
124

Survey on Geometry of Classical Groups over Finite
Fields and Its Applications

Dedicated to Professor Hsiao-Fu Tuan on His Eightieth Birthday

Zhe-xian Wan

The Chinese Academy of Sciences

1. The Germ of Our Study
Let $F_{q}$ be a finite field with $q$ elements, where $q$ is a prime power, $F_{q}^{(n)}$ be the
n-dimensional row vector space over $F_{q}$ , and $GL_{n}(F_{q})$ be the general linear
group of degree $n$ over $F_{q}$ . $GL_{n}(F_{q})$ acts on $F_{q}^{(n)}$ in the following way:

$F_{q}^{(n)}\cross GL_{n}(F_{q})$ $arrow$ $F_{q}^{\langle n)}$ ,
(1)

$((x_{1},x_{2},\cdot,x_{n}),T)-\cdot$. $\mapsto$ $(x_{1},x_{2}, \cdots,x_{n})T$ .

Let $P$ be an m-dimensional subspace of $F_{q}^{(n)}$ and $v_{1},$ $v_{2},$ $\cdots,$ $v_{m}$ be a basis of
$P$ , then

$(\begin{array}{l}v_{1}v_{2}\vdots v_{m}\end{array})$

‘

(2)

is an $\eta\chi\cross n$ matrix over $F_{q}$ of rank $m$ . We call the matrix (2) a $maiz^{\vee}ix$

representation of the $sub\backslash$space $P$ and use also the same letter $P$ to denote the
matrix (2) if no ambiguity arises. The action (1) of $GL_{n}(F_{q})$ on $F_{q}^{(n)}$ induces
an action on $tl\iota e$ set of subspaces of $F_{q}^{(n)}$ such that $T\in GL_{n}(F_{q})$ carries the
subspace $P$ into $PT$ . We may propose the following problems:

(i) lVhat are the orbits of subspaces of $F_{q}^{(n)}$ under the action of $GL_{n}(F_{q})$ ?
(ii) How many orbits are there ?
(iii) lVhat are the lengths of the orbits ?
(iv) XVlxat is the number of subspaces in an orbit contained in a given

subspace ?
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The answers to these four problems are well-known; they are:
i) Two subspaces belong to the same orbit if and only if their dimensions

are equal.
ii) There are altogether $n+1$ orbits.
iii) Denote the length of the orbit of m-dimensional subspaces $(0\leq m\leq n)$

by $N(m,n)$ , then
れ

$(q^{i}-1)$

$N(m, n)= \frac{\=n-m+1}{\prod_{i=1}^{m}(q^{i}-1)}$
. (3)

iv) The number of k-dimensional subspaces contained in a given m-dimensional
subspace $(0\leq k\leq|?1\leq n)$ is $N(k, m)$ .

2. The Problems We Are Interested in

It is natural to propose the following problem.

Use any one of the other classical groups, such as the symplectic group $Sp_{\text{れ}}(F_{q})$

(where $n=2\nu$ ), the unitary group $U_{n}(F_{q})$ (where $q$ is a square), or the orthog-
onal group $O_{n}(F_{q})$ (where $n=2\nu+\delta$ and $\delta=0,1$ , or 2) to replace $GL_{n}(F_{q})$ ,
then study Problems $(i)-(iv)’$ .

Now let us introduce the definition of the other classical groups.

Let $n=2\nu$ . It is well-known that the cogredience normal form of $2\nu\cross 2\nu$

nonsingular alternate matrices is

$K=(\begin{array}{ll}0 I^{(\nu)}-I^{(\nu)} 0\end{array})$ . (4)

Let
$Sp_{2\nu}(F_{q})=\{T\in GL_{2\nu}(F_{q})|TK{}^{t}T=K\}$ . (5)

Then $Sp_{2\nu}(F_{q})$ is a group with respect to the matrix multiplication, called the
symplectic group of degree $2\iota/$ over $F_{q}$ .

