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A REPORT ON OCNEANU’S LECTURE

YAMAGAMI SHIGERU

Department of Mathematics
College of General Education
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e-mail: €22236@cctu.cc.tohoku.ac.jp

Dear Readers:

This report supplies detailed proofs of the first chapter in “Quantum Symmetry, Differ-

ential Geometry of Finite Graphs and Classification of Subfactors”— seminary notes on
Ocneanu’s lectures prepared by Y. Kawahigashi—, particularly a proof of biunitarity of
connections.

The essense of the proof is the Frobenius reciprocity, which turns out to be useful in
the topics of Markov traces and towers of algebras construction as well.

In this respect, the proof of Frobenius reciprocity via Lemma 24 and the explanations
after the heading “Markov Trace” might be new.

Compared to the treatment of string algebras, the notion of paragroups seems to be
rather difficult of access, partly because we cannot read the original proofs yet.

I hope the present report contribute to the improvement of such a situation.

Typeset by ApmS-TEX
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Notation and Convention

Let N be a von Neumann algebra. By a left N-module, we understand a Hilbert space
X with a normal *-representation of N which defines a left action of N on X. We often
write y X to emphasize X being a left N-module.

Similarly a right N-module Xy is defined to be a Hilbert space X with a normal *-
representation of the opposite algebra of N. Let M be another von Neumann algebra. A
Hilbert space X is called an M-N bimodule if X is a left M- and right N-module at the
same time and these two actions commute each other.

For a left N-module X, we denote by End(nX) the set of bounded linear operators in
X which commute with the left action of N. If we denote by N% (or simply N’ if X can be
understood) the opposite algebra of End(y X), then X is a right N'-module in an obvious
way and X becomes an N-N' bimodule. Similarly, starting from a right N-module Xy,
X is an x N'-N bimodule with x N' = End(Xn).

The standard space L?(N) is a special but important example of an N-N bimodule.
Note that, when N is semifinite with a faithful normal semifinite weight =, L%(N) is
identified with the GNS-construction associated with 7 with left and right actions are
induced from left and right multiplications in N.

Given a set I, let Mat;(N) be the I x I-matrix amplification of N and 5 L%(N)®! (resp.
®rL*(N)y) be the direct sum of left N-modules y L2(N) indexed by I as row vector (resp.
column vector). The algebra Matr(N) acts on L2(N)® (resp. @©;L%(N)) from the right
(resp. left) and Mat;(N) is identified with Ny yyer (resp. g, r2(v)N').

Let X be aleft N-module and e a projection in N%. Since Xe is N-invariant, it defines
a left N-module y Xe. As a special case, consider a projection e in Mat;(N). We have
a left N-module xyL2(N)®’e and the commutant of the left action is naturally identified
with eMat (N)e.

Dimension
(cf. “Theory of Operator Algebras’ by M.Takesaki)

Let N be a semifinite von Neumann algebra with a faithful normal trace 7. Let yX
be a left N-module. Since to give a left N-module structure is nothing but to give a
homomorphism from N C B(L?(N)) to B(X), by the structure theorem of normal ho-
momorphisms, we can find a set I and a projection e in Endy(L3(N)® = L%(N) @

, direct sum of countable copies) such that

NX = n(eL?(N)®T).

If we set H = £2(I), L*(N)®! = L?(N) ® H. With this identification, the left action of N
on L?(N)®! is identified with N ® 1. So we may assume that

E(N®1lg) =N @B(H)= N°* @ B(H).

In other words, we can find a projection p € Mat;(N) = N ®@ B(H), p = {pi;}, pij € N
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such that
e(®iz;) = EB::(Z z;pji)
J

P11 P12
=(z1’w2,...) P21 P22

= (Diz:)p,

for Dix; € LZ(N)GBI'
Now we set
dimy X = (7 @ tr)(p),

where tr denotes the usual trace in B(H) = Mat;(C). The right hand side in this definition
is independent of the choice of p. In fact, if ¢ € Mat;(N) is another projection satisfying
NX = N(L?(N)®Ip), then we can find a partial isometry v : L2(N)®p — L2(N)®!4
which commutes with the left action of N. Thus 3u € Mat;(N), u*u = q, uu* = p,

vE = €u, €€ LX(N)®,

In other words, p ~ ¢ in Matr(N) which shows that

(r®@itr)(p) = (r ®1r)(g)-

Extending this construction, we can define a semi-finite trace 7, x (or simply 7') on

Ny = pMat;(N)p, which is called a canonical trace and plays significant roles in the
later parts.

Lemma 1.
(1) (7") = 7 if the representation N — End(X) is faithful.
(ll) ForT € HOTn(NX, NY),
(T*T) = 7'(TT*).
(111) For a projection e € N,
dimy (Xe) = 7'(e).
(iv)
' dimy, X = 7(1).
") (ii) follows from the definition of 7'. To see (iii), consider the trace 744y and its
restrictions. (iv) is a consequence of (i) and (iii). To see (i), by the central decomposition,

we may assume that N is a factor. Let yX & yL%(N)®p.
If 7(1) < 7'(p), subtracting projections which are equivalent to

1 0
0 0
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we may assume that

1
p= 1 )
q
where ¢ € N. Then
L*(N) ... [L*(N) L?(N)q
can=| o s
L%(N) ... L*N) L?*(N)g
gL*(N) ... qL*(N) qL*(N)q
and X is equivalent to
L?(N) ... L%*(N) L%*N)q
0 0 0
0 0 0
Since the action of N on X is expressed by
a
0
Noawr
0
in this realization, we have
a
0
'(a) = (T ®1r) . = 7(a).
0

If 7(p) < 7(1), N’ and hence N are finite. So, to check that 7"/ = 7, it suffices to show
that 7"/(e) = 7(e) for a suitable projection e # 0 € N. This time, y X & yL2%(N)e with
e € N. Since eL%(N)en: is equivalent to LZ(eNe)n,

'(e) = 7'(1n+) = 7(e).
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Proposition 2.
(1) dlmN H1 = dlmN Hg ijHl = NHZ'
(ll) dimN(éB,:H,') = Zi dimy H;.
(in) If (N, ) = fe) dA(Ny, 1) and fGB dAH) is the corresponding decomposition of H, then

dim}y H = / dA dim}, Hj.

(iv) If N is a (semi-finite) factor, dimy H < +o00 <= Endy(H) is a finite von Neumann
algebra, and the converse of (i) holds: dimy Hy = dimy Hy = v Hy = v H,.

') (1), (i1) are clear from the defintion and (iv) is a refrase of a classical result. For the
proof of (iii), including the measurability of A +— dim}; H), see the section of coupling
constant (§ V.3 in “Theory of Operator Algebras’). O

We present here two examples, abstract one and concrete one.

Example 3. Let N be a finite factor with 7 the normalized trace. By multiplication,
L%(N) is an N-bimodule and yL%(N) is a standard representation. So we can identify
End(nyL?(N)) with the right multiplication algebra of N. Thus , for a projection ¢ € N,
L%(N)e is a left N-submodule of L*(N) and we have

dimy L%(N)e = 7(e).

Example 4. Consider a *-algebra A generated by two unitaries u, v satisfying the relation

uv = e2**yu. On A, we can define a trace T by

' 1 fm=n=0,
T(umv"’)—:{ ifm=n

0 otherwise.

There are several realizations of such an algebra.
1° Group algebra.
Consider a central extension G of an additive group 7% by the torus T;

1-T—-G—-7*— 0,
where the group structure of G = 72 x T is defined by
(m,n, 2)(m',n',2') = (m 4+ m',n + 0, 22/ 270mn),

Through the identification

v <> (1,0,1)
v < (0,1,1)
z < (0,0, 2),
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the algebra A is realized (or represented) by a unitary representation © of G such that
7(0,0,2) = z1. As an example of such a 7w, we take an induced representation ind%—x,
x(0,0, z) = z. Its representation space H is given by

H={f:G—C;f(gz) =2""f(9),9€ G,z €T,

Y 1f(9)F < +oo}.
9€G/T

Taking the restriction of f to 7% C G,
H = *(1%).
We define an anti-unitary involution J on H by

(Jf)(g) = f(g~Y), g €G,

and a unit vector 6 by
z7l ifm=n=0,

§(m,n, z) = {

Then (H, 6, J, ) defines a standard representation of G with é a tracial vector. In particu-
lar, the von Neumann algebra generated by =(G) is finite. A bit more algebraic calculation
shows that n(G)" is a factor if § is irrational.

0 otherwise.

2° Crossed product.
In the above representation H, consider the Fourier transform of f € £2(Z?) with respect
to the second variable:

(2?5 f— f e 2(2)® L¥(T)
f(m,z) =Y "z"f(m,n).

