ of Theorem 4, where χ (u;p,q,r,··) denotes the set defined by

$$\chi$$
 (u;p,q,r,···):={n\ge 0; u_n \in \{p,q,r,···\}}

for $u=u_0u_1u_2\cdots\in A^*\cup A^\infty$ ($u_n\in A$), p,q,r, $\cdots\in A$. Then, considering an automaton, we can show that $X=\chi$ is a solution of a Boolean equation

(1)
$$X = kX \cup (k^{s+1}X + (k^{s}-1)/(k-1)), \quad \phi \neq X \subset \mathbb{N} \cup \{0\},$$

which implies

(2)
$$\varphi(z) = \varphi(z^{k}) + z^{(k^{s}-1)/(k-1)} \varphi(z^{k^{s+1}}),$$

where pX+q:={px+q; x∈X}, and $\varphi(z)$ is the function given in Theorem 4. Using the functional eqution (2), we can construct a formal s-dimensional continued fraction:

(3)
$$\underline{\psi}(z) = \underline{1} + \frac{z}{\underline{1} + \frac{z^{k^2}}{\underline{1} + \cdots}} + \frac{z^{k^n}}{\underline{1} + \cdots}$$

where

$$\psi(z) := (\psi_1(z), \psi_2(z), \cdots, \psi_s(z)),$$

$$\psi_{i}(z) = : z \frac{(k^{i}-1)/(k-1)}{/(\psi_{s}(z^{k})\psi_{s}(z^{k}) \cdots \psi_{s}(z^{k})} (1 \le i \le s-1, s \ge 2),$$

$$\psi_{s}(z) := \varphi(z)/\varphi(z^{k}) (s \ge 1),$$

$$\underline{1} := (0,0,\cdots,0,1) \in \mathbb{R}^{s+1},$$

and

$$\frac{c}{(d_1, d_2, \dots, d_s)} := c(1/d_s, d_1/d_s, \dots, d_{s-1}/d_s)$$

for given c, d_1 , d_2 , ..., $d_s \in \mathbb{C}$ $(d_s \neq 0)$. We can show that the nth convergent of the continued fraction (3) converges component-wise to $\underline{\phi}(z)$ if z=1/g with $2 \leq g \in \mathbb{Z}$. Using (3), we can give the following expansion of $\underline{\phi}(1/g)$ by the Jacobi-Perron algorithm:

(4)
$$\underline{\psi}(1/g) = b_0 \underline{1} + \frac{1}{b_1 \underline{1} + \frac{1}{b_2 1 + \cdots}},$$

$$b_n := g^{k^{n-1}} \quad (n \neq 0 \pmod{s+1}),$$

$$b_n := g^{(k^s-1)(k^n-1)/(k^{s+1}-1)} \quad (n \equiv 0 \pmod{s+1}),$$

cf. [T6]. The continued fraction (4) is a regular one in the sense of Korobov [K], p. 84. We can apply a result due to Korobov ([K], p. 91) on higher dimensional regular continued fractions, and we obtain the exact measure, except for O-constants, of linear independence for the values φ_i as in Theorem 4.

Theorem 5 has a conection with the following continued fraction:

(5)
$$\underline{\zeta}(z) = z\underline{1} + \frac{1}{z^{k}\underline{1} + \frac{1}{z^{k}\underline{1} + \cdots}} + \frac{1}{z^{k}\underline{1} + \cdots} + \frac{1}{z^{k}\underline{1} + \cdots}$$

where

$$\underline{\zeta}(z) = (\zeta_1(z), \zeta_2(z), \dots, \zeta_s(z)),$$

$$\zeta_i(z) := 1/(\zeta_s(z))\zeta_s(z) \dots \zeta_s(z) \dots \zeta_s(z) \dots \zeta_s(z),$$

$$\zeta_s(z) := \eta(z)/\eta(z^k) \quad (s \ge 1).$$

We can show that (5) follows from the functional equation

$$\eta(z) = z\eta(z^k) + \eta(z^{k^{s+1}}), \quad \eta(z) = \sum_{m \in X} z^{-m},$$

where X is a solution of the Boolean equation

(6)
$$X = (kX-1) \cup k^{s+1}X$$

with countable set $X \subset \mathbb{R}$ such that X is bouded from the left, or from the right. We note that (6) with $k \ge 3$ has no solutions under $\phi \ne X \subset \mathbb{N} \cup \mathbb{B}$ (B is a finite subset of \mathbb{Z}), but (6) has a unique solution under $\phi \ne X \subset \mathbb{Z}$, so that X is unbounded from both sides, and $\zeta(z)$ can not be well-defined in the case $\phi \ne X \subset \mathbb{Z}$. Nevertheless, we can show that the equation (6) has a unique solution given by

$$X = (k-1)^{-1} \chi (\omega; a_0) + (k-1)^{-1}$$

with ω in Theorem 5 under the condition

$$\phi \neq X \subset (k-1)^{-1} \mathbb{N}$$
.

