DOUBLE TRANSFERS AT THE PRIME 2

和歌山大学教育学部 今岡光節

MITSUNORI IMAOKA

The S^1 -transfer map $\tau: CP_0^n \to S^{-1}$ is a stable map defined using the transfer construction for the principal S^1 -bundle over CP^n , where $CP_0^n = CP^n \cup *$ is the disjoint union of the complex projective space CP^n and a base point. Then, $\tau_2 = \tau \wedge \tau: CP_0^\infty \wedge CP_0^\infty \to S^{-2}$ is called the double transfer map, and gives information of filtration 2 in the stable homotopy groups of spheres. Knapp [Kn] has given the first great step toward understanding the double transfer map, and the authors in [BC] have extended his results.

In [Hi], Hilditch has found a factorization $\bar{u}_2: CP_0^{\infty} \wedge CP_0^{\infty} \to \Sigma^{-4}N_2$ of the double transfer map τ_2 through N_2 , the realization of the second stage of the chromatic filtration given by Ravenel [Ra], under the condition that spectra are localized at an odd prime p. His result extends that of Miller in [Mi], and enables the transfer images to be compared with the chromatic filtration.

In the case that spectra are localized at 2, just the same factorization of τ_2 as above does not exist (cf. [Hi;Remark 3.20]). In this note, I show that the restriction of τ_2 on $CP^{\infty} \wedge CP^{\infty}$ is factored through a map $\bar{u}_2: CP^{\infty} \wedge CP^{\infty} \rightarrow \Sigma^{-4}N_2$ even if it is localized at p=2. Although we limit the content to this point, we notice that such factorization enables us to calculate the image of $(\tau_2)_*: \pi_*^s(CP^{\infty} \wedge CP^{\infty})_{(2)} \rightarrow \pi_*^s(S^0)_{(2)}$ to some extent, using the result of Shimomura [Sh] concerning a calculation of the Novikov-Adams spectral sequence at prime

§1 PRELIMINARIES.

First, we prepare some properties about the K and KO-cohomology of relevant spaces.

Let ξ be the canonical complex line bundle over CP^m for $0 \leq m \leq \infty$, and $(CP^m)^{k\xi}$ the Thom space of $k\xi$ for an integer k. We denote the Thom space by $CP_k^{m+k} = (CP^m)^{k\xi}$, and $CP_k = (CP^\infty)^{k\xi}$. Also, we put $CP = CP_1$ as in the introduction. $k\xi$ is K-orientable for any integer k, and thus we have a K-Thom class $U_k^K \in K^{2k}(CP_k)$ ([AB]). Here and hereafter, we only discuss the cases in which Lim^1 of K and KO-cohomology groups are 0, and thus we may regard $K^i(CP_k)$ as $K^i(CP_k^{2N+k})$ for some large N.

We remark that $2k\xi$ is KO-orientable but $(2k+1)\xi$ is not KO-orientable. Since we need the information of $KO^*(CP)$ and $KO^*(CP_{-1})$ later, we recall the structure of $KO^*(CP_{2k+1})$ first. Let $r:K\to KO$ and $c:KO\to K$ be the realification and complexification respectively, and $t\in K_2$ the generator. We put $X=[\xi-1]\in K^0(CP)$ and $Y=r(X)\in KO^0(CP)$. Then, the following is shown by Fujii [Fu] in the case of $n\geq 0$, and we can prove it even in the case of n<0.

Lemma 1.1. Let n = 2k + 1 and $m \ge 1$. Then there is an element $\bar{u}_n \in KO^{2n}(CP_n)$ which satisfies the following:

- (1) $KO^{2n}(CP_n^{2m+n-1}) = Z\{\bar{v}_nY^i|0 \le i \le m-1\}.$
- (2) $c(\bar{v}_n) = U_n^K(2+X)/(1+X)^{k+1}$.

Corollary 1.2.

- (1) For any odd integer n, $i^*(\bar{v}_n) = 2i$.
- (2) $c(\bar{v}_{-1}) = U_{-1}^K(2+X).$

Let $\sinh^{-1}(T)$ be the inverse of the formal power expansion on T of the function $\sinh(T)$, and put $S(T) = (\sqrt{T}/2)/(\sinh^{-1}(\sqrt{T}/2))$. Then, we define an

element $G_n(Y) \in KO^{2n}(CP_n; Q)$ for odd n as follows:

(1.3)
$$G_n(Y) = \frac{1}{2}S(Y)^{-n} \left(1 + \frac{Y}{4}\right)^{-1/2} \bar{v}_n.$$

Let $ch: K^*(-;Q) \to H^{2*}(-;Q)$ be the Chern character, and ph=ch $c: KO^*(-;Q) \to H^{2*}(-;Q)$ the Pontrjagin character. We denote by $U_n^H \in$ $H^{2n}(CP_n; Z)$ the Thom class of $n\xi$ in the ordinary cohomology group. Then we have the following lemma, which is implicit in [CK].