In this new realization of H,

If we interpret v as a multiplication operator by the function z — z in L*°(T), then v
generates L>°(T). On L*(T), we define an automorphism « by

ofz) = €™,

Then the above realization is nothing but the regular representation of the crossed product

algebra L°(T) x4 Z.
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Since

(JuJ f)(m,z) = f(m +1,2e*™*)

(JvJ f)(m, 2) = Zf(m, ),
(in this crossed product representation,) one sees that m(G)' contains 1,27, ® L>(T) and
V Borel subset B C T the characteristic function 1g € L* defines a projection e € n(G)’

by ‘
e = 112(1) ®1p.

Since the natural trace 7’ on 1,27, ® L*(T) is given by

Pllpay® ) = [ 1)

we finally have
dimps. eH = |B].

Definition 5. Let M be a finite factor and N C M be a finite subfactor. The index
of N C M is defined by [M : N| = dimy L?(M) where the dimension is measured with
respect to the normalized trace of N.

Proposition 6. [M : N] > 1 and the equality holds if and only if M = N.

*) Since L*(N) C L*(M) and L*(N) = L*(M) if and only if N = M (cf. the conditional
expectation £ : M — N ), this follows from the following calculation:

dimy L3(M) = dimy (L3(N) @ (L} (M) © L*(N)))

= dimy L*(N) + dimy (L%(M) © L*(N))
=1+ dimy(L%(M) & L*(N)).
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Operator valued inner product

Operator valued inner product is an important notion when one considers relations between
two algebras (see [Paschke], [Rieffel]).

Let N be a semifinite von Neumann algebra with a faithful trace 7. Given a left
N-module X, we define the set of (N, 7)-bounded (or simply N-bounded if 7 is fixed)
elements by

Xo={z e X;3A>0,Vae N, |az| < Ar(aa*)}/?}.

Lemma 7. }
(i) Xo is an N-invariant dense linear subspace of X.
(ii) If NY is another N-module and T : NX — NY is an intertwiner, T(Xo) C Yo. In
particular, Xq is End(n X)-invariant.

*.) (i) N-invariance follows from the trace property of 7. To see the density, we may assume
that N~ X is faithful(consider X @& L?(N)). Then we can take a family {z;};c; C X such
that

7(a) = Z(ax.~|a:,-), Vae€ N‘+.

i
These z;’s are in X since ||az;]|> < 7(aa*). Let e be the projection onto the closure of X,
in X. Since e € N by the N'-invanance of Xy,

(1-e)z; =0, Vi=>r(l—e)=0.

Since 7 1s faithful, e = 1. 7
(i1) This property is an immediate consequence of the definition. O

Example 8. If X = L?3(N), Xo = NN L%(N).

For z € Xo, consider a positive linear functional N 3 a — (az|z). Since
(azlz) = (aV/22|a"/%2) < [laa|]? < N7(a),
the Radon-Nikodym theorem assures that there is a positive element h € N such that
7(ah) = (az|z), Va € N*.

From this relation, A is in the definition ideal of . Moreover, given z,y € Xg, the polar
identity shows that we can find a (unique) h € N which is in the definition ideal of 7 and
satisfies

7(ah) = (azly), Va€N.
In the following, this & is denoted by

N[m’y]'
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Lemma 9.

(1) w~[z,y] is an N-valued sesqui-linear form on Xj.
(i) n[z,9]" = Ny, 2]
(111) N[az)ylzaN[m)y]a aEN, m)yGXO'

Remark. (i) The operator-valued inner product x|, ] depends on the choice of a trace of
N.

(i1) For a n[z,y] € N, let [z,y], be its image in LZ(N). Then for z € Xo, Xo > y +—
[x,y]2 is continuously extended to a bounded linear map of X into L?(N).

Example 10. Let M be a finite von Neumann algebra with a faithful trace v, N be a
von Neumann subalgebra of M, and E : M — N be a conditional expectation uniquely
determined by T. For the left N-module y L*(M), we have

~llal2, [b]z] = E(ab),

where a, b € M and [a]s, [b]; are their images in L*(M).

Basis

Definition 11. A family A = {\; }ier in X is called a basis if
(i) >°; N (algebraic sum) is dense in X,
(i) Vee X, Viel

(z|A) =) (2In[Xi, Aj]A;) (absolutely convergent).
J

Let A = {[)\,’,AJ‘]}{JGJ € Mat[(N).

Proposition 12.
(1) A is a projection in Maty(N) (in particular, it is bounded).
(1) Vi eI, ®;[\i, ;] is in L2(N)®! and the map

ZN/\,' E) Za,’/\i — Djer (Z aiN[/\i,)\j]) € Lz(N)EBI

i€l i ]

)

is extended to an isometry from X to L?(N)®IA.
(i) Vo € Xo, Vy € X,

(zly) = E([m, AiJAily) (absolutely convergent).

:
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") We first note that @;[)\;, A;] € L?(N)®!:

(1) Do MG A =D (1 A1)

J J

= (Mi]As) < +oo.

So, if we set D = @;¢rL?(N) (algebraic sum), the right multiplication of the operator
matrix A defines a linear operator h with domain D. Then the reproducing kernel property
of A yields

(hglhe) = (£[RE), VEE€ D,
which means that h is a projection (see the appendix below), proving (i).

The formula (1) also shows that the map in (ii) is an isometry. So the only thing we
need to prove is that its image is equal to L2(N)®/A. Since NN L%(N) is weakly dense in
N, the image is the closure of (®; N N L2(N)) A, i.e., A2(N)®TA.

(iii) Since (L*(N)®TA) = (L*(N)®T), A, we first examine (L?(N)®TA) . This set, as
can be easily seen, is identified with

{@®ia; € L2 (N)®;a; € NN L?(N) and E a;a; is bounded}

and the N-valued inner product is given by

(2) [Biai, ®ibil =) aib}, @ia;, @b € (L2(N)®'A), .

Here the convergence in the right hand side is with respect to weak operator topology. On
the other hand, [®;a;, ®;b;] and a;bf are in the definition ideal of 7 and hence in LZ(N). So
we can talk about the convergence in L2(N) and, in fact, the relation (2) holds as elements
in L?(N). To see this, we may assume a; = b; by the polar identity. Let F' C I be a finite
subset and consider

| Q_wal) | <7 Qaa) 1Y aiafl()_ aial)'/?

igF igF igF igF
= 1> aalr(d_ aia})
igF igF
<D wat|] D r(aial).

igF igF

Since ®;a; € L(N)®!, and 2 _igr Gia} 1s bounded, this converges to 0 as F' /' I.
Now let zg = &;b; = (®ia;)A € (Lz(N)®[A)OA, with ®;a; € (LQ(N)@IA)O. Since
A\ € X is identified with @;[A;, A;] in L?(N)®! we have

[z0, Ai] = ij (A, Al
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If we consider this relation in L2(N), the right hand side is equal to the i-th component of
(@ibi)A = (@ia;)A® = (®iai)A.
From this, we have

(20, Ai] = ij [A;, A] in LE(N).

Since L%-sum and operator sum gives the same results for ®; a; and &;[A;, \;] € (L2(N)®7)
(see the above argument), this relation holds as weak operator convergence.
Now we have

0

w0, Al = D a5 [y, Al(@x[hi, Ak)

2
/ N L2

e N, N
= | > a;[N, Al [\, Al

J
L? N
I S e
=@k | Y785 [N, A, A
J

= ®k(bi[Ai, Ak))-

From this expression, we see that 3_.[zo, \i]\; is weakly convergent in L?>(N)®! and

Z[xo, /\i]A,’ = @k(z bi [’\i)Ak])

1

= (®ibi)A
= @;b; (since &;b; € Lz(N)@IA)
= Zg.

a

Corollary 13.
(1) Va' € NY,
h(a) = (Md|N).

In particular, dimy X = )=, /(X[ ).
(i) Vz,y € Xo,

ZN[:B, Ailv [y y] = Nz, y]b (weakly convergent).

") (1) Since @’ € N}, a’ has a matrix expression

A= (a,-j) € A]WatI(N)A C Ma.ij(N).
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We show the formula (i) for A = ABA, where B € Mat;(N) is of finite size and its
components are in the definition ideal of 7. Once this is proved, the formula of the general
case follows by continuity (both sides in the above relation define normal weights). Thus
we need to consider A = ABA. Using B = (bgi), we have

ai; = 3 [, Aelba[An, Ay
kl

(note that the summation ), is taken over finite number of indices and b;’s are in the
trace class of N), and then

() = rlai) =) );j (s, Aelbea [Ae, )
= ; 7(bii Z[,(,, A, AR))
= ;T(bu[;“ Ak])
= ;(mm»

On the other hand, using the correspondence
X = @;[\, )] € ®; LA(N, 1),
we have
Aid! <= (®;[\i, A;])ABA
= (®;[M, Aj]) BA

=@ > [N, Aelbra[Mr, Aj]
k1

= @; [Z[/\i; Ak)bri Al Aj]
k1

— Z[Ai;/\k]bkl/\l-
k1

Thus

>.«
a
;
II

DO (1 Akl n)

i ikl
= (bridi| k)
k.1
= 7n(d).
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(ii) By the polar identity, we may assume « = y. For a € Ny,
(a2 vz, Alv [, 2lal?) =Y (a2 e, M)A, 2]at?)
= ZT(G[$a/\i][/\i,x])
= Z(a[m, AiAi|z)

= (az|z)
= 7(a[z, z]).