Let $q=q_{0}^{2}$ , where $q_{0}$ is a prime $po\backslash \backslash \cdot er$ . $F_{q}=F_{q_{0}^{2}}$ has an involutive automorphism

$-:aarrow c\iota-$ , (6)

whose fixed field is $IF_{q0}$ . Let

$\iota/_{n}(F_{q})=\{T\in GL_{\text{れ}}(F_{q})|T{}^{t}\overline{T}=I^{(n)}\}$ . (7)



126

Then $U_{n}(F_{q})$ is a group with respect to the matrix multiplication, called the
unitary $gro\cdot up$ of degree $n$ over $F_{q}$ .

Let $q$ be a power of an odd prime and $z$ be a non-square element of $F_{q}$ . The
cogredience normal forms of $n\cross n$ nonsingular symmetric matrices over $F_{q}$ are

$S_{0}=(\begin{array}{ll}0 I^{(\nu)}I^{(\nu)} 0\end{array})$ , (8)

$S_{1,d}=(\begin{array}{lll}0 I^{(\nu)} I^{(\nu)} 0 d\end{array})$ , (9)

where $d=1$ or $z$ , and

$S_{2}=(\begin{array}{llll}0 I^{(\nu)} I^{(\nu)} 0 1 -z\end{array})$ . (10)

Corresponding to these four cases, $n$ is equal to $2\nu,$ $2\nu+1,2\nu+1$ , and $2\nu+2$ ,
respectively. We use $n=2\nu+\delta$ and $S_{5,d}$ to cover these four cases, where
$S=0,1$ , or 2, $d=1$ or $z$ when $\delta=1$ , and $d$ disappears when $\delta=0$ or 2. Let

$O_{2\nu+\iota^{\backslash },d}(F_{q})=\{T\in GL_{2\nu+\delta}(F_{q})|TS_{5,d}{}^{t}T=S_{\delta,d}’\}$. (11)

Then $O_{2\nu+5,d}(F_{q})$ is a group with respect to the matrix multiplication, called
the orthogonal group of degree $2\nu+\delta$ over $F_{q}$ . It is easy to prove that
$O_{2\nu+1,1}(F_{q})$ and $O_{2\nu+1,z}(F_{q})$ are isomorphic. Thus it is enough to consider
the three orthogonal groups $O_{2\nu}(F_{q}),$ $O_{2\nu+1,1}(F_{q})$ , and $O_{2\nu+2}(F_{q})$ . We write
$O_{2\nu+1}(F_{q})$ simply for $O_{2\nu+1,1}(F_{q})$ .

XVhen $F_{q}$ is of characteristic 2, there are also three types of orthogonal groups
$O_{2\nu+5}(F_{q}),$ $\backslash \backslash ’\cdot here\delta=0,1$ , or 2, but their definitions are omitted.

3. The History of the Problems

In 1937 E. $1\cdot\backslash \prime itt[1]$ studied problem (i) for the orthogonal group over any field
$F$ of characteristic $\neq 2$ . Let $S$ be an $n\cross n$ nonsingular symmetric matrix



127

over $F$ . The orthogonal group of degree $n$ over $F$ relative to $S$ , denoted by
$O_{\text{れ}}(F, S).$, is defined to be

$O_{n}(F, S)=\{T\in GL_{n}(F)|TS{}^{t}T=S\}$ (12)

The famous Witt’s Theorem asserts that two subspaces $P_{1}$ and $P_{2}$ of $F_{q}^{(\text{れ})}$

belong to the same orbit of Oれ $(F, S)$ if and only if $\dim P_{1}=\dim P_{2}$ and $P_{1}S{}^{t}P_{1}$

and $P_{2}S{}^{t}P_{2}$ are cogredient. Later Witt’s theorem was generalized to other
classical groups by C. Arf [2], $J$ , Dieudonn\’e $[3, 4]$ , L. K. Hua [5], and V. Pless
[6]. It is worth to mention that Hua [5] gave also a simple matrix proof of the
generalized lVitt’s theorem.

