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DOUBLE TRANSFERS AT THE PRIME 2

AIUAEHESS SENE  MiTsunor: IMAOKA

The S'-transfer map 7 : CP} — S§~! is a stable map defined using the
transfer construction for the principal $*-bundle over CP", where CPj =
- CP™ U x 18 the disjoint union of the complex projective space CP™ and a base
point. Then, 7, = 7 A7 : CP{® A CP§® — S~? is called the double trans-
fer map, and gives information of filtration 2 in the stable homotopy groups of
spheres. Knapp [Kn] has given the first great step toward understanding the

double transfer map, and the authors in [BC] have extended his results.

In [Hi], Hilditch has found a factorization iy : CP§° ACPg° — X*N, of
the double transfer map 7o \through N3, the realization of the second stage of
the chromatic filtration given by Ravenel [Ra}, under the condition that spectra
are localized at an odd prime p. His result extends that of Miller in [Mi], and

enables the transfer images to be compared with the chromatic filtration.

In the case that spectra are localized at 2, just the same factorization of
T as above does not exist (cf. [Hi;Remark 3.20]). In this note, T show that the
restriction of 7 on CP%® A CP® is factored through a map @z : CP* ACP* —
Y -4 N, even if it is localized at p = 2. Alth(')“ugh we limit the content to this point,
we notice that such factorization enables us to calculate the inﬁage of (1) :
m(CP® A CP%) g — 7r:(S°)(2) to some extent, using the result of Shimomura

[Sh] concerning a calculation of the Novikov-Adams spectral sequence at prime
2. |



§1 PRELIMINARIES.

First, we prepare some properties about the K and K O-cohomology of

relevant spaces.

Let £ be the canonical complex line bundle over CP™ for 0 <m < 00, and
(CP™)* the Thom space of k¢ for an integer k. We denote the Thom space by
CPP* = (CP™)*, and CP, = (CP®)*. Also, we put CP = CP; as in the
introduction. k¢ is K—-orientable for any integer k, and thus we have a K—-Thom
class UK € K2*(CP;) ([AB]). Here and hereafter, we only discuss the cases in
which Lim?! of K and K O-cohomology groups are 0, and thus we may regard
Ki(CP;) as K*(CPN**) for some large N.

We remark that 2k is K O-orientable but (2k 4 1) is not K O-orientable.
Since we need the information of KO*(CP) and KO*(CP_,) later, we recall
the structure of K O*(CPyp4,) first. Let r : K — KO and ¢: KO — K be the
realification and complexification respectively, and ¢ € K, the generator. We
put X =[(—1]€ K°(CP) and Y = r(X) € KO°(CP). bThen, the following is
shown by Fujii [Fu] in the case of n > 0, and we can prove it even in the case of
n < 0.

Lemma 1.1. Let n = 2k + 1 and m > 1. Then there is an element 4, €
K O?"(CP,) which satisfies the following:

(1) Ko*(CP>™+-1) = Z{5,Y' |0 <i<m—1}.
(2) o) = U2+ X)/(1+ X )

Corollary 1.2.
(1) For any odd integer n, i* (¥, ) = 2.
(2) o(i1) = UK, (24 X).

Let sinh"l(T) be the inverse of the formal power expansion on T of the
function sinh(T), and put S(T) = (VT/2)/(sinh~*(v/T(2)). Then, we define an



element G, (Y) € KO (CP,; Q) for odd n as follows:
~1/2
(1.3) Go(Y) = ~12-S(Y)‘" (1 4 }Z,) Bn.

Let ¢ch : K*(—; Q) — H2‘(—;Q) be the Chern character, and ph = ch o
¢: KO*(—;Q) —» H?(—;Q) the Pontrjagin character. We denote by U¥ ¢
H?*(CP,;Z) the Thom class of n{ in the ordinary cohomology group. Then we

have the following lemma, which is implicit in [CK].
Lemma 1.4. For any odd n, we have ph(G,(Y)) = UZ.

Consider the following commutative diagrara:
(1.5)
KO

h c
12" (CP,;Q) ——  KO™(CP,;Q) —s K" (CP,; Q)
lhﬁ lPh J,Ch
H*(CPp; Q) —— @5 H"(CPa; Q) — @50 H* ¥ (CPy; Q),

where 72"(—) denotes the stable cohomotopy group and h¥© is the K O-Hurewicz
map. In this diagram, the vertical homomorphisms are all isomorphisms and the

horizontal two maps are inclusions. We put
(1L6) u = (B)"'(UF) € 127 (CPy; Q).
Then we can show the following, in which A¥ = co h¥© is the K—Hurewicz map.

- Lemma 1.7.
(1) h¥9(uy) = G,(Y) for odd n.
(2) h%(u;) = UEX(log(1 + X)/X)" for any n.

Corollary 1.8. We have ¢(G,(Y)) = UK(log(1 + X)/X)*. In particular,
e(G1(Y)) =t"log(1 + X) € K?(CP; Q).

We note that Corollary 1.8 can be also proved directly. We need in §3 the
following corollary of Lemma 1.7 and Corollary 1.8.