Since this holds for any a € N, we get the desired formula. O

Remark. The proof of (i) for the special case a’ = 1x is much easier. We just calculate

dimy X = (r®@1r)(A) = 225 (A, A]) = i (Nili).
Appendix. Let h be a hermitian operator with dense domain D such that

(h€|hE) = (£|RE), VE€D.

Then h is a projection.

".') We only need to check that & is bounded. This follows from

|hEll = (hE|hE)!? = (¢|RE)!?
< lenr2ner’z
= [|€1"2 (he|RE)* = |1€IIM 2 (| ne)M*
< 1lEN 2 11ElM* | el

14 (LR
= [I€ll-

Change of Bases

Let § = {6; };es be another basis. Let V be an operator matrix given by {n[6;, Ai]}jesier-
From Corollary (ii), V satisfies

V*V=A, VV*=0.
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Since

[z, A] = [2,6;][6;,\], Vi, Ve € Xo
J

both in operator sense and L? -sense, we have
w(z) = 1(2)V,

where ¢y denotes the natural imbedding X — L%*(N)®TA. Thus we have obtained the
following commutative diagram of N-module isomorphisms:

DY

X —— L}(N)®A

| Jv
X —— L}(N)®70

In this sense, V gives a matrix system for change of bases.

Existence of Basis

A basis {A; }ier is called orthogonal if [A;, A;] = 0 for i # j. Note that [A\;, \;], i € 'is
a projection in this case (because A = {[A;, A;]} is a projection). Given an N-module X,
we can construct a basis for X. To this end, we first present

Lemma 14.
(l) Vz € Xo,
[2] = inf{p € proj(N); pz = 2}

is the support projection of |z, z].
(it) If 7([z]) < 400,
A= li\r‘r(l)(N[a:, z] + €)%

exists in X, A € Xo, and
N[AA] =[],
(iii) If X € Xo and y[A, )] is a projection, then Vy € Xo N N},

Ny, Al =y

) (1) fpz = z, pn|z, z]p = N]z, z]. Conversely, if py[z, z]p = N[z, 2], N[pz—2, pr—2] =0
and hence (pz — z|pz — z) = 7(v[pz — z,pz — 2]) = 0.

(i1)
[z, 2] + &) 722 ~ [z, 2] + 1) 7| = (([z, 2] + ) " ele) + (([z, o] + 1)~ "2]a)
= 2([z, 2] + )" ?2|([z, 2] + 7)"V/?2)
= 7(([z, 2] + )7 [z, 2]) + 7(([z, 2] + 1) "' [, 2])
= 2(([z, o] + )72 (&, 2] + 1) 71?2, 2]).



34

A REPORT ON OCNEANU’S LECTURE

Since
([z, 2] + &) ([z, ] + 7)"*[2, 2] /" [al,

Jim ({2, 2]+ )72 = ([a,2] + )72 = 7((e]) + ([a]) — 27([a]) = 0.

Thus A € X exists. A € X follows from
— T -1/2.)12
o] = lim la(z, 2] + /%]

= lim 7(a([z, z] + €)' [z, z]a*)
= 7(a[z]a”)
< 71(aa*), a€N.
The above calculation also shows that [\, A] = [z], because |laA||* = 7(a[A, A]a*).
(iii) Let y = lim; a;A € Xo N NA. Then Vz € X,
([y, AJAl2) = 7([y, Al[A, 2])
= 7([A, ][y, A])
= (A 2]y|A)
= lilm([/\, z]a; A|A)
= li{n 7([A, z]a;[A, A))
= li{n T(a;[A, AJ[A, 2])
= lizm(a,‘ [A, AJAlz)
~lim(aAle) (A = [A)

= (y]=).
a

Returning to the construction of basis, we first decompose an N-module X into cyclic
pieces; we can find a family {z;} C Xj such that

X =@;Nz; (orthogonal direct sum).

Cutting down z; by a projection in N with finite trace, we may assume that 7([z;]) < +o0.
Let
Ai = lim([z;, 2] + e)_llzw; € Nz;.
e\.0

Since X is invariant under N', Vzoq € Xg is decomposed according to the above decom-
position and the component-wise application of Lemma (iii) insures that

zo= Y [20, Ai]Ai-

3

The other properites for basis can be also checked by Proposition 12 (ii). Thus {A;}ier is
a desired basis. :
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Proposition 15. Let N be a semi-finite factor, X be a left N-module, and suppose that
dimy X < 4o00. Then 3 an orthogonal basis consisting of finite elements.

") Suppose that N is properly infinite. If we write as
H=LX(N)®q,  ¢={q;} € Maty(N),

then
dimy H = (r®tr)(q) < +co

implies that there are at most countably many ¢ € I 'such that
7(qi:) # 0.
So we may assume that I is countable. This case, since N is properly infinite,
~wLA(N)®T = v L(N)
and we can find a projection ¢ € N such that
NH 2 N L(N)g.

Then 7(q) = dimy H < +oo and, if we denote by = an element in L?(N) which corresponds
to q, then ¢ € Hp. Since

7(alz, z]) = (az|2) = 7(gaq) = 7(ag),

[z, z] = ¢ and therefore
[az, z]z = aqz = az.

Thus {z} is a basis.
Suppose that N is finite and 7 is normalized. Express as

~H = NyL2(N)®y.
Since 7 ® tr(q) < 400, 3 projections qy,...,qn+1 € Mat;(N) such that
g=q + + ¢at1,
TR (1) =-=7R(qx) =1, 7®(qn41) < 1.

Since ¢; (1 < i < n) are equivalent to [(1) g] and ¢, 41 1s equivalent to a sub-projection
of [1 0], dpeN

n times

A\

NH 2 NLX(N)@® - @ yLA(N) &n L2 (N)p.
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Now if we set

5=0® - ®1l@0® - enH (1<i<n)
Th41 =0 ---B0Dp € NH,

{mi}lsiSVH'l is a basis. O

Tensor Product

Let B be a von Neumann algebra with a faithful trace . Take a right and a left B-
mudules X g, gY and let Xg, Yy be the sets of B-bounded elements. As in the case of left
modules, we define a B-valued inner product [, |p in Xo by

T([.’Bl, mz]Bb) = (w2b|m1)

This time, [, |p is linear in the second variable.
The following lemma is essentially known in [Paschke] and [Rieffel].

Lemma 16. Let zi,...,2, € Xo. Then the operator matrix {[z;,z;]p}1<i,j<n € Mn(B)
is positive and

{lazi, az;]Bhicij<n < llal*{lzi, 23]} igiicn,  Va € End(Xp).
*.*) For a sequence by,...,b, € BN L?(B),
{b:H{lazi, az;]5}{b;} = > (b} [az:, az;]b;)
i,
= Z(az;bdamjbj)
i,J
= (ainbi|aijbj)
i J
< llall Y (=ibilx;b;).
i :
O

Now define an inner product ( | ) in the algebraic tensor product X, ® Yy by

(Zwi ® yil Zfb‘; ® ;) =Y _ (25 blw, }]).

i J i,J

For zi = z;, y; = y;, the right hand side 1s the trace of the product of two positive operator

matrices
{lzi,z;]8},  {BlYi, y;]}
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and hence non-negative. In this way, Xo ® Yy becomes a (degenerate) pre-Hilbert space,
and we denote by X ® g Y 1ts completion. Note that, from the property of operator valued
inner product, the above inner product is well-defined on the algebraic tensor product as
B-modules. Also, the above lemma shows that for a € End Xp,

Ty~ arPpyY

defines a bounded linear operator in X ®p Y and this correspondence gives a normal
representation of Fnd Xp in X ® g Y. A similar result holds for End gY. In particular, if
X is an A-B module and Y 1s a B-C module, then X ® g Y is an A-C module in a natural
way.

Remark. (i) If one takes a basis {A;i}ier C Xo and {g;}jes C Yo, then Xo ®p Yo =
Zi’j Ai ®p p; gives an orthogonal decomposition and, from this, one sees that the inner
product is non-degenerate on Xo ®p Yo.

(i1) The inner product in X @ Y depends on the choice of a trace 7.

