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‘1 Introduction

Our main motivation for considering the class of Dirichlet series in the title (where

a € C and f(s+1) is assumed to have a Dirichlet series expansion absolutely convergent
in the half plane o > —A, for some A > 0), is that generating functions of certain classical
arithmetical functions have this form. For instance each of the sequences

o (oo} —a oo 9 (oo}

{(U(n)) } , {(¢(n)) } and {(U(n))a/ } 1)
. n n=1 n n=1 ¢(n) n=1

(where as usual o and ¢ denote the sum-of-divisors and Euler’s functions) is the sequence

of coeflicients a(n) of such a series.
Our goal is to establish explicit expressions for P and E in

> a(n) = P(z) + E(z) = principal term + error term (2)
n<r
(Theorem 1 in Section 2 below), and then (Theorems 2 and 3) to obtain O and Q-estimates
for £ in the case where « is a real number and a multiplicative (with some additional
conditions).

In Theorems 4 and 5 we apply these results to the special cases where {a(n)} is a
sequence in (1). Our results cover all real values of a. For the two first sequences, apart
from the cases @ = +1 and a = 0, they supersede what is known today (see [1], [7], [10],
[12], [14], [15], [18] for the current records, and also [3], [5], [6], [9], [11], [13], [16], [19]).
The third sequence was to our knowledge not studied in this context. We also deduce
similar results for the sequences {o*(n)} and {¢*(n)} (Corollaries 1, 2 and 3).

The proofs will be published elsewhere [2]. In Section 3 below we briefly describe the
methods we use.
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2 Statement of the results

Theorem 1 . Let {a(n)} be a sequence of complex numbers satisfying

i a(n)

n=1

= ()¢ (s + Df (s +1)

ns

for a complex o and f(s + 1) having a Dirichlet series expansion

fern- U

n=1

which is absolutely convergent in the half plane ¢ > —X for a A > 0 (and thus with

|b(n)] << n® for some § <1). Let

[ ]

C*(s+1)f(s+1) =

Then there is a number b, 0 < b < 1, such that

exo] I
> a(n) = (*(2)f(2)z + ) Br(logz)™™ = 3 v(r)$(~) +o(1)

n<lz r=0 n<y

where y = z/ exp(log® ) and ap denotes the real part of a.

Theorem 2 . Let v, = v(n) be a real multiplicative arithmetical function satisfying, for
some real numbers a >0 and 8 >0

(h1) ; lva| = O(log® z) ;
(h2) ;(nvn)2 = O(z log? z) ;

(h3)  pFu(p*) is an ultimately monotonic function of p when k=1 and k = 2,
and is bounded for every k > 1.

Then, if we set y := zexp(—(logz)®) for some positive number b, t := logz, and u :=

logt = loglog z, we have

3 vath() = O ). (3)

n<y
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Theorem 3 . Let v, = v(n) be a real multiplicative arithmetical function satisfying, for
some real positive number a,

(h1) : Z |vn] = O(log® z) ;

n<z

(h4) v(p?) is of the same sign * for all p and all j > 1 ;

(h5) > LI:) #0 for everyp .

i>0 P
Let P be the set of prime numbers if x = + in (h4), and the set of primes p = 2(3) if
* = —. Let m be a real positive unbounded variable, 0 < a < 1, and define A = A(m) and

z = z(m) as follows.

A:= T p=:exp((logz)?) . (4)

p<m

pEP

Finally let y(X) := X exp(—(log X)) for some b > a, b < 1. Then there is a positive
constant C such that for all sufficiently large m there are some numbers X = X(m) <
(A+ 1)z and X' = X'(m) < (A + 1)z satisfying

> ) ze( 1 (+1ub) +00) 5

and

> wi = -c( I 1+ ) +00) (©
n<y(X') p_<€_g

2.1 Applications to the functions ¢ and ¢

The sequences {a(n)} in (1) satisfy the hypotheses of Theorem 1, and thus we can find a
number b with 0 < b < 1 such that for every real number a we have

o(n)ya [o]
2 (T) =(*(2)fa(2)z + D a-(logz)* " + eg,(z) + 0(1) , (7)

n<z _ r=0

where

e ==Y v (2) and y:=exp(—(logz)?)

n<ly n
where f, and vy, are defined by
i ola)fn)® ((s)¢*(s + 1)fals +1) and

s
n<z n

5% ey 1),
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and where the a, = a,(a) are certain real constants (the sum in which they appear being
of course empty if a < 0).
Similarly we have, with an obvious notation

[-a]
S (BN — o(@)gu (@) + 3 b llog )™ + () +0(1) ®)

nse =0
and "
> (iﬁ%)a/z = (Do (2)e + 3 (08" + en (o) + o) ©)

The following estimates for the error terms ey, , €4, and ek, of these summatory func-

tions are consequences of Theorems 2 and 3.

a

Theorem 4 . With the notation as just above we have, for each real number «,
en. = O((logz) ¥ (loglogz) &) , (10)
where h denotes any of the symbols f, g and k.

Theorem 5 . On the other hand we have, also for each real number «,

if h=forkanda >0,

ol
| Qa(Qoglog2)®) 0 gnda<0;

en. = (11)
i, if h=fork and a <0,
Qs((ogloga)=) ) " " pnda>o.

Comments. (1) For @ = 1 and A = g Theorem 2 is due to Walfisz [18]; for & = 1 and
h = f though, it is not as good as Walfisz’ [18, (3.1.5)]: his proof exploits the monotonocity
of vs(n) = 1/n, and cannot be generalised to other values of a. For positive values of
a # 1 and b = g Theorem 2 improves on Ilyasov’s [7] and Sivaramasarma’s [14]; for
positive integral values of a it improves on Balakrishnan’s {1]. As for the other cases
there are to our knowledge no O-estimates in the literature.

