<table>
<thead>
<tr>
<th>Title</th>
<th>Spin Models Constructed from Hadamard matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nomura, Kazumasa</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 840: 54-64</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83532</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Spin Models Constructed from Hadamard matrices

東京医科歯科大学 野村和正

Tokyo Ikashika University Kazumasa Nomura

A new spin model M is constructed from an arbitrary Hadamard matrix H through a distance-regular graph which is called a Hadamard graph. F. Jaeger gives a formula for the link invariant of the model M, and V. F. R. Jones gives two links which have the same V-polynomial but different polynomials of M.

1 Definition of a Spin Model

The following definition is essentially due to V. F. R. Jones [8].

Definition 1 Let n be a positive integer, D be one of the square roots of n. A spin model with loop variable D is a pair (X, w) of a finite non-empty set X of size n, and a complex-valued symmetric function w on $X \times X$ which satisfy the following equations for all $\alpha, \beta, \gamma \in X$:

$\frac{1}{n} \sum_{x \in X} \frac{w(\alpha, x)}{w(\beta, x)} = \delta_{\alpha, \beta}$ (1)

$\frac{1}{D} \sum_{x \in X} \frac{w(\alpha, x)w(\beta, x)}{w(\gamma, x)} = \frac{w(\alpha, \beta)}{w(\alpha, \gamma)w(\beta, \gamma)}$ (2)

Each element of X is called a spin, and the function w is called Boltzmann weight. The $(n \times n)$-matrix $W = (w(\alpha, \beta))$, is called the weight matrix of the spin model. The equation (2) is called star-triangle relation.

Example Let X be a finite set of size $n = D^2 > 1$ and let a, b be complex numbers such that

$b^2 + \frac{1}{b^2} + D = 0, \quad a = -\frac{1}{b^2}$.

Define a function w by

$w(\alpha, \beta) = \begin{cases} a & \text{if } \alpha = \beta \\ b & \text{if } \alpha \neq \beta \end{cases}$

As easily shown, (X, w) becomes a spin model with the weight matrix

$M = (a - b)I + bJ$.

This spin model is called Potts model.

Remark 1 If (X, w) is a spin model with $D = \sqrt{n}$, then $(X, \sqrt{-1}w)$ becomes a spin model with $D = -\sqrt{n}$.
Remark 2 Under (1), the star-triangle relation (2) is equivalent to:

$$
\frac{1}{D} \sum_{x \in X} \frac{w(\alpha,x)}{w(\beta,x)w(\gamma,x)} = \frac{w(\alpha,\beta)w(\alpha,\gamma)}{w(\beta,\gamma)}.
$$

(3)

Remark 3 By putting $\beta = \gamma$ in 2, we get

$$
\frac{1}{D} \sum_{x \in X} w(\alpha, x) = \frac{1}{w(\beta,\beta)}.
$$

This shows $w(\beta,\beta)$ is independent on the choice of $\beta \in X$:

$$
w(\beta,\beta) = a
$$

is a constant called modulus of the model. Thus we have

$$
\frac{1}{D} \sum_{x \in X} w(\alpha, x) = \frac{1}{a}.
$$

From 3, we have

$$
\frac{1}{D} \sum_{x \in X} \frac{1}{w(\alpha,x)} = a.
$$

Remark 4 The equation (1) is equivalent to

$$
\sum_{x \in X} \frac{w(\alpha,x)}{w(\beta,x)} = 0 \quad \text{if } \alpha \neq \beta.
$$

2 Spin Models on Distance-Regular Graphs

A connected graph Γ is said to be distance-regular if there are integers b_i, c_i ($i \geq 0$) such that for any two vertices u, x at distance $i = \partial(u,x)$, there are precisely c_i neighbours of x in $\Gamma_{i-1}(u)$ and b_i neighbours of x in $\Gamma_{i+1}(u)$. In particular, Γ is regular of valency $k = b_0$. The sequence

$$
\iota(\Gamma) = \{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\},
$$

where d is the diameter of Γ, is called the intersection array of G. For two vertices u, v, the size

$$
p_{ij}^\alpha = |\Gamma_i(u) \cap \Gamma_j(v)|
$$

depends only on the distance $\alpha = \partial(u,v)$, rather than the individual vertices u, v with $\partial(u,v) = \alpha$ (see [4] 4.1). In particular $k_i = |\Gamma_i(u)|$, which is called the i-th valency, does not depend on the choice of a vertex u. For three vertices u, v, w, put

$$
P_{ij}(u,v,w) = |\Gamma_i(u) \cap \Gamma_j(v) \cap \Gamma_l(w)|.
$$

More precise descriptions about distance-regular graphs will be found in [3], [4].