Proposition 17.
() (X10X2)®pY =(X1®Y)®(X2®pY).
(i) X®p (Y ®c Z)=(X®pY)®c Z.

') (1) is clear.
(11) Since
(z®p ylz' ®p y') = 7([2, z]5 B[y, ¥'])
= ([5!3,, fB]Bylyl), (B,fl!' (S XO: y)yl < YO)

this inner product is continuously extended to an inner product in Xo ® g Y. The above
formula also shows that if Y' is a dense linear subspace in Y, then Xo®pY" is again dense
in X®pY. With these observations, to see (ii), it suffices to show that Xo®p (Y ®¢ Zo) =
(Xo®p Y)®c Zo. Of course, the identification is given by

o ®B (3/ Rc Zo) = (20 ®B y¥) Qc 20-

To complete the proof, we nned to check the equality of the norms:

= ([0, o] BY ®c 20|y B¢ 20)
= (y[zo, o] BY c[20, 20])
([z0, zo] BYlY c[20, 20))
= (20 ®B ylzo ®B ¥ c[20, 20])
= ((z0 ®B ¥) ®c¢ 20|(z0 ®B ¥) V¢ 20).

(20 ®B (¥ B¢ 20)|(z0 @B ¥) ®c z0)
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Remark. By the proof of (i1), the inner product in X ® g Y is given by
(€ ®@p ¢ ®p7') = (Esln,7]IE") = (nll€, &'17")

and this formula reveals that the linear maps
£ — £®B no, n+— & ®p 1,
defined for &y € Xo, no € Yo are bounded. This fact will be used later.
Example 18. Let N be a semi-finite von Neumann algebra. Then
L*(N)®n L*(N) = L*(N).

The isomorphism 1is given by

NNLYN)®ny NNL*(N)3 a®n b ab e L*(N).
Lemma 19. Let Xp and gY be bimodules. As described after Lemma 16, we can imbed
End(Xp) and End(gY) into B(X ®pY). Then, in B(X ®pY), we have

End(XB)' = End(BY).

") Express Xp and gY as
Xp=pL*(B)§', pY =pL*B)¥y,
with p, ¢ projections in Mat(B). Then
End(Xp) = pMat;(B)p, End(gY)? =qMat;(B)q, on X ®pY =pL*(Mat;(B))q,

and the assertion is reduced to the usual relations of commutants in the induction and
reduction operations. O

Remark. The results in this part including Lemma 19 can be formulated and proved with-
out the assumption of the existence of traces but with much effort on modular operators.
~ See [Sauvageot] for the details.

Bimodule

Let A, B be finite sums of finite factors. According to Popa (Connes ?7), we call a
bimodule X = 4 Xp being of finite type if dimy X < 400 and dim Xp < 400 (note that
this definition is independent of the choice of faithful traces on A and B).

In the rest of this part, we assume that A and B are finite factors and we consider
dimensions with respect to the normalized traces 74 and 75 on A and B.
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Proposition 20. Let 4 Xp be a bimodule of finite type and gY be a finitely generated
module (ie., dimgY < +00). Then

dim AX ®B Y = dlmAX dim BY.
*.’) By a decomposition of Y into cyclic submodules, the problem is reduced to the case

BY = pL%*(B)p with p € B a projection. This case, 4. X ®5Y = 4Xp and the left hand
side 1s

: oy Talp) oy Talp) .
dim 4 Xp =74(p) = TA(l)TA(l) = ——_TA(I) dim 4 X,

while dim gY = 75(p) = 74(p)/74(1) because 7,(1)~17}|p is the normalized trace of
B. O » '
For a bimodule X = 4Xp (A and B are assumed to be factors), we define its index by
[X] = [AXB] = dlmAX dlmXB

Corollary 21. Let C be another finite factor.
(i) If gYc is a bimodule of finite type, then 4 X ®p Y¢ is of finite type and
[4X ®B Yc] = [aXB][BYC]
(i) If Y is a bimodule of finite type, ,
[aXB ® aYB] > [aXB] + [aYB].
(iii) Any bimodule 4 X g of finite type has index [X] > 1, with [X] =1 if and only if A' = B
(i.e., B is realized as the commutant of A). _
(iv) If AXp and sYp are bimodules of finite type, then Hom(4Xp, aYp) is finite dimen-
sional. :

*.*) (ii) is immediate from the definition. (i) follows from Proposition 20.
(iii): Since A is a finite factor and dim 4 X < 400, A’ C B(X) is a finite factor and 7/,
is a trace of A’ with 7/(1) = dim 4 X. Since 7} = 74,

dim X 4 = (74 (1) "'74)'(1) = 74, (1) 174 (1) = 1/ dim 4 X.
Using this formula and Proposition 20,
dim 4 X dim Xp = dim 4 X dim(X ®4 L*(4')p)
= dim 4 X dim X4, dim L?(4')p
« = dim L?(A") .
Now the assertion follows from [A’: B]>1and [A': B]=1 <= A = B.
(iv): Since Hom(4Xp, AYB) is a subspace of End(4Xp & 4Yp), it suffices to consider

the case X =Y. Since any submodule of 4 X has index > 1 by (iii), the inequality in (ii)
shows that the number of components does not exceed [X]. O

Frobenius Reciprocity

Let H be an A-B module. The conjugate Hilbert space H* is naturally a B-A module.
We denote by z* the element in H* corresponding to z € H.
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Example 22. L?(M)* = L*(M) as M-M module.

In the rest of this paragraph, von Neumann algebras are assumed to be finite sums of
finite factors.

Lemma 23. Let 4 Xp be a bimodule of finite type.
(i) (4X)o = (XB)o (i.e., an element £ € X is A-bounded if and only if B-bounded). In the
following, this set is denoted by Xj.
(i) Let gY be a finitely generated module. For finite bases {A;} for 4 X and {y;} for Y,
{\; ®p p;} forms a basis for 4 X ®p Y.

") (i) Decomposing 4 Xp into a direct sum, we may assume that A and B are factors.
Then A’ = End4 X is a factor and, if we realize 4 X as 4 L?(A)® - ® 4 L2(A) ® 4 L*(A)p
with p € A a projection (see ), then A’ is realized by

A ... A Ap
A ... A Ap
pA ... pA pAp

From this form, it is easy to see that elements in A® --- ® A® Ap C 4L*(A) D --- @
AL*(A) @ 4 L%*(A)p are bounded with respect to the right action of A’ and hence they are
bounded with respect to B C A’ as well. In particular, the basis

1o0---®0600

0ol 0000

00 --- 160
1900--- 04 p

for 4 X consists of B-bounded elements. Since any element £ in (4X)o is an A-linear
combination of this basis and since (Xp)o is A-invariant, £ is B-bounded. Thus (4 X)o C
(XB)o. By the symmetry of the argument, we get the reverse inclusion as well.

(i1) Let ¢ € (X ®5Y)o, A € X0, and p € Yp. Since (Qpp)* € Hom(4 X ®p Y, 4 X),
e(®pp)* € Xo and we infer

(aplA ®p 1) = (p(@pp)*|a*N)
= 1a(aalp(®B1)", A]),

which shows that A®@p p € (X ®p Y)o and

A[Soi)‘ XB ,u] = A[‘P(®B)*’/~"]’
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Now the following calculation gives a proof.

Y (ales i @B wi)\ @5 1€ @B 1) = Y (ale(i)* Xl Nilémn, 15])

ij ij

= Z(%(#J’)*Iﬁa[n, #; )
= Z(%l&a[n,uj] ®p 1t;)

= ZWI& ®pB 1, 1il1;)

= (pl¢ @5 7).
o

Lemma 24. Let 4 Xp and gpY4 be bimodules of finite type. Then we have the following
*.preserving (i.e., the adjoints of intertwiners correspond to conjugate vectors in Hilbert
spaces) linear isomorphisms:

(X®pY)? = Hom(aY},4Xp) = (Y ®4X)B,

where, for an A-A bimodule 4Z 4, Z* is defined by
ZA={(€Z;al=C(a Yac€ A}
and ¢, ¢, ® are related by

(€ @B nle) = (]2(n7) = (1 ®a £lY).
*") For ¢ € X ®p Y, define a linear map & : Y3 — X by
o(n") = p(®8n)"
Note that ® gy denotes the bounded hinear map £ — £ ®p 7. Since

(€l@e(n*)) = (@B nle) = (nl(€®B)"¢) for £ € Xo,

the adjoint of ® is densely defined and hence ® is a closable operator. On the other hand,
the A-invariance of ¢ shows that ® is A-B equivariant. Using the irreducible decomposi-
tions of 4 Xp and 4Y} (recall that Hom(4Xp, 4Y}) is finite-dimensional) and the polar
decomposition of the closure of ®, one sees that & is a constant multiple of an isome-
try on each irreducible components. In particular, it is bounded and we conclude that

& € Hom(1Xgp, 4Y}).
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Conversely, suppose that ® € Hom(4Xp, 4Yj3). Take a finite basis {g;} for gY and
set

<p=z¢(ﬂ;)®5 1 €E X QpY.