Corollary 1.9. For odd n = 2k — 1, there is an element V € K 0?*(CPy,41; Q)
which is uniquely defined by the equatlon i*(V) = h¥O(uy) — (1/2)8, and

satisfies i
. 1 » 14+ £
(V) = UE ¢ ((og(1+x>) _1+% )

Xt X(1+X)

§2 THE COFIBER OF THE TRANSFER MAP

Stably, we can consider CP as a subspace of CPy, and we denote by 7 :
CP — S~1! the restriction of the S1—transfer map 7 : CPy — §™1. Let W =
5-2J, C(E~'CP) be the cofiber of ¥ : X~!CP — S§72. Since the cofiber of
7 : $71CPy — §~2 is stably homotopy equivalent to CP_; (cf. [Mi],[Kn]), we
have inclusion maps ¢ : CP — CPy and ¢ : W — CP_;, and the following

homotopy commutative diagram up to sign:

~

2 ', w —, cp L, 5t

a) T

s2 ' ,cp, 2, cP, —— 51,

Then the following is obvious.

Lemma 2.2.
(1) 0 - HYCP;2) SN HY(W; Z) N H*(872%,2Z) — 0 is a split
exact sequence for any k, and (¢')* : H¥*(CP_1;Z) —» HY(W; Z)
IS an ep1morph1sm with the kemel HO(CP-y; Z) = Z{U&, z}.
(2) 0 — K*(CP) K Ew) SR ka(S 2) — 0 is a split exact
sequence for any k, and (¢')* : K*(CP-,) —» K*(W) is an epi-
morphism with the kernel K,{U¥ X}.

Concern‘ing KO~%(W), we have the following:

Proposition 2.3. There is an element w € KO~?(W) which satisfies the

following:



(i) KO~*(W) = Z{w} ® j*(KO~?(CP)) and j* : KO~%(CP) - KO~%(W) is
a monomorphism,.

(ii) (3")*(9-1) = 2w for (4")* : KO™3(CP-,) - KO~*(W).

(iii) #*(w) is a generator of KO~2(8~2) for the inclusion i : §~2 - W,

(iV) c(w) = (3")* (U 1) in K~2(W).

§3 FACTORIZATION

In this section, we show a factorization of #A 7, which is one of our our main
results. We will use the following notations: S(G) denotes the Moore spectrum
of a group G, and $'G = ¥'S(G); ¢ = ¢3 —1: KO3 — KO3 is the stable
Adams operatlon and Ad the fiber spectrum of %. Thus we have a cofibering
4dLH K O(ay ——+ KOy, and we put Ad‘G Ad A S"G’

L Ji g1
Let N; — M; — N;41 —— XN, be the cofiber sequence such that
' | -2 82 4 & 0
(3.1) o= BTNy — X7 'Ny — S

is the geometrical realization of the chromatic filtration by Ravenel [Ra], where

l; is the Bousfield localization [Bo] with respect to the v BP,~homology. Then
i ' 1 ;
Ny — M, Z Ny is identified with $° 500 2, 5°Q/Z by definition. where
. I .
pz is the mod Z reduction. By [Bo}], the second cofiber sequence Ny — M, 2,

N, is canonically identified with
0 hAd j’ —0
(3.2) S5°Q|7Z — Ad°Q[Z — Ad Q|Z,

where Ad = Ad/S°. Hereafter, we denote KOy simply by KO, and put
KO'G=KOAS'G. |

Let uy € m;2(CP-1; Q) be the element in (1.6) for n = —1. Then we have
an element 4y € 77 2(CP;Q[Z) which makes the following diagram homotopy



commutative up to sign:

s-2 ' . w 1, ¢cp T, g

N

. )
s—2 1, 529 Y, s2qiz 1 s,

where the upper cofiber sequence is that of (2.1).

For V € KO~2(CP;; Q) in Lemma 1.9 for n = —1, we put V = (¢')*(V) €
KO~?(CP;Q). Then from Lemma 1.9, the following is clear.

Lemma 3.4. j*(V) = h¥9(uy0i')—w, pzV = h¥%%; and ¢(V) = t(1/ log(1 +
X)—1/X), where w is the element in Proposition 2.3.

Let gi € KOy be the generator and a(t) = 1 (resp.2) if ¢ is even (resp.
odd). For the Berunoulli number B; € Q defined by the equation z/(e* — 1) =
Lisol(Bilt 2!, we consider the following K-theoretical Bernoulli numbers:
(35)

BEO = (B /(2i)")(g:/a(i)) € KO, ® @ and BE = (B;/it' € K20 Q.

For CPy A CP,, we will denote its K-cohomology groups by KO*(CPyACPy) =
KO,[[1},Y2]] and K*(CPyA CPy) = K,[[X,,X;]], where ¥; and X; denote
the respective Euler classes of {&. We can consider as KO~*(CP A CP;Q) C
KO=4(CPAW;Q) C KO~*(CPy A CP,; Q), and define an element h(Y7,Y2) €
KO=4(CPACP;Q)C KO*(CPAW;Q) by ‘
LT = 3 S BIOBROG I & G
i

where G1(Y) is the element of (1.3) for n = 1. Using this element, we define
(3.6) i=Veuw+h(Y,Y,) e KO™*(CP AW, Q).