The following Proposition is obtained directly from the definition and remarks in the previous section.
Proposition 1 Let Γ be a distance-regular graph of diameter d with the vertex set X. Put $|X| = n$ and let D be one of the square roots of n. Let t_0, t_1, \ldots, t_d be non-zero complex numbers and let w be the complex valued function on $X \times X$ defined by $w(u, v) = t_i$ where $i = \partial(u, v)$. Then (X, w) becomes a spin model if and only if the following conditions hold:

\[(C1) \sum_{i=0}^{d} k_i t_i = D t_0^{-1},\]
\[(C2) \sum_{i=0}^{d} k_i t_i^{-1} = D t_0,\]
\[(C3) \sum_{i=0}^{d} \sum_{j=0}^{d} p_{ij} t_i t_j^{-1} = 0 \quad (\alpha = 1, 2, \ldots, d),\]
\[(C4) \text{For all vertices } u, v, w \text{ in } X,\]
\[\sum_{t=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} P_{ijt}(u, v, w) t_i t_j t_t^{-1} = D t_\alpha t_\beta t_\gamma^{-1},\]

where $\alpha = \partial(u, v), \beta = \partial(u, w), \gamma = \partial(v, w)$.

Remark 5 Though conditions (C1) and (C2) can be removed in the above, these are useful to find solutions of the equations.

3 Result

A distance-regular graph having the intersection array

\[\{4m, 4m-1, 2m, 1; 1, 2m, 4m-1, 4m\}\]

is called a Hadamard graph of order $4m$. There is a natural one-to-one correspondence between Hadamard graphs of order $4m$ and Hadamard matrices of order $4m$ (see [4] 1.8). Now our main result follows:

Theorem 2 Let Γ be a Hadamard graph of order $4m$. Let s, t_0, t_4 be complex numbers such that

\[s^2 + 2(2m-1)s + 1 = 0, \quad t_0^2 = \frac{2\sqrt{m}}{(4m-1)s+1}, \quad t_4^4 = 1.\]

Put $t_2 = st_0, t_3 = -t_1$ and $t_4 = t_0$. Then t_0, \ldots, t_4 satisfy the conditions in Proposition 1 with $D = 4\sqrt{m}$.

Theorem 2 can be described without using distance-regular graphs as follows:
Theorem 3 Let H be a Hadamard matrix of order n, $n \equiv 0 \pmod{4}$, and let M be the weight matrix of the Potts model of size n. Let ω be one of the 4-th roots of 1, $\omega^4 = 1$. Define a $4n \times 4n$-matrix W as:

\[
W = \begin{pmatrix}
 M & M & \omega H & -\omega H \\
 M & M & -\omega H & \omega H \\
 \omega H^t & -\omega H^t & M & M \\
 -\omega H^t & \omega H^t & M & M
\end{pmatrix}
\]

Then W becomes the weight matrix of a spin model having $4n$ spins.

4 Proof of Theorem 2

Let H be a Hadamard graph of order $4m$ and let s, t_0, \ldots, t_4 be complex numbers such that

\[s^2 + 2(2m-1)s + 1 = 0, \quad t_0^2 = \frac{2\sqrt{m}}{(4m-1)s + 1}, \]
\[t_1^4 = 1, \quad t_2 = st_0, \quad t_3 = -t_1, \quad t_4 = t_0. \]

By $k_{i-1}b_{i-1} = k_i c_i$, we get

\[k_0 = 1, \quad k_1 = 4m, \quad k_2 = 8m - 2, \quad k_3 = 4m, \quad k_4 = 1. \]

So (C1) becomes

\[t_0 + 4mt_1 + (8m - 2)t_2 + 4mt_3 + t_4 = 4\sqrt{m} t_0^{-1}. \]

By $t_3 = -t_1$, $t_0 = t_4$ and $t_2 = st_0$, this becomes

\[2t_0 + (8m - 2)st_0 = 4\sqrt{m} t_0^{-1}. \]

Clearly this holds by the assumption $t_0^2 = 2\sqrt{m}((4m-1)s + 1)^{-1}$.