J

Note that ®(u}) € Xo since puj € Y. For € € Xo, n € Yy,

(€ @5 nle) =D (12478l 1)

j

= Z(é@(#f)[#}*,n*]a)

j
= (€120 4515 n"18))
j

= (£1®(n")),
from which we see that the correspondence ¢ — @ is bijective. O
Corollary 25. Let 4 XB, pYc, aZc¢ be bimodules of finite type. Then

Hom(aX ®pYc,aZ¢c) 2 Hom(gYe,pX* ®4 Zc).

More precisely, an intertwiner T € Hom(4sX ®p Y¢, 4Z¢) and its Frobenius transform
S € Hom(BYC,BX* ®a Zc) is related by

(£* ®a(lS(n) = (IT(E ®B 1))

Lhs. 2 (X ®p Y) ®c Z*)4
(X @ (Y ®c Z*))*
(Y ®c Z2*) ®4 X)B
( )

1%

= (Y ®c (Z*®4 X))?
.hes.

(%

a

Lemma 26. Let 4 Xg, gYc, aZc be bimodules of finite type and suppose that gY¢
and sZc are irreducible. For T' € Hom(aX ®p Yo, aZc¢), its Frobenius transform
S € Hom(gYc,BX* ®4 Z¢) satisfies

dimp Y||S||? = dim, Z||T||%.
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) Let {\} C aX, {p;} CBY {(k} C 4Z De finite bases. We first claim

S(p;) = Z A; ®@a T(Ai ®p p5)-

In fact,

(€7 @ <IS(n) = CIT(¢ ®5 )
= (AT ale, M)xi @5 1)

= Z(C|[g*,-A:]AT(A,~ ®8 1))
= Z({* R4 Clz\f R4 T(Xi ®p 1)).

Since Y and Z are irreducible, TT* and S*S are scalar multiples of identity and hence

dimp Y||S||? = Z(S(uj)ls(uj))
= é(x: ®a T(Ai ®p p;)|€x ®a T(€x ®B 1))
= %’;(T(Ai ®8 #i)|a[Xi, M) T(Ax @B 1))
- i:(T(/\,- ®p 14;)|T(\ @5 1;))
= i;(T(A; ®p p)lalT(X ®5 1), CelCk)
= i;TA(A [Cky T(Ai ®B 15)] alT(Ai @B 1), Cel)
= i;TA(A[T*(ck), Xi ® i) aldi ®p i, T*(G))])
= i;TA(A[T*(ck), Xi ®B pi)hi @B w5 T ()

= Z(T*(Ck”T*((k)) (since {\; ® p;} is a basis)
k
= dim, Z||T|%.
O

Remark. Both ||S|| and ||T|| depend on the choice of traces 74, 7, which is canceled by
the dependence of dimy Z, dimpg Y on traces.
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Notation. In the following, for an intertwiner T', its (linear) Frobenius transform changing
the left actions of bimodules is denoted by T*. Similarly the Frobenius transform changing
the right actions is denoted by T7. Furthermore, in the situation of Lemma (i.e., with
the assumption on irreducibility), the normalization of the adjoint of the left Frobenius
transform T (resp. the right Frobenius transform T7) is denoted by T! (resp. T*). For
example, with the notation of the above lemma, 7! = S and

[dimp Y
R B *

Lemma 27. Let T € Hom(4X ®p Yc,4Z¢) and S € Hom(sZ¢c, sAW¢). Then

(ST) = (1 @4 S)T".

) Let {¢;} be an orthonormal basisin X. Foré € X, n€Y,andw e W

((ST)'(n)|€* ®4 w) = (ST (£ ®p n)|w)
= (T(§ ®p n)|S*w)

= Z (€ ®B 7)|¢G)(G:]S™w)
= Z(T' MIE* ®a G)(G|S*w)
= (T'(n)|¢* ®a ZC:?(C«'IS*W))

= (T'(n)|€* ®4 S*w)
= (T'()|(1 @4 S)(€* ®4 w))
= ((1®4 S)T'(n)|€* ®4 w).

Paragroup

Now we introduce a group-like structure (called paragroup) for a pair N C M of
factor and subfactor with finite index. For A, B = M or N, let G4 p be the set of
equivalence classes of A-B bimodules which appear in 4 L2(M) ®p --- ®n L*(M)p (note
that End(4L*(M) ®n -+ ®n L*(M)p) is finite-dimensional due to Corollary 21). Let

G be a bipartite graph having even vertices g(e?,)en = (0) U Q’(O) and odd vertices

Cf,a)d = C(O)N Ug(o) with n edges between F € g(e?,)en and O E (]( if, a suitable M-action

being restricted to N, one of F or O appears in the other with mult1phc1ty n. For example,
if £ = pmEpM and O = yOpy, then n = dim Hom(nOp, v En). Note that, by Frobenius
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reciprocity, this number can be also interpreted as dim Hom (3 L2(M)®n O, arEar). The
class of the identity bimodule ps L{M)pr (resp. xyL?(N)y) is distingunished and denoted
by *ar (resp. *n). G also admits *-operation induced by taking adjoint bimodules.

G has 4 distinguished subgraphs. Let Gas (resp. Gn) be two of them, which is obtained
by reducing the vertex set g(°> to QS‘(}?M U gﬁf}?N (resp. to gSS}M U (]S\C,J?N). The other two
are given by G, and Gy .

Lemma 28. Graphs Gpr, Gy are connected and locally finite.

".") Local finiteness follows from the finite dimensionality of the space of intertwiners. By

the definition, any vertex in Q(A(}) (resp. ggf,’)) is connected with the irreducible bimodule
mML*(M)y (vesp. NL*(M)p). O

At this stage, edges with same end points are not distinguished; we have only fixed the
number of edges between two vertices and not defined edges themselves. Now we give a
concrete meaning to edges: Take an even vertex X and a odd vertex Y. To be specific,
suppose that X = p Xy, Y = yYar for example, and set n = dim Hom(nYar, nXpr).
Since n is the multiplicity of the irreducible bimodule xYjs in the bimodule yXjr, we
can find pair-wise orthogonal n isometric intertwiners T3, ...,7, from yYjr into vy Xy
We regard such a choice of intertwiners represent n-edges between X and Y, and call it a
representation of G.

It is easy to see that we can find a representation of G so that x-operation keeps it .
invariant. Such representations are called *-representations.

Haar Measure

Definition 29. Let I' be a connected unoriented graph with a distinguished vertex x. For
a function i on the set of vertex I'©), we set

(Ap) ()= > Az, y)u(y), =eTO,
y€er©®

where {A(z,y)}, yer@ denotes the incidence matrix of I' (i.e., A(z,y) = the number of
edges between z and y). A Is called the Laplacian of T.

A Haar measure is, by definition, an eigen-function p of A with positive entries which
is ‘normalized’ in the sense

p(x) = 1.

Note that the eigenvalue of a Haar measure is positive.
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Lemma 30. Let G be a graph introduced above and define functions po, g on the set of
vertices Q'(O) by
po(V) = dimension of V' as left module,

[M: N[Y2p0(V) iV €65y

p(V)y =9 [M: NI"V2uo(V) iV eGPy,
po(V) otherwise.

(Note that we are measuring dimensions with respect to the unique normalized trace.)
Then restrictions of u define Haar mesures for 4 graphs Gar, Gy, Gn, On-

")  We consider the case for Gr- The other cases are checked in a similar way. Let

mMXM € QMM, MYN € gM ~> and T be a representation of an edge between X and Y.
With these notations, we have

MY On LE(M)pr = Sx 1T (s Xr)
MXN =@y rT(MYnN),

from which, taking dimensions, we deduce that
[M : Njpo(Y) = Eﬂo = (Apo)(Y)

Ho(X) = Zuo = (Apo)(X).

Now the assertion follows from this. O

Connection

Here we introduce the notion of ‘connection’ for a representation of G. A sequence of
4 edges, each taken from G, Gy, Gn, Gy and making a closed path in the graph G, is
called a cell. Given a representation of G, a connection W is a C-valued function on the
set of cells defined by

W(C)].Z = S;T;Tlsl,

where, for a cell C, Ty : n(Yi)m — NL*(M) @M Xu, Ta - m(Y2)n — M X ®p L*(M)n,
S1: NZn — NY1 ®um LE(M)N, and Sy : nZn — NL*(M) ®pr (Yo)n are intertwiners
representing 4 edges of C. Note that S,T5T7ST € End(yZn) is a scalar multiple of
the identity because yZy is irreducible. Of course, W has a cohomological ambiguity
coming from the choice of vertices (realization of irreducible bimodules) and edges of
graphs (realization of intertwiners). In other words, W is unique up to cohomology-like

gauge.