Similarly as A(Y;,Y2), we can define hc(X1,Xa) = ¥5; 508 — 1)/(3F —
1)I§’f(3f"(t"1 log(1 + X1))'~!' ® (t~'log(1 + X3))~!. Then, by using Corol-
lary 1.9 and Proposition 2.3, we have the following lemma, in which we denote
by 1/X the element t~1UX, € K°(CP_,).



Lemma 3.7.
(1) e(h(Y1,Y2)) = he(Xy,X2) € K“*(CP ACP;Q).

(2) oVew)=(i' Ai')*(2(1/log(1 + X1) — 1/X1) ® (1/X2)),
as an element of K~4(CP AW; Q).

Let U(X],Xz) = t2(1/log(l-l-.X])—l/Xl)@(l/Xz) € IX_4(CP0/\CP_1; Q)

Then we have the following corollary.
Corollary 3.8. c(i) = (' Ad')*(U(X1,X2)+he(X1,X2)) € K~4(CPAW; Q).

This corollary shows that, through (' Ai')*, ¢(#) has just the same formula

with that in the case of an odd prime p in [BC]. The following is crucial.

Proposition 3.9. The element & € KO~*(CP A W; Q) satisfies the following:
(1) (LAd)*(@) =V € KO~*(CP A 52 Q) and
(2) 9(@) € Im[I: KO~4(CPAW) - KO~*(CP AW, Q)], where
Y =93—1: K0O°"Q —» K0°Q is the stable Adams operation.

Proof. (1) follows immediately from the definition of @, because (¢)*(w) = 1 by
Proposition 2.3 (iii) and (1 A4)*h(Y;, Y,) = h(Y7,0) = 0. Also, we have (2) by a
direct calculation in KO-theory, but it is better to apply the complexification
¢ once and consider it in the K—theory. Then, by Corollary 3.8 the calculation
1s just the same as that done in [Hi] or [BC] for the case of an odd prime, and
we have cp(ii) = c((¢*(w) — w) ® Y3 (w)) € K~H(CPAW) C K~4(W AW).
Since ¢ : KO™*(CP AW) — K~*CP A W) is a monomorphism, we have
(@) = ($3(w) — w) @ ¥3(w) € KO~4(CP AW), and thus we have (2).

Let i, be the element in (3.3), 7 : Ad - KO the map induced from
'j:Ad - KO and p: KO — KO the reduction.

Theorem 3.10. We have an element 4y € Zc_l_4(CPACP; Q/Z) which satisfies

61(82) = [m o (1A F)] and (1A 7)Fu(2) = ppa(i).



Proof. Proposition 3.9 (2) means ¢ o pz o i =~ 0, and thus there is an ele-
ment u; € Ad™*(CP A W;Q/Z) with j.(u2) = pz(&). Proposition 3.9 (1) and
Corollary 1.9 yield (1 A§)*pz(@) = pz(V) = h¥°(a@) = j.h*4(a). Then These
two equations give [@; o A49] = [uy o (1 A 1)), since j, : Ad~?(CP;Q/Z) —
KO~%(CP;Q/Z) is a monomorphism; Then it derives a map from the cofiber
sequence CP AW —”l CP ACP i\—f—) CP A 57! to the cofiber sequence
4d~4QJz L Ad Q)2 2 $-3Q)Z. Thus, we have @i, : CPACP — Ad *QJZ

with the required properties, and it completes the proof.

§ .6 —_—
Since the chromatic filtration X~2N, R 21N, 2 8% equal to Ad 2Q/Z

§ :
=4 s-1Q/z - 59, we have the desired factorization of 7 A 7 as follows:
Corollary 3.11. 7 AT o~ 650,1,.

REFERENCES
[BC] A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood, On the sterated complex
transfer, Math.Z.199 (1988), 191-207.

[Bo] A. K. Bousfield, The localization of specira with respect to homology, Topology 18 (1979),
257-281. :

[CK] M. C. Crabb and K.Knapp, James numbers, Math. Ann. 282 (1988), 395-422.
[Fu] M. Fujii, Ko —groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.

[Hi] A. S. Hilditch, On calculating the complex double transfer in homotopy, Ph.D.Thesis,
Manchester University, 1986.

[Kn) K. Knapp, Some applications of K -theory to framed bordism: e-snvariant and transfer,
Habilitationsschrift, Bonn, 1979,

[Mi] H. R. Miller, Universal Bernoulls numbers and the S! —transfer, Can.Math.Soc.Conf.Proc.
2 (1982), 437-439.

[Ra] D. C. Ravenel, A geometric realization of the chromatic resolution, Proc.J.C.Moore Conf.,
Princeton (1983), 168-179. '

[Sh] K. Shimomura, Novtkov’s Ext? at the prime 2, Hiroshima Math. J. 11 (1981), 499-513.