Condition (C2) becomes

\[t_0^{-1} + 4mt_1^{-1} + (8m - 2)t_2^{-1} + 4mt_3^{-1} + t_4^{-1} = 4\sqrt{m} t_0, \]

and it becomes

\[2t_0^{-1} + (8m - 2)t_2^{-1} = 4\sqrt{m} t_0, \]
\[1 + (4m - 1)s^{-1} = 2\sqrt{m} t_0^2. \]

By the assumption $t_0^2 = 2\sqrt{m}((4m-1)s + 1)^{-1}$, it is equivalent to

\[1 + (4m - 1)s^{-1} = 2\sqrt{m} \cdot 2\sqrt{m} ((4m - 1)s + 1)^{-1}. \]
This is implied by the assumption \(s^2 + 2(2m - 1)s + 1 = 0 \).

Next consider condition (C3). The values of \(p_{ij}^\alpha \) are easily computed by the following formula ([4] 4.1.7).

\[
p_{j+1,t}^\alpha = \frac{1}{c_{j+1}}(p_{j-t-1}^\alpha b_{t-1} + p_{j-t+1}^\alpha c_{t+1} - p_{j-t-1}^\alpha b_{t-1}).
\]

Case \(\alpha = 1 \):

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>(p_{ij}^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1), (1, 0), (3, 4), (4, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 2), (2, 1), (2, 3), (3, 2)</td>
<td>4m - 1</td>
</tr>
</tbody>
</table>

Condition (C3) becomes

\[
t_0 t_1^{-1} + t_1 t_0^{-1} + t_3 t_4^{-1} + t_4 t_3^{-1} + (4m - 1) (t_1 t_2^{-1} + t_2 t_1^{-1} + t_2 t_3^{-1} + t_3 t_2^{-1}) = 0.
\]

This holds by \(t_3 = -t_1 \) and \(t_0 = t_4 \).

Case \(\alpha = 2 \):

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>(p_{ij}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 2), (2, 0), (2, 4), (4, 2)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 1), (1, 3), (3, 1), (3, 3)</td>
<td>2m</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>8m - 4</td>
</tr>
</tbody>
</table>

(C3) becomes

\[
t_0 t_2^{-1} + t_2 t_0^{-1} + t_4 t_4^{-1} + t_4 t_2^{-1} + 2m(t_1 t_1^{-1} + t_1 t_3^{-1} + t_3 t_1^{-1} + t_3 t_3^{-1}) + (8m - 4) = 0.
\]

This is implied by \(t_3 = -t_1 \), \(t_0 = t_4 \), \(t_2 = st_0 \) and \(s^2 + 2(2m - 1)s + 1 = 0 \).

Case \(\alpha = 3 \):

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>(p_{ij}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 3), (3, 0), (1, 4), (4, 1)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 2), (2, 1), (2, 3), (3, 2)</td>
<td>4m - 1</td>
</tr>
</tbody>
</table>

\[
t_0 t_3^{-1} + t_3 t_0^{-1} + t_1 t_4^{-1} + t_4 t_1^{-1} + (4m - 1) (t_1 t_2^{-1} + t_2 t_1^{-1} + t_2 t_3^{-1} + t_3 t_2^{-1}) = 0.
\]

This holds by \(t_3 = -t_1 \) and \(t_0 = t_4 \).

Case \(\alpha = 4 \):

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>(p_{ij}^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 4), (4, 0)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 3), (3, 1)</td>
<td>4m</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>8m - 2</td>
</tr>
</tbody>
</table>
\[t_0t_4^{-1} + t_4t_0^{-1} + 4m(t_1t_3^{-1} + t_3t_1^{-1}) + (8m - 2)t_2t_2^{-1} = 0. \]

Clearly this holds.