47

YAMAGAMI SHIGERU
Let ps Xar € gff}?M and NZn € gg\?’)N and suppose that there is a cell having X and
Z as a part of vertices. In the vector space Hom(nyZy, v Xn), we introduce a positive
definite inner product by
(UlV)lz=V*U, U,VEHom(NZN,NXN).
It is easy to see that the set of intertwiners

{T15:}

indexed by left halves of cells, forms an orthonormal basis of Hom(nyZn, nXn). Similarly,
we have an orthonormal basis

{1252}

indexed by right halves of cells.
In this way, for a fixed pair of vertices ;s Xpr, nZn, W can be interpreted as a unitary
matrix connecting two orthonormal bases.

Theorem 31. For a fixed pair of Y; € gﬁS}N and Y, € 9'53? N

POOKE) e T

p(Y1)pu(Yz) 7

forms a unitary matrix indexed by upper halves and lower halves of cells containing Y;
and Y,.

Before giving the proof of the theorem, we present a lemma.

Lemma 32. Let p be the orthogonal projection onto an N-invariant closed subspace
Z21Q®@n Z C L*(M)®n Z. Then for T € End(p L*(M) ®n Z), we have

™ (T) = 75 (pTp).
) If {\;} is a basis for yZ, then {1 ®x );} is a basis for ;rL?(M) ® v Z and we have
(T) = Z(T(l ®N ANl en )
= > (Tp(1ex X)lp(1 @x X))

= 75 (pTp).
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Proof of the theorem. The idea of the proof is ‘similar’ to the case of the left-right unitar-
ity of W. Here we consider the vector space Hom(pr(Y2)n, ar L2(M) @n (Y1)ar) and make
it a finite dimensional Hilbert space as described above. Let 71 € Hom(n (Y1) ar, NXar),
T, € Hom(M(Y2)N,MXN), S, € Hom(NZN,N(Yl)N), and S, € Hom.(NZN,N(Yg)N)
describe a cell. Since n(Y})ar and pr Xps are irreducible,

Ty — T € Hom(m X, mLH (M) @n (Y1) ar)
is an isometry. So Tlu ’s are orthogonal to each other and
ML (M) ®n (V)m = &x,1, T} (X)
gives an irreducible decomposition. Similarly, we have an irreducible decomposition
MYz On L (M) = &x,1,T5(X).

Thus {T}(T2)*}x 1,1, forms a basis for Hom(pyYs @n L*(M)ar, mL3(M) ®n (Y1)ar).
Then, by Frobenius reciprocity, {(T}(T2)*)"} is a basis of Hom(ar(Ya)n, s L2(M) xn
(Y1)n). Since

(TH(T)") =(Qen T ) =TT ),

they form an orthogonal basis and its normalization is given by
TIT,.
Similarly, for the lower half of a cell,
(1®w S1)Sh

forms an orthonormal basis for Hom(ar(Y2)n, m L?(M)®n (Y1)n). Thus we have obtained
a unitary matrix

(1 ®n S1)SHTITS).
To relate this quantity with the connection W, we calculate as follows: Since
(Lex S)SYTIT)ly, = T;(T})*(1 &n 51)S}
and since 7y;(ly,) = dimps Y5 (here traces on M and N are assumed to be normalized),
po(Y2)(L®n $1)SYTIT:) = mg (T3 (T})* (1 ©n 51)S3)

= T (SYT3 (T (1 @n S1))
n (PSET3 (T})* (1 ®n S1)p)

(Yy) [po(X R
b \/ () T3 T! (L o S0
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Since, for (;,(; € Z,

(1on GI(SH)* TTTI(1 e S1)(1 ey G))
= (T2S3(1®n G)T{(1 &~ S1(G1)))
= (T252(¢)|Th S1(61)),
p(S3)* T3 T{ (1 @n S1)p = S3T3T1S1 = W(C)1z

and hence

io(Ya)(1 & S1)SHTIT,) = \/ to(1y) \/ £0(X) v (Cyrie (1)

)
po(2) | po(¥1)
)
)

po(Ya) [ po(X
po(Z) | po(Vr
which proves the desired assertion (note that puo(Y1)po(Y2) = p(Y1)p(Y2), po(X) = pu(X),
and po(Z) = p(Z2)). |

W(C)po(Z),

mMLE(M)®ny M)y —— mXum

o] T

mLi(M)®Nn ZNn — m(Y2)N

53

a

Example 33.

Let N be a finite factor, G be a finite group, and a : G — Aut(N) be an outer action.
Let M = N x, G and denote by H an N-M module y Mpr. Since N'N M = C1 (cf. the
appendix below), H is irreducible. Note that

NMy =) N,
geG

gives an irreducible decomposition and {NA;}’s are not equivalent to each others. It is
clear that this gives an orthogonal decomposition and each component is invariant under

2 2
N-N action. Since N)\gL is equivalent to L2(N) as left N-module, (N/\gL Jo = NA,.
Let T : NA; — N Ay be an intertwiner of N-N modules. Since T' commutes with the left

action, N, = (N/\gL )o 1s mapped into N, = (N/\hL )Jo. Thus 3a € N such that
T(Ag) = ady.

For b€ N,

T(Agb) = T(ay(b)Ag) = ag(b)T(Ag) = ag(b)ars,
T(Agh) = T(Ay) = adpb = aap(b)As,
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which means that

agz(b)a = aap(b), VbeN.

From the outerness of the action,

scalar if g=nh
a =
0 otherwise,

proving the assertion. )
Now we consider the decomposition of M @y M = H* ®@n H. For p € G, set

ZP;;(Q P9®N/\ EH*®NH

Since
(a)\g ® /\h|a'/\gl ® /\h’) = ([a'/\ ' a/\g]N N[/\h,Ah’])
= T(ag-1(a") Ay, Aglvag-1(a) n[An, An])
:69)91 6h,h’ ’T(a G.), a,a' GN,
we have
(aAn€f;10ARE) = 6hx7(ab®) Zﬂu Dowulg™1)
= 6h,k’r(ab )5,,,6(5,',);5.,"1[(;1.
Thus

Y ME,

p,i,]

is an orthogonal sum in H* ® v H. By the Peter-Weyl’s theorem, {p;;(g7!)},:; forms a
basis in £2(G). In particular, Yh € G we can find a sequence {cf; € C} such that

Z ijl’ij (g™ = bg,h
R

which means that . M¢/; contains A} ®n An. Since 2pi
M-invariant, 1t contains N, ’\h ®N A, a, h € G, which shows that E
in H* @ H. Thus we have obtained an orthogonal decomposition

H*®ny H=>) M.

£,1,)

M { 1s apparently left
MEf; is dense

pi,J

Since, by an easy computation,

’
Hf i €N

Ay = Athzk(h ¢, heg,

.z = z£’
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X! =30, Mg, is an M-M sub-module.
To see that these are irreducible, let T': ij — X7 be an intertwiner of M-M modules.
Since M/} is isomorphic to L*(M) as left M-module, (ME[})o = ME!; and

(X)o = (3 Mef)o =3 (MEF)o.

i

Since T' maps (XJ-”)O into (X{)o, 3aii € M such that

7€) =Y autf.

1

Futhermore, since T' commutes with left action of N, we have

auGN’ﬂM=C1.

P

If we consider the right action of G on £f;, we can show that the matrix A = (a;;) intertwines

p and o. Thus, by Schur’s lemma,

{ a6,'1 ifp=0,
a1 = '

0 otherwise.
In other words,

X/ #2X7 fp#o
X=X/, VYijk

Since N'NM = C1, H = yL}(M)ar and H* = pL?(M)y are irreducible modules.

Next, we show that all the irreducible components in L2(M) ®y --- ®y L%(M) are
contained in the ones already listed. To see this, we first consider the decomposition of
NL* (M) ®n L*(M)n. Using M =37 NA,, we have an orthogonal decomposition

LA(M) ey L*(M)= > N ®n M.
g9,h€G

Since
N/\g Qm Ap D a/\g RN Ap — a/\gh (S N/\gh

gives an isomorphism as N-N module, there appears no new irreducible component in
L} (M)®pN L?*(M). Repeating these arguments, we find that L2(M)Qp - - ®@n L*(M) does
not generate new irreducible modules.

In this way, we have described the vertices. Let us now determine the edges. Since

NHy = Z Ny,
geG
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there is one edge between (the vertex determined by) H and (the vertex of) each irreducible
N-N module. On the other hand, the orthogonal decomposition

N(X )M = Z N(EEM)n

3

and the fact N(Efj M)ar = n Hps shows that there are n = dim p edges between ij and H.