Lemma 1.4. For any odd n, we have $ph(G_n(Y)) = U_n^H$.

Consider the following commutative diagram:

$$(1.5)$$

$$\pi_{s}^{2n}(CP_{n};Q) \xrightarrow{h^{KO}} KO^{2n}(CP_{n};Q) \xrightarrow{c} K^{2n}(CP_{n};Q)$$

$$\downarrow_{h^{H}} \qquad \qquad \downarrow_{ph} \qquad \qquad \downarrow_{ch}$$

$$H^{2n}(CP_{n};Q) \xrightarrow{} \bigoplus_{i\geq 0} H^{2n+4i}(CP_{n};Q) \xrightarrow{} \bigoplus_{j\geq 0} H^{2n+2j}(CP_{n};Q),$$

$$H^{2n}(CP_n;Q) \longrightarrow \bigoplus_{i>0} H^{2n+4i}(CP_n;Q) \longrightarrow \bigoplus_{i>0} H^{2n+2i}(CP_n;Q),$$

where $\pi_s^{2n}(-)$ denotes the stable cohomotopy group and h^{KO} is the KO-Hurewicz map. In this diagram, the vertical homomorphisms are all isomorphisms and the horizontal two maps are inclusions. We put

(1.6)
$$u_1 = (h^H)^{-1}(U_n^H) \in \pi_s^{2n}(CP_n; Q).$$

Then we can show the following, in which $h^K = c \circ h^{KO}$ is the K-Hurewicz map.

Lemma 1.7.

- (1) $h^{KO}(u_1) = G_n(Y)$ for odd n.
- (2) $h^K(u_1) = U_n^K (\log(1+X)/X)^n$ for any n.

Corollary 1.8. We have $c(G_n(Y)) = U_n^K(\log(1+X)/X)^n$. In particular, $c(G_1(Y)) = t^{-1}\log(1+X) \in K^2(CP; Q).$

We note that Corollary 1.8 can be also proved directly. We need in §3 the following corollary of Lemma 1.7 and Corollary 1.8.

Corollary 1.9. For odd n = 2k - 1, there is an element $V \in KO^{2n}(CP_{n+1}; Q)$ which is uniquely defined by the equation $j^*(V) = h^{KO}(u_1) - (1/2)\bar{v}_n$ and satisfies

$$c(V) = U_{n+1}^K t \left(\frac{(\log(1+X))^n}{X^{n+1}} - \frac{1 + \frac{X}{2}}{X(1+X)^k} \right).$$

§2 THE COFIBER OF THE TRANSFER MAP

Stably, we can consider CP as a subspace of CP_0 , and we denote by $\tilde{\tau}$: $CP \to S^{-1}$ the restriction of the S^1 -transfer map $\tau: CP_0 \to S^{-1}$. Let $W = S^{-2} \bigcup_{\tilde{\tau}} C(\Sigma^{-1}CP)$ be the cofiber of $\tilde{\tau}: \Sigma^{-1}CP \to S^{-2}$. Since the cofiber of $\tau: \Sigma^{-1}CP_0 \to S^{-2}$ is stably homotopy equivalent to CP_{-1} (cf. [Mi],[Kn]), we have inclusion maps $i': CP \to CP_0$ and $i': W \to CP_{-1}$, and the following homotopy commutative diagram up to sign:

$$(2.1) S^{-2} \xrightarrow{i} W \xrightarrow{j} CP \xrightarrow{\tilde{r}} S^{-1}$$

$$\parallel \qquad \downarrow_{i'} \qquad \downarrow_{i'} \qquad \parallel$$

$$S^{-2} \xrightarrow{i} CP_{-1} \xrightarrow{j} CP_{0} \xrightarrow{r} S^{-1}.$$

Then the following is obvious.

Lemma 2.2.