Now we consider condition (C4). Since (C4) is symmetric in \(u, v \), we may assume \(\partial(u, w) \leq \partial(v, w) \). Fix three vertices \(u, v, w \). Put \(\partial(u, v) = \alpha, \partial(u, w) = \beta, \partial(v, w) = \gamma \) and \(P_{ij\ell} = P_{ij\ell}(u, v, w) \). If \(\beta = 0 \), we have \(u = w, \alpha = \gamma \), and \(P_{ij\ell} = 0 \) for \(i \neq \ell \). Therefore

\[\sum_{i,j,\ell} P_{ij\ell} t_i t_j t_\ell^{-1} = \sum_{j} \sum_{i} P_{iji} t_j = \sum_{j} k_j t_j, \]

and (C4) is equivalent to (C1) in the case \(\beta = 0 \). So we must verify (C4) in each of the following cases of \((\alpha, \beta, \gamma) \):

\[
\begin{array}{cccc}
(0,1,1) & (0,2,2) & (0,3,3) & (0,4,4) \\
(1,1,2) & (1,2,3) & (1,3,4) & \\
(2,1,1) & (2,1,3) & (2,2,2) & (2,2,4) & (2,3,3) \\
(3,1,2) & (3,1,4) & (3,2,3) & \\
(4,1,3) & (4,2,2) & \\
\end{array}
\]

In the case \((\alpha, \beta, \gamma) \neq (2,2,2) \), the values of \(P_{ij\ell} \) are easily computed. We need the following Lemma for the case \((\alpha, \beta, \gamma) = (2,2,2) \).

Lemma 4 If \(\partial(u, v) = \partial(u, w) = \partial(v, w) = 2 \), then \(w \) has precisely \(m \) neighbours in \(\Gamma_1(u) \cap \Gamma_1(v) \).

Proof. Put \(D_j^i = \Gamma_i(u) \cap \Gamma_j(v) \). We have \(w \in D_2^2 \). Put \(e(w, D_1^1) = r, e(w, D_3^1) = s, e(w, D_3^3) = s', e(w, D_2^3) = r' \). Notice that every vertex \(x \in X \) has the unique opposite vertex \(x' \) such that \(\partial(x, x') = 4 \), since we have \(k_4 = 1 \). Since the opposite vertex \(x' \) of \(x \in D_1^1 \cap \Gamma_1(w) \) is in \(D_3^3 \), we get \(r' \leq |D_3^3| - r = 2m - r \). Similarly we get \(s' \leq 2m - s \). On the other hand, we have \(r + s = 2m \) since \(w \) has precisely \(2m \) neighbours in \(\Gamma_1(u) \). We have also \(s + r' = 2m \) since \(w \) has \(2m \) neighbours in \(\Gamma_3(v) \). These imply \(r = r' \). By the same reason, we get \(s = s' \). Therefore we must have \(r = s = r' = s' = m \).

Case \((\alpha, \beta, \gamma) = (0,1,1) \):

<table>
<thead>
<tr>
<th>((i,j,\ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,1), (1,1,0), (3,3,4), (4,4,3))</td>
<td>1</td>
</tr>
<tr>
<td>((1,1,2), (2,2,1), (2,2,3), (3,3,2))</td>
<td>(4m - 1)</td>
</tr>
</tbody>
</table>
So, condition (C4) becomes
\[t_0^2t_1^{-1} + t_1^2t_0^{-1} + t_3^2t_4^{-1} + t_4^2t_3^{-1} + (4m - 1)(t_1^2t_2^{-1} + t_2^2t_1^{-1} + t_2^2t_3^{-1} + t_3^2t_2^{-1}) = Dt_0t_1^{-2}, \]
\[2t_1^2t_0^{-1} + (8m - 2)t_1^2t_2^{-1} = Dt_0t_1^{-2}. \]

By \(t_1^4 = 1 \), this is equivalent to (C2).