Markov Trace

In this part, von Neumann algebras are assumed to be finite sums of finite factors.
For a von Neumann algebra A of this type, let {p;}1<i<m be the set of minimal central
projections in A. Then a trace 7 of A is determined by the values on {p;}. In the following,
we use the notation 7(p) to express the row vector (7(p1),...,7(pm)).

Let 4 Xp be a bimodule of finite type. Let {p;} (resp. {g;}) be the set of minimal
central projections in A (resp. B). Define a bipartite graph having vertices {p;} and {q;}
with edges if p; Xq; # 0. The bimodule 4 Xp is called connected if the graph obtained
in this way is connected.

Definition 34. Let 4 Xp be a bimodule of finite type and 74, 7 be traces on A, B
~ respectively. 74 and tg are called Markov traces (or balanced traces) if 3a > 0,5 > 0
such that

T4 =atgla, 7B =074|B.

Proposition 35. Let 4 Xp be a bimodule of finite type. If 4 Xp is connected, there is a
pair of balanced traces 74 on A and g on B, which is unique up to positive multiplication.

Before the proof of the proposition, we introduce some useful notations.

Definition 36. Let {p;}, {¢q;} the set of minimal central projections in von Neumann
algebras A, B, respectively. For a bimodule of finite type 4 Xp, define matrices L(X) =
(Li; (X)) and R(X) = (Ri;(X)) by

Li;(X) = dim 4p,(pi X ¢;), Ri;(X) = dim(p; Xq;)n,;,

where dimensions are measured with respect to the normalized traces. (Note that Ap; and
Bg; are factors.)
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Lemma 37.
(1) Let T4, g be traces on A, B respectively. Then we have

Ta(q) = a(P)L(X), 75(p) = m8(9)' R(X).
(i1) If 4 Xp and gYc¢ are bimodules of finite type, then
L(X®pY)=L(X)L(Y), R(X®pY)=R(X)R(Y).

) (i) From Lemma 1 (iii),
Ta(g;) = dimjt X,

=) _dim}(piXq;)
= ZTA(Pi)Lij(X)'

Similarly for 75 (p;).
(i1) is an immediate consequence of Corollary 21 (i). O

Going back to the proof of Proposition 35, for a trace 7 of A, let 7' = 7’  and 75 = 7'|5.
Then 7 is a balanced trace if and only if Ja > 0,

(78)'|a = ar.

Since 15(p) = 78(¢9)*R(X) and 7p(q) = 7(p)L(X) from the above lemma, this condition-
is equivalent to
T(p)L(X)'R(X) = ar(p).

Now we can apply the Perron-Frobenius theory because the positve matrix L(X)!R(X) is
irreducible by the connectedness assumption on X. 0O

Remark. If 74 and 7p are balanced through 4 Xpg and 74 = arg|a, 7B = b7 |B, then

ab = [|L(X)*R(X)].

Proposition 38. Let 4 Xp, pYc be bimodules of finite type and 74, 7, Tc be traces on
A, B, C.
(i) If T4, T are balanced through 4 Xp and 7, 7¢ are balanced through gY¢, then 14,

7c are balanced through 4 X ®p Ye¢.
(i) If either 4 Xp or gY¢ is connected, then 4 X ®p Y¢ is connected.

") (i) We may suppose that 74 = 73]a, 7¢ = 7g|c with 78 = a7tly|p, 7B = c75|p for
suitable a > 0 and ¢ > 0. Let {p;}, {¢;}, {rx} be the set of minimal central projections in
A, B, C, respectively. Then by a repetition of Lemma 36 (i), we have

Ta(p) = acta(p) L(X)L(Y)' R(Y)* R(X)
1c(r) = acre(r)' R(Y)' R(X)L(X)L(Y).
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Now Lemma 37 (ii) shows that 74 and 7¢ are balanced (cf. the proof of Proposition 35).
(i1) Suppose that 4 X ®p Y¢ is not connected, i.e., minimal central projections in A and

in C split into two parts. Then the set of minimal central projections in B splits into two
parts and hence both 4 Xp and gY¢ are not connected. O

Now we extend Proposition 20.

Proposition 39. Let A, B finite sums of finite factors with normalized traces T4, Tp
which are balanced through a bimodule 4 X g of finite type. If gY is a left B-module, then

dim’ X ®p Y = dim2 X dim}? Y.

'} A careful reading of the proof of Proposition 20 gives the result. O

The index of a bimodule introduced before is now extended to non-factor case. Let
4Xp be a connected bimodule. The index [X] = [4 XB] is defined to be

[X] = dim’ (X) dim(X) 7,
where 74 and g denote unique normalized balanced traces.
Remark. [X] = ||L(X)R(X)].

Corollary 40. Let 4 Xp, gYc be bimodules of finite type and suppose that there exist
traces T4, 7B, Tc of A, B, C such that 74, Tg and Tp, ¢ are balanced through X and Y
respectively. Then

[4X ®B Yc] = [4aXB][BYC]

Jones Construction

In this part, as an application of (the existence of) Markov traces, we shall construct so
called Jones projections via Frobenius transform.

Lemma 41. Let 4 X be a bimodule of finite typé with 74, T traces on A, B respectively,
and {y;} be a basis for (X)3F. If T5|a = a4 for some a > 0, then

3" alnj, 4] = dim(X) P 14.

J
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") Let {p;} be the set of minimal central projections in A. Since

a(ZA[#j,ﬂj]) = alaps, u;]

=> 4D _lmk, a8, 1)
F k
= ZA[!%;I‘J’ [an;, i) 8]

= ZA[M,#J‘ [4i, " k] B]

7,k
= 5 alin ]
k

= (3 alue, milla, Va€ 4,
k

pi 2_; alpj, p;) is a scalar multiple of p;. To determine the scalar, we first remark that
{pip;}; is a basis for (p;X)p, which implies that

Ta(pi Y alws,ps]) = TA(ZA[piﬂﬁpi”j]) = Z(Piﬂj |pin;)

J J J
=dim(p; X)F = 75(pi)

and hence ! ()
Tg\Pi
. ) = = ap:
pz(Zj:A[ﬂl)/‘J]) TA(pi)p‘ Pi,
by the assumption 7z|4 = ar4. Summing up these relations over i, we get the asser-
tion. O

Now suppose that 4 Xpg is connected and let 74, 75 be the normalized balanced traces.
Let ex € (X ®B X*)4 be a vector corresponding to 1x € End(4Xp) by Lemma 24, and
call it the standard vector.

Lemma 42.
(i) (ex|€ ®p €%) = (¢[¢') for £, ¢’ € Xo.
(i1) For a basis {y;} of (X)7F,

ex =) 1 ®p 4.

J
(iii) Vo € (X ®5 Y)o, |
A[‘P,fx] = [€Xa$0]A~

(IV) A[E, ®B 6*’6)(] = A[€’7£]7 for 61 gl € Xo.
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(V) A[Gx,éx]'—‘dinglA.
) (1) and (i1) follow from the correspondence ex <= 1x given in Lemma 24. (iii)

is a consequence of the A-invariance of ex. (iv) results from (i) and the definition of
operator-valued inner product. (v) is a combination of (ii) and Lemma 41. O

Remark. From (ii) and the proof of Lemma 23 (ii), ex € (X ®p X*)o.

Again, by Lemma 24, ex ®4 ex € (X ®p5 X*)®4 (X ®p X*))* defines an intertwiner
e% € End(4X ®p X%). Its concrete form is given by

ex (€' ®p €) =ex|ex, & ®p €la =exalt' €], £,& € Xo.

Since the adjoint of €% is associated with (ex ®4 €x)* = €k Q4 €% = ex ®4 €x (see
Lemma 24), % is self-adjoint. Now the calculation

exex (€ ®p &) = ex(exal€,€]) = ex(ex)alé’, €]
= Z ex (1; ®p p7)al€', €]
Jj

= ex ZA{pj,uj]Ale',ﬂ

dim(X)FPex alé', €] (by Lemma 41)
dim(X) ek (€' ®5 £7),

shows that
1 0

is a projection in End(4X ®p X73), which is called the Jones projection.
Lemma 43. In X ®pg X* ®4 X, we have the relation

(1®ex:)ex @1)(1®exs) = [X] (1@ ex-).
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") Take bases {\;} for 4 X and {y;} for Xp. For &, &, & € Xo,
(dim Xp)(dim 4 X)?(1 ® ex+)(ex ® 1)(1 ® ex+)(&L ®B € ®a &3)
= (1®ex.)(ex ® 1)(1® e%.) (61 ®p & ®4 £3)
= (1@ &)k ®1)(& ® A ® Ailéa, £3])

= (10 %) © ptaler, \] ® Ailbe, €3]5)

ilj

= Z/‘j ® ex+[a[Mi, &1]pi, A€o, &3] BB

in

= ij ® exs[pi, al€1, Ai]Ai[€2, &3] B] B
= Zﬂj ® ex=[pj,€1(é2,&)B]B
J

= Z/‘i (15, 61(€2, &3] BB ® €x+
J

= &1[€2,€3]B ® €ex-
=(1® % )& ® & @ £3)
=dim 4 X ((1 ® ex+)(€1 ® €5 @ &3).

a
Now we define towers of algebras.
Definition 44. Define two sequences of algebras by
Ay = End(Xp) C Az = End(X ®p X}) C A3 = End(X ®p3 X* ®4 Xp) C...,
By = End(4 X)) C By = End(pX* ®4 X)°”? C B3 = End(4 X ®p X* ®4 X)rr ...,

which are called the towers of algebras associated with a bimodule 4 X B.
On A; and B;, we introduce normalized traces T, and 7B; as the normalization of
canonical traces associated with defining modules of each algebras.

