<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Variable-Coefficient A-Stable Explicit Runge-Kutta Methods (Numerical Ordinary Differential Equations and Related Topics)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Nakashima, Masaharu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1993年，841: 175-182</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-05</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/83542">http://hdl.handle.net/2433/83542</a></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>Publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ KURENAI
Kyoto University Research Information Repository

京都大学 KYOTO UNIVERSITY
Variable-Coefficient A-Stable Explicit Runge-Kutta Methods

By Masaharu. Nakashima (鹿児島大学)

Department of Mathematics
Faculty of Science
Kagoshima University, Japan

Abstract

We study the explicit Runge-Kutta methods for stiff-equation
\[ y' = \lambda y, \] where the methods are variable coefficients formulas
depending on \( \lambda \). They are A-stable with respect to the model
equation \( y' = \lambda y \). The analysis of eigenvalues \( \lambda \) for some schemes are
carried out.

1. Introduction

The present paper is concerned with the numerical integration
of stiff system of ordinary differential equation:
\[ y' = f(x,y), \ y(x_0) = y_0. \] (1.1)

A basic difficulty in the numerical solution of stiff system
is the satisfying of the requirement of stability, from the
restriction of stability, implicit type methods have been present
and some explicit methods imposed the stability conditions have
derived, however, there still remain stability problem for the
explicit methods, so it is the purpose of the present paper to derive the explicit A-stable Runge-Kutta methods with respect to the model equation. The outline of this paper is as follows: In § 2, We consider two-stage of order one, three-stage of order two and four-stage of order three explicit A-stable Runge-Kutta methods for the fitting problem respectively. Stability analysis for arbitrary eigenvalue \( \lambda \) are discussed in § 3. In § 4, we proposed some numerical tests.

2. Derivation of the formulae

Consider the \( r \)-stage explicit Runge-Kutta methods:

\[
y_{n+1} = y_n + h \sum_{k=1}^{r} b_k \cdot k_i,
\]

\[
k_1 = f(x, y),
\]

\[
k_i = f(x + c_i h, y + h \sum a_{i,j} k_j),
\]

\[
c_i = \sum a_{i,j} \quad (i = 2, \ldots, r).
\]

The order conditions of the R-K methods which are discussed in [1], are listing up to three order:

Order 1:

\[
\sum b_i = 1,
\]

Order 2:

\[
\sum b_i c_i = 1/2,
\]

Order 3:

\[
\sum b_i c_i = 1/3,
\]

\[
\sum b_i a_{i,j} c_j = 1/6.
\]

Let us now apply the \( r \)-stage, \( p \)-th order Runge-Kutta methods (2.1) to the test equation

\[
y' = \lambda y
\]

then we have

\[
y_{n+1} = S(z)y_n,
\]

(2.6)
and $S(z)$ takes the form

$$S(z) = \sum_{i=1}^{p} \frac{z^i}{i!} + \sum_{\kappa=p+1}^{\infty} \frac{\Gamma}{\kappa!} \gamma^\kappa z^\kappa,$$

$(z = \lambda h)$

where $\gamma$ are the function of the coefficients of (2.1).

We shall study how the function $S(z)$ of (2.6) with

$(p, r) = (1, 2), (2, 3)$ and $(3, 4)$ are expressed.

Case (1) $p=1, r=2$: From (2.6) we obtain the difference equation:

$$y_{n+1} = (1 + z + b_2 a_{21} z^2) y_n,$$

(2.7)

here if we take $b_2 a_{21}$ in the form:

$$b_2 a_{21} = \frac{\delta}{a + \beta z},$$

(2.8)

then from (2.7) and (2.8) we have

$$y_{n+1} = \frac{a + (a + \beta) z + (\beta + \delta) z^2}{a + \beta z} y_n.$$  

(2.9)

From the stability condition, we have $\beta + \delta = 0$, taking, for example, $a = 1$, $\beta = -1$ we have

$$y = \frac{1}{1 - z} y_n,$$

(2.10)

which is A-stable algorithm. Solving (2.8) and the order condition (2.2), we have

$$b_2 = \frac{1}{c_2 (1 - z)}, \quad b_1 = 1 - b_2,$$

(2.11)

($c_2$ : free parameter)

Case (1) $p=2, r=3$: Proceeding the same way as the case (1), we have

$$y_{n+1} = (1 + z + \frac{z^2}{2!} + b_3 a_{21} a_{31} z_{21}^2) y_n,$$

(2.12)

setting

$$b_4 a_{21} a_{31} = \frac{\gamma}{2! (a + \beta z)},$$

(2.13)
we have
\[
y = \frac{2a + 2(a + \beta)z + (2\beta + a)z^2 + (\beta + \gamma)z^3}{3!(a + \beta)} y_n.
\]