In 1948 B. Segre [7] studied problem (iii) for the orthogonal group over $F_{q}$ ,
but he restricted himself to consider only totally isotropic or totally singular
subspaces corresponding to cases when $q$ is odd or even, respectively. For
simplicity we follo$\backslash r$ the notation of the previous paragraph, thus assume that
$IF_{q}$ is characteristic $\neq 2$ . A subspace $P$ of $F^{(n)}$ is called totally isotropic,
if PS ${}^{t}P=0$ . By Witt’s theorem totally isotropic subspaces of the same
dimension of $F^{(\text{れ})}$ form an orbit under $O_{n}(F, S)$ . Segre determined the lengths
of the orbits of totally isotropic subspaces of the same dimension of $F_{q}^{(2\nu+5)}$

under $O_{2\nu+5}(F_{q})$ . He used geometric language to state his results as follows.
The number of m-dimensional flats lying on a nondegenerate quadric in an
$(n-1)$-dimensional projective space over $F_{q},$ $PG(n-1, F_{q})$ , is equal to

$\Pi^{\nu}(q^{i}-1)(q^{i+\delta-1}-1)$

$\frac{i=\nu-m}{\prod_{i=1}^{m+1}(q^{i}-1)}$
(13)

where-l $\leq?t\leq\nu-1,$ $\nu=\frac{n-1}{2}$ when $n$ is odd, and $\nu=\frac{n}{2}$ or g–l when $n$ is
even and the quadric is of the hyperbolic type or the elliptic type, respectively.
He used $0\sigma eomet_{I}\cdot ic$ method to deduce this formula which holds also for the case
of characteristic 2.

In 1964 three students of mine at that time and myself [8-11] studied problem
(iii) for the groups $Sp_{2\nu}(]r_{q}^{1}’.U_{\tau\iota}(F_{q})$ (where $q$ is a square), and $O_{2\nu+\delta}(F_{q})$

(where $\delta=0,1$ . or 2). $\backslash \backslash fe$ determined not only the lengths of those orbits
of totally isotropic or totally singular subspaces but also the lengths of all
the orbits. Our methods is algebraic and our results were compiled in our
monograph [12].
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In 1965 V. Pless [13] computed the lengths of those orbits of totally isotropic
subspaces of $l\Gamma_{q}^{(2\nu)}$ under the group $Sp_{2\nu}(F_{q})$ and the number of‘totally isotropic
subspaces of the same dimension of $F_{q}^{(2\nu+5)}-$(where $\delta=1$ or 2) with respect
to a $(2\nu+\delta)\cross(2\nu+\delta)$ nonsingular non-alternate symmetric matrix over $F_{q}$

when $q$ is even.

In 1966 R. C. Bose and I. M. Chakravarti [14] determined the lengths of those
orbits of totally isotropic subspaces of $F_{q}^{(\text{れ})}$ under the group $U_{n}(F_{q})$ (where $q$

is a squre of a prime power).

In 1966 the author studied problem (iv) for the group $Sp_{2\nu}(F_{q}),$ $U_{n}(F_{q})(q$ is
a square), and $O_{2\nu+5}(IF_{q})$ (where $\delta=0,$ $!$ , or 2) and obtained closed formulas
for the number of subspaces in an orbit under each of these group contained
in a given subspace. These results were also compiled in [12].

4. Recent Results

In the early nineties I returned to the study of the geometry of classical groups
over finite fields and obtained the following results.

1) Problems (i) and (ii) for the symplectic, unitary, and orthogonal groups
over finite fields are studied [15-18]. Of course, Witt’s theorem and its gen-
eralizations give a solution of problem (i), but we would like to use a set of
numerical invariants to characterize an orbit and to derive the conditions sat-
isfied by them that such an orbit exists, then the number of orbits can be
computed.

Take the symplectic case as an example. Let (4)

$K=(\begin{array}{ll}0 I^{(\nu)}-I^{\langle\nu)} 0\end{array})$ .

Then the $s\backslash \vee:mplectic$ group of degree $2\nu$ is defined as (5)

$Sp_{2\nu}(F_{q})=\{T\in GL_{2\nu}(F_{q})|TK^{\ell}T=K\}$ .