IhV=--®:X®X*"®4X®p... (atensor product of finite number of bimodules),
mark one of ®’s and split the tensor product into two parts, and then consider the algebras
of intertwiners in the left and right sides of the splitting: For example, if we split at a point
in which A acts, then the left and right algebras in the tensor product are defined by

End(®3 X:;), End(AX ®B...).

They are one of algebras in the towers of algebras and, by Lemma 19, commutants of
each other. In particular, the original tensor product V admits a structure of bimodule.
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Similarly, if we mark two points in the tensoring operations and divide V into three parts,
then the left and the right parts give rise to algebras on V which commute each other. In
this way, we have many kinds of bimodule structures in V. Say, V' = 4,Vp, in this fashion.
Then, by Proposition 38 (i), 74, and 75, are balanced through V.

Remark. The sets of left-(or right-)bounded elements are the same for any bimodule
structures described above (cf. Lemma 23 (i)).

Lemma 45. Let A; act on X ® g X* from left and right and regard it an A,-A; bimodule.
(i) ex € (X ®p X™)*.
(i) (a1ex|ex) =dim XpgTa,(a1), for a1 € A;.
(ii1) A; D a; +— ayex extends to an isometric isomorphism L?(A;) — X ®p X*, and
(X ®p X*,ex) gives a standard representation of A; (here the conjugation * stands for
the J-involution in the standard representation).

) (i) For a; € A; = End(Xp), and &, &' € Xo,

(a1 ®p Dex |’ ®p €*) = (a1€]¢') (by Lemma 42 (i))

(ex|¢' ®p €*a]) (by Lemma 42 (1))
(ex|(§ ®p £*)(1®p a1)*)
(

ex(1®p a1)|f’ ®p £).

I

(i) For a basis {y;} of Xp,
(arex]ex) = Z(am]- ®p pilex) (by Lemma 42 (ii))
J

= Z(alﬂjlpj) (by Lemma 42 (i))

=Tx(a1)  (by Corollary 13 (i))

= 7x5(1)74,(a1)
= dim Xp74,(a1).

(111) By (ii) just proved, we need to show the following two facts; ex is cyclic for A; and
(a1€x)* = exal for a4 € A;.

For the proof of cyclicity, we express Xp as L%(B)p @ --- @ L*(B)p @ pL*(B)p and
use the matrix form of End(Xp). Then it is easy to see that {(a; ®p 1)ex;a1 € A1} (ex
should be written in terms of the basis associated with the above expression) is a dense
linear subspace of

X®pX*=(L*(B)p® -0 L*(B)p®pL*(B)p)®p (L (B)p®:--®L*(B)p ®pL*(B)s).
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The property related with the involution * follows from

((arex)*|€' @p €") = (£ @B £ |arex)
= (416 ®p £ |ex)
= (ay)¢’)
= (ex|¢’ @B € ay)
= (exai|¢ @B £").

a
Corollary 46. 4, [p, ez]ex = (dim Xp)y for ¢ € (X @5 X*)o.

') This follows from the fact that (dim Xp)~"/%ex corresponds to 14, in L%(Ay) (cf.
Example 10). O

Proposition 47. The representation of A; on (X ®p X*)®4 - Q4 (X ®p X*) (i-times)
is a standard representation with * the canonical involution.

") Instead of 4 Xp, use 4,(X ®p X* ®4 X ®p -+ ® (X* or X))(4 or B) in Lemma 45
(). O

Definition 48. Define a sequence of projections ej,es,... In X Qg X* ®4 X ®p ...
(finitely many tensor product) by

e1=ex Qalx ®plx.Qa4...
es=1x Qpex«Qplxs Qa4 ...
e3=1x®plx.Qaex D4 ...

Lemma 49. We have

(1X ®pB End(XB)OPP) N {ex}l =1xQ®g A In End(AX ®B X*).

') Let S € End(Xp) and suppose that the right action of 1x ®p S commutes with ex.
From

(ex(€' ®p €*))(1®B S) = (4[¢,€lex)(1®B S) = a[€',€]lex (1 ®B S)

and

ex((¢' ®B€")(1®8 S)) =ex(§ ®p (S5*E)*) = al€’, S*E]ex,

we have

Al€, Elex(1®@p S) = 4[¢', S*E]ex.
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Taking 4[ex, -] in this relation (note that ex (1®pS) € (X®p X*)o since ex € (X®p X*)o)
and then applying 74(:), we have '

(alex,ex(1®p S)EIE) = (alex, ex]S™E[E).
Since alex,ex] = dim Xpls (Lemma 42 (v)), this implies
S(¢') = (dim Xg) ! slex (1 ®p S), ex]¢,

and hence S 1s expressed as a left action of an element in A. O

Lemma 50. Let 4 Xp, pYc be bimodules with balanced traces and set 4 Z¢ = 4 X QpYc.
If A= End(Xp), then

ez=1xQR®pey ®plx: MXQRBY QQcY* R X*.

") Since A= B’ if we use Lemma 19in ZQ®¢c Z* =X Q@Y ®c Y* ®p X*, we have

End(4Z ®c Z") =1x ®x End(gY @c Y* @p X*)
End(Z®c Z}) = End(X @Y Q¢ Y3) ®p 1x-,

and then

End(AZ®C Zj&) =1x ®p End(BY ®Rc Yg) ®p 1x-.

Since ez € End(4Z ®@c Z%), we can set
6%'——- lx ®p T ®p 1x-,

with T' € End(gY ®¢ Yj). Then, for a basis {\;} of 4 X and 5,7, € Yy,

Z(/\z‘ ®p M ®c N, OB /\;|€%(/\i ®8 M2 Oc 13 ®p Aj))

i)j

= Z(/\i ®B M ®c N @B Aj|Xi @8 T(n2 ®c 15) @B A}).
i,J
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Since €%({' ®c ¢*) = ez 4[(’, (], the left hand side is calculated as

Y (A @ m ®c nf ®p Xlezal\ ®p m, Aj @5 12))

iJ

=Y (A ®8 mlalki ®5 12, ) ®5 2]\ ©5 M)
i

=Y (% ®8 mlalhi, A Blnz, ol ©5 m)
i

= Z((ZA[/\]‘B[TDJD], Ai)Ai) @B mlA; @B m)

J 1)

= Z(’\J'B[ﬂz, 12) ®p M|A; ®5 M)
Jj

= Z(/\jB["?; n2lB [, m]|A;)

J

= Z 78(8 (12, n21B[m, m][A;, Aj]1B)

j
=dim s X 15(B[72, 72]B[Mm,m]) (Lemma 41)

= dim 4 X (1 ®c n}ley (12 ®c 73)).

On the other hand, the right hand side is calculated as

Y (i @8 m ®c 7 ®8 A\ ®8 T(n2 ®c n3) ®p A})
i,J
=Y (M, Milsm ®c 11 1T(n2 ®c 13) [N, AslB)
i,j
= (dim 4 X)*(m ®c 0} |T (12 Oc n3)).
Comparing the results (note that dim Z¢ = dim Xp dimY¢, and dim 4 X dim Xp = 1 since

A = B'), we have
€y = (dlm Zc)—lT,

le.
ez =1x Q®pey @p 1x-.
|

Proposition 51.
(1) {ei}i>1 satisfies the following relations:

eixr1€ieix1 = [X] leixr,

€i€j = €;€;, IZ—JIZQ
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(11) A,‘ = (Al, €1y ooy 6,‘_1) (Z Z 2)

") (i) is a consequence of Lemma 43.

(i1) We shall prove by the induction on i. When i = 2, this is a consequence of Lemma 49.
Suppose that this is valid for some i. To be specific, consider the case i = 2k. Applying
Lemma 49 to

2k—1 times

Z = pp (X ®pX*®4- 04 X)Op X5,

We have
(A; ®p lz+,ez2) = Aj41 Qa L.

Since ez = ¢; ®4 1 by Lemma 50, the induction proceeds. O
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