- (1) $0 \to H^k(CP; Z) \xrightarrow{j^*} H^k(W; Z) \xrightarrow{i^*} H^k(S^{-2}; Z) \to 0$ is a split exact sequence for any k, and $(i')^*: H^k(CP_{-1}; Z) \to H^k(W; Z)$ is an epimorphism with the kernel $H^0(CP_{-1}; Z) = Z\{U_{-1}^H x\}$.
- (2) $0 \to K^k(CP) \xrightarrow{j^*} K^k(W) \xrightarrow{i^*} K^k(S^{-2}) \to 0$ is a split exact sequence for any k, and $(i')^* : K^*(CP_{-1}) \to K^*(W)$ is an epimorphism with the kernel $K_*\{U_{-1}^KX\}$.

Concerning $KO^{-2}(W)$, we have the following:

Proposition 2.3. There is an element $w \in KO^{-2}(W)$ which satisfies the following:

(i) $KO^{-2}(W) = Z\{w\} \oplus j^*(KO^{-2}(CP))$ and $j^*: KO^{-2}(CP) \to KO^{-2}(W)$ is a monomorphism.

(ii)
$$(i')^*(\bar{v}_{-1}) = 2w \text{ for } (i')^* : KO^{-2}(CP_{-1}) \to KO^{-2}(W).$$

(iii) $i^*(w)$ is a generator of $KO^{-2}(S^{-2})$ for the inclusion $i: S^{-2} \to W$.

$$(iV)$$
 $c(w) = (i')^*(U_{-1}^K)$ in $K^{-2}(W)$.

§3 FACTORIZATION

In this section, we show a factorization of $\tilde{\tau} \wedge \tilde{\tau}$, which is one of our our main results. We will use the following notations: S(G) denotes the Moore spectrum of a group G, and $S^iG = \Sigma^i S(G)$; $\psi = \psi^3 - 1 : KO_{(2)} \to KO_{(2)}$ is the stable Adams operation, and Ad the fiber spectrum of ψ . Thus we have a cofibering $Ad \xrightarrow{j} KO_{(2)} \xrightarrow{\psi} KO_{(2)}$, and we put $Ad^iG = Ad \wedge S^iG$.

Let $N_i \xrightarrow{l_i} M_i \xrightarrow{j_i} N_{i+1} \xrightarrow{\delta_{i+1}} \Sigma N_i$ be the cofiber sequence such that

$$(3.1) \cdots \to \Sigma^{-2} N_2 \xrightarrow{\delta_2} \Sigma^{-1} N_1 \xrightarrow{\delta_1} S^0$$

is the geometrical realization of the chromatic filtration by Ravenel [Ra], where l_i is the Bousfield localization [Bo] with respect to the $v_i^{-1}BP_*$ -homology. Then $N_0 \xrightarrow{l_0} M_0 \xrightarrow{j_0} N_1$ is identified with $S^0 \xrightarrow{i} S^0Q \xrightarrow{\rho_Z} S^0Q/Z$ by definition. where ρ_Z is the mod Z reduction. By [Bo], the second cofiber sequence $N_1 \xrightarrow{l_1} M_1 \xrightarrow{j_1} N_2$ is canonically identified with

$$(3.2) S^0 Q/Z \xrightarrow{h^{Ad}} Ad^0 Q/Z \xrightarrow{j} \overline{Ad}^0 Q/Z,$$

where $\overline{Ad} = Ad/S^0$. Hereafter, we denote $KO_{(2)}$ simply by KO, and put $KO^iG = KO \wedge S^iG$.

Let $u_1 \in \pi_s^{-2}(CP_{-1}; Q)$ be the element in (1.6) for n = -1. Then we have an element $\bar{u}_1 \in \pi_s^{-2}(CP; Q/Z)$ which makes the following diagram homotopy

commutative up to sign:

$$(3.3) \qquad S^{-2} \xrightarrow{i} W \xrightarrow{j} CP \xrightarrow{\tilde{r}} S^{-1}$$

$$\downarrow u_1 \circ i' \qquad \qquad \downarrow \bar{u}_1 \qquad \qquad \parallel$$

$$S^{-2} \xrightarrow{i} S^{-2}Q \xrightarrow{\rho_Z} S^{-2}Q/Z \xrightarrow{\delta_1} S^{-1},$$

where the upper cofiber sequence is that of (2.1).

For $V \in KO^{-2}(CP_0; Q)$ in Lemma 1.9 for n = -1, we put $\tilde{V} = (i')^*(V) \in KO^{-2}(CP; Q)$. Then from Lemma 1.9, the following is clear.