Let $P$ be an $?n$ -dimensional subspace of $F_{q}^{(2\nu)}$ . Clearly $PK{}^{t}P$ is alternate,
hence rank $PK{}^{t}P$ is $e\backslash \cdot\cdot en$ . Assume that rank $PK{}^{t}P=2s$ , then $P$ is said
to be of type $(???, \vee^{\backslash }\backslash )$ . From Dieudonn\’e’s generalization [3] of Witt’s theorem
it follows that two subspaces belong to the same orbit under $Sp_{2\nu}(F_{q})$ if and
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only if they are of the same type. It can be proved [15] that type $(m,s)$ of a
subspace satisfies the inequality

$2s\leq m\leq\nu+s$ (14)

and for any pair of non-negative integers $(m, s)$ satisfying (14) there exist sub-
spaces of type $(m, s)$ . Thus the number of orbits of subspaces under $Sp_{2\nu}(F_{q})$

is equal to the number of pairs of non-negative integers $(m, s)$ satisfying (14).
We computed that the latter is equal to

$\frac{1}{2}(\nu+1)(\nu+2)$ . (15)

By the way we mention that the length $N(m, s;2\nu)$ of the orbit of subspaces
of type $(m, s)$ of $F_{q}^{(2\nu)}$ given in [8] is

$\Pi^{\nu}$ $(q^{2i}-1)_{m-2s}$

$\Lambda^{T}(?n, s;2\nu)=q^{2s(\nu+s-m)}\frac{i=\nu+s-m+1}{\prod_{i=1}^{s}(q^{2i}-1)}\prod_{i=1}(q^{i}-1)$
(16)

This is the solution of problem (iii) for the symplectic group.

2) The singular symplectie, unitary, and orthogonal groups are introduced and
the problems $(i)-(iv)$ are studied $[19, 20]$ .

Take the singular symplectic case as an example. Let

$I_{\grave{\llcorner}’l}=(\begin{array}{ll}K 0^{(l)}\end{array})$ (17)

where $K$ is the nonsingular alternate matrix (4). Define

$Sp_{2\nu+l,\nu}(F_{q})=\{T\in GL_{2\nu+l}(F_{q})|TI\iota^{\nearrow}\iota {}^{t}T=K_{l}\}$ , (18)

which is called the singular symplectic group over $F_{q}$ . Clearly, $Sp_{2\nu+l,\nu}(F_{q})$

acts on $F_{q}^{(2\iota/+l)}$ in an obvious $wa\}^{r}$ . Then problems $(i)-(iv)$ can be studied for
$Sp_{2\nu+l,\nu}(F_{q})$ , and complete results are obtained.

$Si_{1}nilarly$, singular unitary and orthogonal groups over $F_{q}$ can be defined, and
complete results for problems $(i)-(iv)$ are obtained.

A natural question arises. Why do we study the geometry of singular sym-
plectic, unitary, and orthogonal groups over finite fields ?
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The answer to problem (iv) for the general linear group $GL_{\text{れ}}(F_{q})$ is easy.
The number of k-dimensional subspaces contained in a given m-dimensional
subspace $(0\leq k\leq m\leq n)$ of $F_{q}^{(n)}$ is $N(k, m)$ : However, problem (iv) for the
other classical groups is not so easy.

Take again the symplectic case as an example. Now assume that $\prime Sp_{2\nu}(F_{q})$

acts on $F_{q}^{(2\nu)}$ . $Gi_{1^{i}}\cdot el1$ a subspace $P$ of type $(rm, s)$ , where $(m, s)$ satisfies (14),
we would like to compute the number of subspaces of type $(m_{1}, s_{1})$ , where
$2s_{1}\leq m_{1}\leq\nu+s_{1}$ , contained in $P$ . Denote this number by $N(m_{i}, s_{1} ; m, s;2\nu)$ .
We may choose a matrix representation of $P$ , denoted by $P$ again, so that

$PK{}^{t}P=(\begin{array}{lll} I^{(s)} -I^{(s)} 0 0^{(m-2s)}\end{array})$ . (19)

Let $P_{1}$ be a subspace of type $(?n_{1}, s_{1})$ contained in $P$ . As an $m_{1}$ -dimensional
subspace of the m-dimensional space $P,$ $P_{1}$ has a matrix representation, de-
noted by $P_{1}$ again. which is a $m_{1}\cross??t$ matrix of rank $?n_{1}$ . Then as a subspace
of $F_{q^{\underline{9}}:}^{(\nu)}$ the subspace $P_{1}$ has $P_{1}P$ as a matrix representation. Similarly, we
can choose the matrix $P_{1}$ so that