Case \((\alpha, \beta, \gamma) = (0, 2, 2)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0, 2), (2, 2, 0), (2, 2, 4), (4, 4, 2))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 1), (1, 1, 3), (3, 3, 1), (3, 3, 3))</td>
<td>2(m)</td>
</tr>
<tr>
<td>((2, 2, 2))</td>
<td>(8m - 4)</td>
</tr>
</tbody>
</table>

Then condition (C4) becomes
\[2(t_0^2t_2^{-1} + t_2^2t_0^{-1}) + (8m - 4)t_2 = Dt_0t_2^{-2}, \]
\[s^{-1} + s^2 + (4m - 2)s = 2\sqrt{m}s^{-2}t_0^{-2}. \]

By the assumption \(t_0^2 = 2\sqrt{m}((4m - 1)s + 1)^{-1} \), this becomes
\[s^{-1} + s^2 + (4m - 2)s = (4m - 1)s^{-1} + s^{-2}. \]

This is implied by the assumption \(s^2 + 2(2m - 1)s + 1 = 0 \).

Case \((\alpha, \beta, \gamma) = (0, 3, 3)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0, 3), (1, 1, 4), (3, 3, 0), (4, 4, 1))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 2), (2, 2, 1), (2, 2, 3), (3, 3, 2))</td>
<td>(4m - 1)</td>
</tr>
</tbody>
</table>

(C4) becomes
\[t_0^2t_3^{-1} + t_1^2t_4^{-1} + t_3^2t_0^{-1} + t_4^2t_1^{-1} + (4m - 1)(t_1^2t_2^{-1} + t_2^2t_1^{-1} + t_2^2t_3^{-1} + t_3^2t_2^{-1}) = Dt_0t_3^{-2}. \]

This is equivalent to Case \((\alpha, \beta, \gamma) = (0, 1, 1)\).

Case \((\alpha, \beta, \gamma) = (0, 4, 4)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0, 4), (4, 4, 0))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 3), (3, 3, 1))</td>
<td>(4m)</td>
</tr>
<tr>
<td>((2, 2, 2))</td>
<td>(8m - 2)</td>
</tr>
</tbody>
</table>
$$t_0 t_4^{-1} + t_4 t_0^{-1} + 4m(t_3 t_3^{-1} + t_3 t_1^{-1}) + (8m - 2)t_2 t_2^{-1} = Dt_0 t_4^{-2}.$$

Case $(\alpha, \beta, \gamma) = (1, 1, 2)$:

<table>
<thead>
<tr>
<th>(i, j, ℓ)</th>
<th>$P_{ij\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1, 1), (1, 0, 2), (1, 2, 0), (3, 2, 4), (3, 4, 2), (4, 3, 3)$</td>
<td>1</td>
</tr>
<tr>
<td>$(2, 1, 1), (2, 3, 3)$</td>
<td>$2m - 1$</td>
</tr>
<tr>
<td>$(2, 1, 3), (2, 3, 1)$</td>
<td>$2m$</td>
</tr>
<tr>
<td>$(1, 2, 2), (3, 2, 2)$</td>
<td>$4m - 2$</td>
</tr>
</tbody>
</table>

$$t_0 + t_4 + t_0t_1t_2^{-1} + t_1t_2t_0^{-1} + t_2t_3t_4^{-1} + t_3t_4t_2^{-1} + 2m(t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) + (4m - 2)(t_1 + t_2 + t_3) = Dt_2^{-1}.$$

Case $(\alpha, \beta, \gamma) = (1, 2, 3)$:

<table>
<thead>
<tr>
<th>(i, j, ℓ)</th>
<th>$P_{ij\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1, 2), (1, 0, 3), (2, 1, 4), (2, 3, 0), (3, 4, 1), (4, 3, 2)$</td>
<td>1</td>
</tr>
<tr>
<td>$(1, 2, 3), (3, 2, 1)$</td>
<td>$2m - 1$</td>
</tr>
<tr>
<td>$(1, 2, 1), (3, 2, 3)$</td>
<td>$2m$</td>
</tr>
<tr>
<td>$(2, 1, 2), (2, 3, 2)$</td>
<td>$4m - 2$</td>
</tr>
</tbody>
</table>

$$t_0t_1t_2^{-1} + t_0t_1t_3^{-1} + t_1t_2t_4^{-1} + t_2t_3t_0^{-1} + t_3t_4t_1^{-1} + (2m - 1)(t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) + (4m - 2)(t_1 + t_3) + 4mt_2 = Dt_1t_2^{-1}t_3^{-1}.$$