The solution $X = \chi$ ($\tilde{\omega}$; a_0 , a_s) of (1) is also a unique one. In general, it will be difficult to solve such a uniqueness problem. In fact, we can show the following

Remark 2. The Boolean equation

$$3X+1 = (6X+1) \cup (X \cap (6N-2) \ (1 \in X \subset N)$$

has a solution X=N. Suppose that X=N is the unique solution, then one can prove that Syracuse conjecture holds, and vice versa. (Syracuse conjecture is a well-known conjecture as the so called 3x+1 problem, or Collatz problem, or Kakutani's problem, that is still open. The conjecture states that for any given positive integer m, there exist a positive integer n=n(m) satisfing $F^n(m)=1$, where F(m):=3m+1 (m: odd), :=m/2 (m: even), and F^n denotes the n-fold iteration of the map F.)

It is convenient to use a locally catinative formula among the words $\mathfrak{o}^{n}(a_{0})$ ($n\geq 0$) to construct a higher dimensional continued fraction connected with Theorems 1, 3, cf. [T4]. Let θ_{i} be as in Theorem 1. Then, the following continued fraction is a corresponding one to Theorems 1, and 3:

(7)
$$\underline{\gamma} = \underline{\gamma}(g; s, k) = \frac{1}{c_1 \underline{1} + \frac{1}{c_2 \underline{1} + \frac{1}{c_3 \underline{1} + \cdots}}} \qquad (g \geq 2, s \geq 1, k \geq 1)$$

with

$$\begin{split} c_n = & c_n (g; s, k) = : g \sum_{h=0}^{f_n} \sum_{k=0}^{k-1} g^{hf_{n+s}}, \\ f_n : = & kf_{n-1} + f_{n-s-1} (n \ge s+2), f_n : = (k^n-1)/(k-1) (1 \le n \le s+1), \end{split}$$

and

$$\begin{split} & \underline{\gamma} = \left(\gamma^{(1)}, \gamma^{(2)}, \cdots, \gamma^{(s)} \right), \\ & \gamma^{(i)} := \left(\theta_{i-1} + \sum_{j=i}^{S} p_{j}^{(i)} \theta_{i} \right) / \theta_{s} \quad \left(1 \le i \le s \right), \\ & \left(p_{j}^{(i)} \right)_{0 \le i \le s, \ 0 \le j \le s} := Q^{-1}, \ Q = \left(q_{j}^{(i)} \right)_{0 \le i \le s, \ 0 \le j \le s}, \\ & q_{j}^{(i)} := \sum_{h=0}^{K-1} g^{hf_{j}} \times \sum_{m \in \chi \left(R \left(\sigma^{j} \left(a_{0} \right) \right); a_{i} \right)} g^{m} \quad \left(0 \le i \le j \right), \\ & q_{i}^{(i)} := 1 \quad \left(0 \le i \le s \right), \quad q_{j}^{(i)} := 0 \quad \left(0 \le j \le i \le s \right), \end{split}$$

where we denote by σ the morphism defined in the first paragraph, and by Ru the word $u_1u_1-1\cdots u_1\in A^*$ for a given word $u_1u_2\cdots u_1$ ($u_m\in A$). We note that $p_i^{(i)}$ are integers, since $Q\in SL_\pm(s+1;\mathbb{Z})$. Thus, using the result of Korobov [K], we can find the exact mesure of linear independence for the s+1 numbers 1, and $\gamma_1,\gamma_2,\cdots,\gamma_s$ when α is a Pisot number, from where we get Theorem 1, see Remark 1. The continued fraction (7) can be regarded as a higher dimensional version of some of the classical results, see, for example [B], [D], [M], [Bu], see also [K-S-T], [T1-T3]. Related to our transcendence result (Theorem 2), we note that functions $\theta_i(z)$ ($0\leq i\leq s$), $\varphi(z)$, and $\eta(z)$ appearing in our theorems are transcendental

functions, which follows from a Theorem due to Fatou [F]. We can prove Theorem 2 by Roth's theorem, estimating the irrationality measure of the number $_{\kappa}0.\tau(\omega)$ from below. The estimate from above is not easy in general. But, in some cases, we can find the exact value of the irrationality measure of the number $_{\kappa}0.\tau(\omega)$ under a minor condition on τ , cf. [T7]. We gave Theorems 1-3, and Theorems 4-5, respectively, in [T4], and in [T6]. We gave a higher dimensional version of the Ramanujan's continued fraction, and the linear independence measure, which is also an exact one except for O-constants, of values of certain q-series, cf. [T5].

References

- [B] P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367-377.
- [Bu] P. Bundschuh, Über eine Klasse reeler transzendenter Zahlen mit explizit angebbarer g-adischer und Kettenbruch-Entwicklung, J. reine angew. Math. 318 (1980), 110-119.
- [D] L. V. Danilov, 0 некоторых классах трансцендентных чисел, Мат. Заметки $\underline{12}(2)$ (1972), 149-154 = Some classes of transcendental numbers, Math. Notes $\underline{12}$ (1972), 524-527.
- [F] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. <u>30</u> (1906), 335-400.
- [K] А. N. Korobov, Цепные дроби и диофантовы приближения, магистерская диссертация (М. Г. У.), 1990 = Continued Fractions and Diophantine approximations, doctoral dissertation (Moscow Univ.), 1990 (in Russian).
- [M] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101 (1929), 342-366.

[T7] ———, Irrationality measure of g-adic fractions with digits defined

by substitutions, preprint.