$(P_{1}P)K{}^{t}(\acute{P}_{1}P)=(\begin{array}{lll}0 I^{(s_{1})} -I^{(s_{1})} 0 0^{\langle m_{1}-2s_{1})}\end{array})$ . (20)

Then

$P_{1}(\begin{array}{lll}0 I^{(s)} -I^{(s)} 0 0^{\langle m-2s)}\end{array})\ell P_{1}=(\begin{array}{lll}0 I^{(s_{1})} -I^{(s_{1})} 0 0^{(m_{1}-2s_{1})}\end{array})$ . (21)

Thus for any $T\in Sp_{2s+(m-2s).s}(F_{q}),$ $P_{1}TP$ is also a matrix representation of
a subspace of type $(??\iota_{1}, s_{1})$ and contained in $P$ and as a subspace of $P$ it
is represented by the matrix $P_{1}T$ . Ther\’efore it is natural to introduce the
singular symplectic group $Sp_{2s+(m-2s),s}(F_{q})$ and study how the subspaces of
$F_{q}^{(\tau m)}$ are subdivided into orbits under $Sp_{2s+(m-2s),s}(F_{q})$ , the length of each
orbit, and what orbits are contained in $P$.

3) For $psendoarrow sy_{I1}plectic$ groups over finite fields of characteristic 2 problems
$(i)-(i\backslash ’)$ are also studied [21. 22].
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Now let ][$4^{\urcorner}q$ be a finite field of characteristic 2, then any $n\cross n$ nonsingular
non-alternate symmetric matrix over $F_{q}$ is cogredient to either

$S_{1}=(\begin{array}{lll}0 I^{(\nu)} I^{(\nu)} 0 1\end{array})$ , when $n=2\nu+1$ is odd (22)

or

$S_{2}=(\begin{array}{llll}0 I^{(\nu)} I^{(\nu)} 0 0 1 l l\end{array})$ , when $n=2\nu+2$ is even. (23)

We use $S_{5}$ ( $\delta=1$ or 2) to cover these two cases. Define the pseudo symplectic
group of degree $2\nu+\delta$ over $F_{q}$ to be

$Ps_{2\nu+5}(F_{q})=\{T\in GL_{2\nu+5}(F_{q})|TS_{5}^{\ell}T=S_{5}\}$ . (24)

It was proved by Dieudonn\’e [3] that $Ps_{2\nu+1}(F_{q})\simeq Sp_{2\nu}(F_{q})$ and $Ps_{2\nu+2}(F_{q})$

has a normal series with $Sp_{2\nu}(F_{q})$ as one of its factors and $F_{q}$ as all the other
factors. Thus from a group theory point of view the pseudo symplectic group
$Ps_{2\nu+5}(F_{q})$ is less interesting. However, its geometry is very peculiar. Let $P$

be an m-dimensional subspace of $F_{q}^{(2\nu+5)}$ , then $PS_{5}{}^{t}P$ is a symmetric matrix
and is cogredient to one of the following normal forms.

$(\begin{array}{lll}0 I^{(s)} I^{(s)} 0 0^{(m-2s)}\end{array})$ , (25)

$(\begin{array}{llll}0 I^{(s)} I^{(s)} 0 1 0^{(m-2s-1)}\end{array})$ , (26)

and

$(\begin{array}{lllll}0 I^{(s)} I^{(s)} 0 0 l l l 0^{(m-2s-2)}\end{array})$ . (27)

$P$ is called a.subspace of type ( $\underline{)}\vee^{-}$ where $\tau=0,1$ , or 2 corresponding
to the above three nornial forms (25), (26), or (27), respectively, and $\overline{c}=0$ or
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1 corresponding to the cases $e_{2\nu+1}\not\in P$ or $e_{2\nu+1}\in P$ , respectively, $e_{2\nu+1}$ is the
$(2\nu+\delta)$-dimensional row vector whose $(2\nu+1)$-th component is 1 and other
components are all $0$ . It is proved that two subspaces of $F_{q}^{(2\nu+5)}$ belong to the
same orbit under $Ps_{2\nu+\delta}(F_{q})$ if and only if they are of the same type. It is
also proved that subspaces of type $(m, 2s+\tau, s, \epsilon)$ exist if and only if