Case $(\alpha, \beta, \gamma) = (1, 3, 4)$:

<table>
<thead>
<tr>
<th>(i, j, ℓ)</th>
<th>$P_{ij\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1, 3), (1, 0, 4), (3, 4, 0), (4, 3, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$(1, 2, 2), (2, 1, 3), (2, 3, 1), (3, 2, 2)$</td>
<td>$4m - 1$</td>
</tr>
</tbody>
</table>

$$t_0t_1t_3^{-1} + t_0t_1t_4^{-1} + t_3t_4t_0^{-1} + t_3t_4t_1^{-1} + (4m - 1)(t_1 + t_3 + t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) = Dt_1t_3^{-1}t_4^{-1}.$$

Case $(\alpha, \beta, \gamma) = (2, 1, 1)$:
<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 2, 1), (2, 0, 1), (2, 4, 3), (4, 2, 3), (1, 1, 0), (3, 3, 4))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 2), (3, 3, 2))</td>
<td>(2m - 1)</td>
</tr>
<tr>
<td>((1, 3, 2), (3, 1, 2))</td>
<td>(2m)</td>
</tr>
<tr>
<td>((2, 2, 1), (2, 2, 3))</td>
<td>(4m - 2)</td>
</tr>
</tbody>
</table>

\[
t_1^2t_0^{-1} + t_3^2t_4^{-1} + 2(t_0t_2t_1^{-1} + t_2t_4t_3^{-1}) + (2m - 1)(t_1^2t_2^{-1} + t_3^2t_4^{-1}) + (4m - 2)(t_1^2t_4^{-1} + t_3^2t_3^{-1}) + 4mt_1t_3t_2^{-1} = Dt_4^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (2, 1, 3)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 2, 1), (2, 0, 3), (2, 4, 1), (4, 2, 3), (1, 3, 0), (3, 1, 4))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 3, 2), (3, 1, 2))</td>
<td>(2m - 1)</td>
</tr>
<tr>
<td>((1, 1, 2), (3, 3, 2))</td>
<td>(2m)</td>
</tr>
<tr>
<td>((2, 2, 1), (2, 2, 3))</td>
<td>(4m - 2)</td>
</tr>
</tbody>
</table>

\[
t_0t_2t_1^{-1} + t_0t_2t_3^{-1} + t_2t_4t_3^{-1} + t_2t_4t_3^{-1} + t_1t_3t_0^{-1} + t_1t_3t_4^{-1} + 2m(t_1^2t_3^{-1} + t_3^2t_1^{-1}) + 3m(t_1 + t_3) + (8m - 6)t_2 = Dt_4^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (2, 2, 2)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 2, 2), (2, 0, 2), (2, 2, 0), (2, 2, 4), (2, 4, 2), (4, 2, 2))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3))</td>
<td>(m)</td>
</tr>
<tr>
<td>((3, 1, 1), (3, 1, 3), (3, 3, 1), (3, 3, 3))</td>
<td>(m)</td>
</tr>
<tr>
<td>((2, 2, 2))</td>
<td>(8m - 6)</td>
</tr>
</tbody>
</table>

\[
t_1^2t_0^{-1} + t_3^2t_4^{-1} + 2(t_0 + t_4) + m(t_1^2t_3^{-1} + t_3^2t_1^{-1}) + 3m(t_1 + t_3) + (8m - 6)t_2 = Dt_4^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (2, 2, 4)\):