Lemma 3.4. $j^*(\tilde{V}) = h^{KO}(u_1 \circ i') - w$, $\rho_Z \tilde{V} = h^{KO} \bar{u}_1$ and $c(\tilde{V}) = t(1/\log(1 + X) - 1/X)$, where w is the element in Proposition 2.3.

Let $g_i \in KO_{4i}$ be the generator and a(i) = 1 (resp.2) if i is even (resp. odd). For the Berunoulli number $B_i \in Q$ defined by the equation $z/(e^z - 1) = \sum_{i \geq 0} (B_i/i!)z^i$, we consider the following K-theoretical Bernoulli numbers: (3.5)

$$\tilde{B}_{i}^{KO} = (B_{2i}/(2i)!)(g_{i}/a(i)) \in KO_{4i} \otimes Q$$
 and $\tilde{B}_{i}^{K} = (B_{i}/i!)t^{i} \in K_{2i} \otimes Q$.

For $CP_0 \wedge CP_0$, we will denote its K-cohomology groups by $KO^*(CP_0 \wedge CP_0) = KO_*[[Y_1, Y_2]]$ and $K^*(CP_0 \wedge CP_0) = K_*[[X_1, X_2]]$, where Y_i and X_i denote the respective Euler classes of ξ . We can consider as $KO^{-4}(CP \wedge CP; Q) \subset KO^{-4}(CP \wedge W; Q) \subset KO^{-4}(CP_0 \wedge CP_0; Q)$, and define an element $h(Y_1, Y_2) \in KO^{-4}(CP \wedge CP; Q) \subset KO^{-4}(CP \wedge W; Q)$ by

$$h(Y_1, Y_2) = \sum_{i,j>0} \frac{9^{j}-1}{9^{i+j}-1} \tilde{B}_i^{KO} \tilde{B}_j^{KO} G_1(Y_1)^{2i-1} \otimes G_1(Y_2)^{2j-1},$$

where $G_1(Y)$ is the element of (1.3) for n=1. Using this element, we define

(3.6)
$$\tilde{u} = \tilde{V} \otimes w + h(Y_1, Y_2) \in KO^{-4}(CP \wedge W; Q).$$

Similarly as $h(Y_1, Y_2)$, we can define $h_C(X_1, X_2) = \sum_{i,j>0} (3^j - 1)/(3^{i+j} - 1)\tilde{B}_i^K \tilde{B}_j^K (t^{-1}\log(1+X_1))^{i-1} \otimes (t^{-1}\log(1+X_2))^{j-1}$. Then, by using Corollary 1.9 and Proposition 2.3, we have the following lemma, in which we denote by 1/X the element $t^{-1}U_{-1}^K \in K^0(CP_{-1})$.

Lemma 3.7.

- (1) $c(h(Y_1, Y_2)) = h_C(X_1, X_2) \in K^{-4}(CP \land CP; Q).$
- (2) $c(\tilde{V} \otimes w) = (i' \wedge i')^* (t^2(1/\log(1+X_1)-1/X_1) \otimes (1/X_2)),$ as an element of $K^{-4}(CP \wedge W; Q)$.

Let $U(X_1, X_2) = t^2(1/\log(1+X_1)-1/X_1)\otimes(1/X_2) \in K^{-4}(CP_0 \wedge CP_{-1}; Q)$. Then we have the following corollary.

Corollary 3.8.
$$c(\tilde{u}) = (i' \wedge i')^* (U(X_1, X_2) + h_C(X_1, X_2)) \in K^{-4}(CP \wedge W; Q).$$

This corollary shows that, through $(i' \wedge i')^*$, $c(\tilde{u})$ has just the same formula with that in the case of an odd prime p in [BC]. The following is crucial.

Proposition 3.9. The element $\tilde{u} \in KO^{-4}(CP \wedge W; Q)$ satisfies the following:

- (1) $(1 \wedge i)^*(\tilde{u}) = \tilde{V} \in KO^{-4}(CP \wedge S^{-2}; Q)$ and
- (2) $\psi(\tilde{u}) \in \text{Im}[I: KO^{-4}(CP \wedge W) \to KO^{-4}(CP \wedge W; Q)], \text{ where } \psi = \psi^3 1: KO^0Q \to KO^0Q \text{ is the stable Adams operation.}$