$(\tau, \vee\epsilon)=\{\begin{array}{l}(0)0),(l,0),(l,l),or(2,0),when\delta=1(0,0),(0,1),(1,0),(2,0),or(2,1),when\delta=2\end{array}$ (28)

and
$2 \backslash \backslash +\max\{\tau, ’\}\leq m\leq\nu+s+[(\tau+\delta-1)/2]+\epsilon$ . (29)

Using conditions (28) and (29) we can compute the number of orbits of sub-
spaces under $Ps_{2\nu+\dot{b}}(IF_{q})$ , which is equal to

$\underline{\frac{1}{7}}(\nu+1)((\nu+4)\delta+3\nu)$ . (30)

Denote the length of the orbit of subspaces of type $(m, 2s+\tau, s, c)$ by $N(m,$ $2s+$

$\tau,$ $s,$ $\in;2\nu+\delta$ ). Then

$N(?n, 2s+\tau, s, \vee\Leftrightarrow’:2\nu+\delta)=q^{n_{0}+2(s+(2-5)[\tau/2])(\nu+s-m+5[(\tau+1)/2]+(5-1)(\tau-1)(\tau-2)\underline{\cdot}/2)}$

$\cross\frac{:.\prod_{=\nu+\cdot-m+\{(\tau+\delta-1)/2l+e+1}^{\nu}(q^{2}-1)}{\prod_{*=1}^{\}(q^{2:}-1)\prod_{=:1}^{m-2s-\max(\tau.e)}(\sigma^{:}-1)}$

(31)
where $n_{0}=1$ when $\delta=1$ , and $n_{0}=m,$ $0,2(\nu+1)-- m,$ $2(\nu+1)-m$ , or
$2(\nu+1)-rn$ corresponding to the cases $(\tau,\epsilon)=(0,0),$ $(0,1),$ $(1,0),$ $(2,0)$ , or
$(2, 1)$ , respectively, when $\delta=2$ .

In order to study problem (iv) for the pseudo symplectic group $Ps_{2\nu+\delta}(F_{q})$

the singular pseudo symplectic group is introduced and for which problems
$(i)-(iii)$ are studied [22].

4) The affine classification of quadrics over finite fields is obtained $[23, 24]$ .

The foregoing results together with our results obtained in the mid sixties are
compiled in the monograph [25].
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5. Applications

Why do we study problems $(i)-(iv)$ for the classical groups over finite fields ?
Of course, they are well-posed mathematical problems and were studied by
several famous mathematicians before us. However, we have been interested
in these problems mainly because they have interesting applications. In the
sixties the geometry of classical groups over finite fields was used to construct
association schemes and PBIB designs. I came back to this field in the early
nineties because I found that it could be used to construct authentication
codes.

In 1954 W.H.Clatworthy [26] showed that a geometric configuration in $PG(3,F_{q})$

may be interpreted as a PBIB design. In our terminology, he took. the set of
l-dimensional subspaces of the 4-dimensional symplectic space over $F_{q}$ as the
set of treatments and set of 2-dimensional totally isotropic subspaces as the
set of blocks. Two treatments are said to be the first associates (or second
associates) if they span a 2-dimensional totally isotropic subspace (or non-
isotropic subspace), respectively. A treatment is defined to be set in a block if
the l-dimensional subspace as the treatment is contained in the 2-dimensional
totally isotropic subspace’ as the block. Then a PBIB(2) design is obtained.
Clatworthy also computed the parameters of the design.

In 1962 D.K.Ray-Chaudhuri [27] used the geometry of orthogonal groups,
which $\backslash vas$ called the geometry of quadrics by him, to construct PBIB designs.
He constructed several PBIB(2) designs with l-dimensional or 2-dimensional
totally isotropic (or singular) subspaces of the geometry of orthogonal groups
over finite fields as treatments or blocks and computed their parameters. At
that time only the number of totally isotropic (or singular) subspaces of a
given dimension is known, so he naturally restrict himself to take only totally
isotropic (or singular) subspaces as treatments and blocks in order to compute
the parameters of the designs he constructed.