<table>
<thead>
<tr>
<th>((i, j, \ell))</th>
<th>(P_{ij\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 2, 2), (2, 0, 4), (2, 4, 0), (4, 2, 2))</td>
<td>1</td>
</tr>
<tr>
<td>((1, 1, 3), (1, 3, 1), (3, 1, 3), (3, 3, 1))</td>
<td>(2m)</td>
</tr>
<tr>
<td>((2, 2, 2))</td>
<td>(8m - 4)</td>
</tr>
</tbody>
</table>

\[
t_0 + t_4 + t_0t_2t_4^{-1} + t_2t_4t_0^{-1} + 2m(t_1 + t_3 + t_1^2t_3^{-1} + t_3^2t_1^{-1}) + (8m - 4)t_2 = Dt_4^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (2, 3, 3)\):
\(t_1^{t_4^{-1}} + t_2^{t_3^{-1}} + 2(t_0t_2^{-1}t_3^{-1} + t_2t_4^{-1}t_1^{-1}) + (2m-1)(t_1t_2^{-1} + t_3t_2^{-1}) \\
+ (4m-2)(t_1^{t_4^{-1}} + t_2^{t_3^{-1}}) + 4mt_1t_3^{-1} = Dt_2t_3^{-2}. \)

Case \((\alpha, \beta, \gamma) = (3, 1, 2) \):

\[
\begin{array}{ll}
(i, j, \ell) & P_{ij\ell} \\
\hline
(0, 3, 1), (1, 2, 0), (3, 0, 2), (1, 4, 2), (3, 2, 4), (4, 1, 3) & 1 \\
(2, 1, 3), (2, 3, 1) & 2m - 1 \\
(2, 1, 1), (2, 3, 3) & 2m \\
(1, 2, 2), (3, 2, 2) & 4m - 2 \\
\end{array}
\]

\[
t_0t_3t_1^{-1} + t_0t_3t_4^{-1} + t_1t_2t_0^{-1} + t_1t_4t_3^{-1} + (4m - 1)(t_1 + t_3) \\
+ (4m - 1)(t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) = Dt_3t_1^{-1}t_2^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (3, 1, 4) \):

\[
\begin{array}{ll}
(i, j, \ell) & P_{ij\ell} \\
\hline
(0, 3, 1), (3, 0, 4), (1, 4, 0), (4, 1, 3) & 1 \\
(1, 2, 2), (2, 1, 3), (2, 3, 1), (3, 2, 2) & 4m - 1 \\
\end{array}
\]

\[
t_0t_3t_1^{-1} + t_0t_3t_4^{-1} + t_1t_4t_0^{-1} + t_1t_4t_3^{-1} + (4m - 1)(t_1 + t_3) \\
+ (4m - 1)(t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) = Dt_3t_1^{-1}t_4^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (3, 2, 3) \):

\[
\begin{array}{ll}
(i, j, \ell) & P_{ij\ell} \\
\hline
(0, 3, 2), (2, 1, 4), (3, 0, 3), (1, 4, 1), (2, 3, 0), (4, 1, 2) & 1 \\
(1, 2, 1), (3, 2, 3) & 2m - 1 \\
(1, 2, 3), (3, 2, 1) & 2m \\
(2, 1, 2), (2, 3, 2) & 4m - 2 \\
\end{array}
\]

\[
t_0 + t_4 + t_0t_3t_2^{-1} + t_2t_3t_0^{-1} + t_1t_2t_4^{-1} + t_1t_4t_2^{-1} + 2m(t_1t_2t_3^{-1} + t_2t_3t_1^{-1}) \\
+ (4m - 2)(t_1 + t_2 + t_3) = Dt_2^{-1}.
\]

Case \((\alpha, \beta, \gamma) = (4, 1, 3) \):
$t_0t_4t_1^{-1} + t_0t_4t_3^{-1} + t_1t_3t_0^{-1} + t_1t_3t_4^{-1} + (4m-1)(t_2^2t_1^{-1} + t_2^2t_3^{-1})$
$+ (8m - 2)t_1t_3t_2^{-1} = Dt_4t_1^{-1}t_3^{-1}$.

Case $(\alpha, \beta, \gamma) = (4,2,2)$:

$t_2^2t_0^{-1} + t_2^2t_4^{-1} + 2t_0t_4t_2^{-1} + 4m(t_1 + t_3) + (8m - 4)t_2 = Dt_4t_2^{-2}$.

参考文献