Proof. (1) follows immediately from the definition of \tilde{u} , because $(i)^*(w) = 1$ by Proposition 2.3 (iii) and $(1 \wedge i)^*h(Y_1, Y_2) = h(Y_1, 0) = 0$. Also, we have (2) by a direct calculation in KO-theory, but it is better to apply the complexification c once and consider it in the K-theory. Then, by Corollary 3.8 the calculation is just the same as that done in [Hi] or [BC] for the case of an odd prime, and we have $c\psi(\tilde{u}) = c((\psi^3(w) - w) \otimes \psi^3(w)) \in K^{-4}(CP \wedge W) \subset K^{-4}(W \wedge W)$. Since $c: KO^{-4}(CP \wedge W) \to K^{-4}(CP \wedge W)$ is a monomorphism, we have $\psi(\tilde{u}) = (\psi^3(w) - w) \otimes \psi^3(w) \in KO^{-4}(CP \wedge W)$, and thus we have (2).

Let \bar{u}_1 be the element in (3.3), $\bar{j}: \overline{Ad} \to \overline{KO}$ the map induced from $j: Ad \to KO$ and $\bar{\rho}: KO \to \overline{KO}$ the reduction.

Theorem 3.10. We have an element $\bar{u}_2 \in \overline{Ad}^{-4}(CP \wedge CP; Q/Z)$ which satisfies

$$\delta_1(\bar{u}_2) = [\bar{u}_1 \circ (1 \wedge \tilde{\tau})] \quad \text{and} \quad (1 \wedge j)^* \bar{j}_*(\bar{u}_2) = \bar{\rho} \rho_Z(\tilde{u}).$$

Proof. Proposition 3.9 (2) means $\psi \circ \rho_Z \circ \tilde{u} \simeq 0$, and thus there is an element $u_2 \in Ad^{-4}(CP \wedge W; Q/Z)$ with $j_*(u_2) = \rho_Z(\tilde{u})$. Proposition 3.9 (1) and Corollary 1.9 yield $(1 \wedge i)^* \rho_Z(\tilde{u}) = \rho_Z(\tilde{V}) = h^{KO}(\bar{u}) = j_*h^{Ad}(\bar{u})$. Then These two equations give $[\bar{u}_1 \circ h^{Ad}] = [u_2 \circ (1 \wedge i)]$, since $j_* : Ad^{-2}(CP; Q/Z) \to KO^{-2}(CP; Q/Z)$ is a monomorphism. Then it derives a map from the cofiber sequence $CP \wedge W \xrightarrow{1 \wedge j} CP \wedge CP \xrightarrow{1 \wedge \tilde{\tau}} CP \wedge S^{-1}$ to the cofiber sequence $Ad^{-4}Q/Z \xrightarrow{\tilde{\rho}} \overline{Ad}^{-4}Q/Z \xrightarrow{\delta_2} S^{-3}Q/Z$. Thus, we have $\bar{u}_2 : CP \wedge CP \to \overline{Ad}^{-4}Q/Z$ with the required properties, and it completes the proof.

Since the chromatic filtration $\Sigma^{-2}N_2 \xrightarrow{\delta_2} \Sigma^{-1}N_1 \xrightarrow{\delta_1} S^0$ is equal to $\overline{Ad}^{-2}Q/Z \xrightarrow{\delta_2} S^{-1}Q/Z \xrightarrow{\delta_1} S^0$, we have the desired factorization of $\tilde{\tau} \wedge \tilde{\tau}$ as follows:

Corollary 3.11. $\tilde{\tau} \wedge \tilde{\tau} \simeq \delta_2 \delta_1 \bar{u}_2$.

REFERENCES

- [BC] A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood, On the iterated complex transfer, Math.Z.199 (1988), 191-207.
- [Bo] A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
- [CK] M. C. Crabb and K.Knapp, James numbers, Math. Ann. 282 (1988), 395-422.
- [Fu] M. Fujii, Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
- [Hi] A. S. Hilditch, On calculating the complex double transfer in homotopy, Ph.D.Thesis, Manchester University, 1986.
- [Kn] K. Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Bonn, 1979.
- [Mi] H. R. Miller, Universal Bernoulli numbers and the S¹-transfer, Can.Math.Soc.Conf.Proc. 2 (1982), 437-439.
- [Ra] D. C. Ravenel, A geometric realization of the chromatic resolution, Proc. J.C. Moore Conf., Princeton (1983), 168-179.
- [Sh] K. Shimomura, Novikov's Ext² at the prime 2, Hiroshima Math. J. 11 (1981), 499-513.