(2) We believe Theorem 3 is new, except when a = 1 and A = f and when o = +1
and h = g. In these three cases it is Pétermann’s [11}, [12] and Montgomery’s [10].

Corollary 1 . If 8 > 0 we have
5 = @) o1 530 o0 2P 4 B 5 (12
5 of(n) = SO oo 4 003 4 log ) 4 By() +oe?), (12)
n<z :B + r=0
where the al. = al () are some real constants and

zP(log z)?/3(log log z)*/3
Esy(e) = { gi(:c’(al(l(g)g l)og :cg'lﬁ)g.l 8=/ (13)
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We also have

> () = L0014 g 4 ofef) (1)
with ) ” /31 ] 03
Egp(z) = { Qigémgaigl)og zgﬂ(ﬁ)ogw) ) (15)

Corollary 2 . If -1 < 8 < 0 we have

"’Ml if —1<B<0
S of(n) = CP(2)fs(2) x{ Bt + A+ Ep(z) +o(s®), (16)

n<z
- loge o f=-

where A = A(B) is a constant and Ey,(z) satisfies

_ | O(2P(log z)%Al/3(log log z)4IA1/3)
Egy(2) = { Q4 (2P (log log z)1A1/2) | (17)
We also have
B+l
311 (-1<8<0) [-A]
> #°(n) = (P (2)g5(2) x +B+a" 3 b (log 2) 7T+ By, (@) +o(2”)
n<lx r=0
log = (B=-1) : '
| (18)
where b, = b.(8) and B = B(B) are constants and
O(z"(log $)2|ﬂl/3(10g log x)4lﬁ3l/3)
Egp(2) = { Q4 (zP(log log z)1A1) . (19)
Corollary 3 . If 8 < —1 We have
B(9
> o) =~ oy g (0 4 oty (20)

n>r 18 + 1
where Ef,(z) satisfies (17), and
-8 -8
Z P (n) = —%—@—)zﬁ“ + z° Z b.(log z)™"" + E, (z)+ o(z?) , (21)
n>x r=0

where E,(z) satisfies (19).
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3‘ The methods

3.1 Theorem 1

The proof of Theorem 1 develops further Balakrishnan’s technique in [1]. It relies on two
main ideas. The first consists in making use of the inverse transform of

Fs) = X glmpn~ = [~ e**d(A(e"), (22)

n>1

known as Perron’s formula

A(x_) + G /K-Hoo F(s)—x—ds (23)

2 _.2Ti —100 S
(9(x) =0if z &€ N; k£ > max(0,0,(F))), in order to estimate the sum of coefficients

A(z) := ) g(n). (24)

n<zx

For an adequate choice of T and « the contribution of the two infinite vertical segments
from k % 4t to Kk + oo on the right side of (23) is shown to be small (thus yielding an
"effective” Perron’s formula). Then the singularities of the integrand in (23) are exploited,
~ the poles with the theorem of residues, and the other singularities sy by expanding F(s)
in (complex) powers of s — s¢ and using Hankel’s formula (see [17, Théoreme 1.5.2]). In
our cases the generating function F' of the arithmetical function g has an expression as,
or similar to, that in the title of this paper, and some classical estimates on the size of
inside the path of integration can be used.

This technique is sometimes referred to as the ”Selberg-Delange” method. Directly
applied to g(n) = a(n) however, it doesn’t yield satisfactory results: we obtain Theorem
1 with a O-estimate on the error term so weak we cannot even ensure that the term
By(log 2)* is significant.

The second idea consists in exploiting the fact that

a=1x*v. (25)

This easily yields

Sam) =22 W L5 o) - S o), (26)
n<z n<z n<z n<zr
where we put ¥(y) := {y} — 1/2. The ”"Selberg-Delange” method is then efficient in
dealing with g(n) = nv(n), and partial summation takes care of the two first sums on the
right of (26). As for the third one it is truncated by elementary (i.e. real analysis) means
using an idea due to P. Codeca [4]. ’



69

3.2 Theorem 2

The proof of Theorem 2 is based on Walfisz’ treatment of the case a(n) = ¢(n)/n in
Chapter IV of [18]. Very briefly:

(1) we replace (with a resulting small error)
Q' T
S¥(z) by 2/ T (Q<Q <200 <y);
Q

(ii) we expand % in its Fourier series

$(z) = = lim ZM;

27er—+oo ~ n

(iii) we exchange the summation order of the left side of (3), and then use methods due
to Weyl for rather large M and to Vinogradov and Korobov for rather small M to
bound sums of the type

) (M <M <2M);

t
m

e

M

(iv) we thus obtain the estimate

) vnz/)(%) =0(1) (w:=exp(tPu??));

wln<y
(v) and we conclude with the trivial remark that

S va(5) = O(Eutel?)

n<w

3.3 Theorem 3

The proof of Theorem 3 is based on a method that to our knowledge originated in a work
by Erdés ans Shapiro [6]. It was developed further by Codeca [4] and Pétermann [12]. It
consists in averaging the error term

E(z) := Zvn¢() (27)

nly

over arithmetical progressions An+ B (n < z) of very large moduli A = A(z) (in our case
A is as large as exp((log 2)?*)) for some a with 0 < a < 1). We generalise to our functions
v the formula

Ly Bt = ¥ Wansloron, e

n<x k<u(z) )



70

(where u is a certain function with u(z) = o(xlog'~®z) proved in {12] for bounded v’s.
With its help the oscillations estimates of Theorem 3 are obtained by making adequate
choices of A and B, ensuring that k divides A ”often”, and that the quantity

v(k) B
v (@ m)

stays ”often” away from 0 with the same sign.
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