In the mid sixties after we had found the closed formulas of the number of
subspaces in ally orbit under the symplectic, unitary, and orthogonal groups
over finite fields, we [28, 9, 29, 30] constructed many asssociation schemes and
PBIB designs by taking the l-dimensional, 2-dimensional, or v-dimensional
totally isotropic subspaces as treatments and subspaces of any given type as
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blocks and computed their parameters. These results were also compiled in
the monograph [12] and sketched in [31]. They will not be repeated here.

$Ho\backslash \backslash e\backslash 7er$ , we would like to mention that when we take the 2-dimensional totally
isotropic (or singular) subspaces as treatments to construct association schemes
and PBIB designs, we consider only the symplectic, unitary, and orthogonal
space of low dimensions. Because in the higher dimensional case if we take
the 2-dimensional totally isotropic (or singular) subspaces as treatments, the
computation of intersection numbers is not so immediate.

Of course, we can take any orbit of subspaces under the symplectic, unitary,
or orthogonal group over finite fields as the set of treatments and define the
associate relation according to the orbit of pairs of treatments under that
group, then an association scheme is obtained. Moreover, if we take any orbit
of subspaces as the set of blocks and definea treatment to be set inablock in
a certain way. then a PBIB design is obtained. To compute the parameters of
the association scheme and the PBIB design thus obtained the computation
of intersection numbers is usually not so immediate. In a short note [32]
published in 1965 some association schemes and PBIB designs were constructed
by taking the l-dimensionsl non-isotropic (or non-singular) subspaces in the
unitary or orthogonal geometry over some small fields as treatments and their
parameters were computed. In the eighties the idea of taking the l-dimensional
non-isotropic (or non-singular) subspaces or taking the 2-dimensional totally
isotropic (or singular) subspaces as treatments were carried out by several
Chinese mathematicians and their works were sketched in [31] and will not be
repeated.

In the following we shall mention how to use the geometry of classical groups
over finite fields to construct authentication code, since it is rather new and
more work could be done.

Let $S,$ $\mathcal{E}$ , and $\mathcal{M}$ be three nonempty finite sets and let $f$ : $S\cross \mathcal{E}arrow\Lambda t$ be a
map, the four tuple $(S, \mathcal{E}, /t4|f)$ is called an authentication code [33], if

1) The map.$f$ : $S\cross \mathcal{E}arrow/Vl$ is surjective and
2) For any $7??\in j$ and $e\in \mathcal{E}$ , if there is an $s\in S$ satisfying $f(s, e)=m$ , then
such an $c\backslash$ is $ttIliqnel\underline{\backslash }$: determined by the given $??\tau$ and $e$ .

Suppose that ( $S,$ $\mathcal{E}$ . .Vt: f) is an authentication code, then $S,$ $\mathcal{E}$ , and $/\backslash \Lambda$ are
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called the set of source states, the set of encoding rules, and the set of messages,
respectively, and $f$ is called the encoding map. Let $s\in S,$ $e\in \mathcal{E}$ , and $m\in \mathcal{M}$

be such that $?=f(s, e)$ , then $\backslash ve$ say that the source state $s$ is encoded into
the message $m$ under the encodin$g$ rule $e$ , and for convenience we say that the
message $?n$ contains the encoding rule $e$ . The cardinals $|S|,$ $|\mathcal{E}|,$ $|jl4|$ are called
the size parameters of the code. Moreover if the authentication code satisfies
the further requirement that given any message $m$ there is a unique source
state $s$ such that $?n=f(s, e)$ for every encoding rule $e$ contained in $m$ , then
the code is called a Cartesian authentication code.

Authentication codes are used in communication channels where besides the
transmitter and the receiver there is an opponent who may play either the
impersonation attack or the substitution attack. By an impersonation attack
we mean that the opponent sends a message through the channel to the receiver
and hopes the receiver will accept it as authentic. i.e., as a message sent by
the transmitter. By a substitution attack we mean that after the opponent
intercepts a message sent by the transmitter to the receiver, he sends another
message instead and hopes the receiver will accept it as authentic. To protect
against these attacks the transmitter-receiver may use an authentication code
which is publicly known aitd choose a fixed encoding rule $e$ in secret. The set
of information which the transmitter would like to be able to transmit to the
receiver should be identified with the set of source states of the code. Suppose
that the transmitter wants to send a source state $s$ to the receiver, he first
encodes $s$ into a message $m$ under the encoding rule $e$ , i.e., $m=f(s, e)$ , and
then sends $m$ to the receiver. Once the receiver receives a message $m’$ , he
first has to judge whether $??l’$ is authentic, i.e., whether the encoding rule $e$

is contained in $?n’$ . If $e\in??x’$ . then he regards $m’$ as authentic and decodes
$m’$ by $e$ to get a source state $s’$ , where $?n’=f(s’, e)$ . If $e\not\in m’$ then he
regards $\uparrow?\iota’$ as a false message. The object of the component is to choose a
message and send it to the receiver so that the probability of deceiving the
receiver, i.e., of causing him to accept as authentic a message not sent by the
transmitter is as large as possible. We denote by $P_{I}$ and $P_{S}$ , respectively,
the largest probabilities that he could $decei\nwarrow^{\gamma}e$ the receiver when he plays an
impersonation attack and a substitution attack and call them the probabilities
of a successful impersonation attack and of a successful substitution attack,
respectively.
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In [34] some authentication codes based on projective geometry over finite
fields $\backslash \backslash rere$ constructed. Projective geometry, according to Klein’s Erlangen
Program, is the geometry of the projective general linear group. Then it is
natural to propose the problem whether it is possible to construct authenti-
cation codes from the geometry of symplectic, unitary, or orthogonal groups
over finite fields. The answer is of course positive and some authentication
codes have been so constructed [35-38]. To illustrate we give a construction
[38] below.

Consider the 2v-dimensional symplectic space over $F_{q}$ , i.e., the 2v-dimensional
row vector space $F_{q}^{(2\nu)}$ on which the symplectic group $Sp_{2\nu}(F_{q})$ acts. Assume
that $\nu\geq 2$ and let $s$ be an integer such that $1\leq s<\nu$ . Let $P_{0}$ be a fixed
subspace of type $(s_{:}0)$ . Take the set of subspces of type $(2s, s)$ containing $P_{0}$

to be the set $S$ of source states, the set of s-dimensional subspaces whose joins
with $P_{0}$ are subspaces of type $(2s, s)$ to be the set $\mathcal{E}$ of encoding rules and
also the set $/W$ of messages. For any source state $s$ and encoding rule $e$ , let
$f(s.e)=s\cap e_{:}^{\perp}$ where

$e^{\perp}=\{x\in F_{q}^{(2\nu)}|xK{}^{t}e=0\}$ .

It can be proved that $s\cap\prime e^{\perp}$ is an s-dimensional subspace whose join with
$P_{0}$ is of type $(2s, s)$ . Thus xve may define $f(s, e)=s\cap e^{\perp}$ to be the message
into which the source state $s$ is encoded using the encoding rule $e$ . Then a
Cartesian authentication code is obtained and its size parameters are

$|S|=q^{2s(\nu-s)}$ , $|\mathcal{E}|=|_{J’}\vee t|=q^{s(2\nu-s)}$ .

Now assume that the encoding rules are chosen according to a uniform proba-
bility distribution. Then the probabilities of a successful impersonation attack
and a successful substitution attack are, respectively,

$P_{I}= \frac{1}{C1^{s^{2}}}$ $P_{S}= \frac{1}{q^{s}}$

In virtue of the combinatorial lower bounds $P_{I}\geq|S|/|\mathcal{M}|$ and $P_{S}\geq(|S|-$

$1)/(|_{J}Vt|-1)$ , for the authentication code constructed above $P_{I}$ is optimal. If
we require the order of magnitude of $P_{S}$ as a function of $q$ to be optimal, then
for the code, $P_{S}$ is nearly optimal when and only when $s=1$ .

Similar constructions can be done for the unitary and orthogonal cases.
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Finally, it should be added that the geometry of classical groups was also used
in the study of correlation properties of binary $m$ -sequences [39-41, 20] and
in the construction of projective codes with few weights [42-46].
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