From the stability condition, we have
\[2\beta + a = 0, \beta + \gamma = 0,
\]
which lead to the following A-stable algorithm:
\[
y = \frac{2 + z}{2 - z} y_n. \tag{2.14}
\]

Solving (2.13) and order conditions, we have
\[
a_{21} = c_2, \quad a_{31} = c_3 - a_{32},
\]
\[
b_3 = -\frac{1}{a_{32}a_{21}(2 + \beta)}, \quad b_2 = \frac{1}{c_2} \left(\frac{1}{2} - b_1 c_2\right), \tag{2.15}
\]
\[
b_1 = 1 - (b_2 + b_3). \quad (a_{32}: \text{free parameter})
\]

Case (III) p=3, r=4: Finally in this section, we concern the
four-stage three order method, integrating (2.5), we have
\[
y = \frac{1 + z + \frac{z^2}{2} + \frac{z^3}{3!} + b_2 a_{43}a_{32}a_{21}z^4}{b_4} y_n, \tag{2.16}
\]
here we set
\[
b_4 a_{43}a_{32}a_{21} = \frac{\gamma}{3!(a + \beta z)}, \tag{2.17}
\]
putting (2.17) into (2.16), we have
\[
y = \frac{6a + 6(a + \beta)z + (6\beta + 3a)z^2 + (3\beta + a)z^3 + (\beta + \gamma)z^4}{3!(a + \beta z)} y_n.
\]

From the stability condition, we have
\[6\beta + 3a = 0, \quad 3\beta + a = 0, \quad \beta + \gamma = 0,
\]
which lead to

\[ \alpha = \beta = 0. \]

It follows that the assumption (2.17) is unsuitable. We now consider the following further case:

\[ b_4 a_4 a_3 a_2 a_1 = \frac{\delta + \rho z}{\alpha + \beta z + \gamma z^2}, \quad (2.18) \]

putting (2.18) into (2.16), we have

\[ y_{n+1} = \frac{u}{3!(\alpha + \beta h + z^2)} y_n, \]

with

\[ u = 6\alpha + 6(\alpha + \beta)z + (6\gamma + 6\beta + 3\alpha)z^2 + (6\gamma + 3\beta + \alpha)z^3 \]
\[ + (3\gamma + \beta + 6\delta)z^4 + (\gamma + 6\rho)z^5. \]

From the stability condition we have

\[ \gamma + 6\rho = 0, \ 3\gamma + \beta + 6\delta = 0, \ 6\gamma + 3\beta + \alpha = 0, \]

which lead to

\[ \alpha = -9\delta, \ \beta = 11\delta, \ \gamma = -4\delta, \ \rho = 4\delta. \quad (2.19) \]

If we take \( \delta = 1 \) in (2.19), we have the following L-stable algorithm:

\[ y_{n+1} = \frac{-9 + 2z}{6(9 - 11z + 4z^2)} y_n. \quad (2.20) \]

Solving (2.18) and order conditions (2.2), (2.3), (2.4), we have

\[ b_4 = \frac{1}{a_4 a_3 a_2 a_1} \frac{1 + 4z}{(-9 + 11z - 4z^2)}, \quad (2.21) \]

\[ b_2 = \frac{1}{c_2(c_3 - c_2)} \left\{ \frac{1}{2} - b_4 c_4 c_3 - \frac{1}{3} + b_4 c_4^2 \right\}, \]

\[ b_3 = \frac{1}{c_3} \left\{ \frac{1}{2} - b_4 c_4 - b_2 c_2 \right\}, \]
\[ a_{42} = \frac{1}{b_4c_2} \left\{ \frac{1}{6} - \frac{b_3a_{32}c_2}{c_2} \right\} - \frac{c_3}{c_2} a_{43}, \]
\[ a_{31} = c_2, \quad c_3 = b_{31} + b_{32}, \quad a_4 = c_4 - (a_{42} + a_{43}). \]

\[ (a_{32}, a_{31}, b_{43}, c_2, c_4: \text{free parameters}). \]

3. Stability properties of the schemes (2.10), (2.14) and (2.20).

In this section we are concerned with the analysis of eigenvalue
of schemes (2.10), (2.14) and (2.20). Let us set \( \lambda' \) be the approximation
of \( \lambda \), replacing \( z \) by \( z' = \lambda' h \) in (2.8), the algorithm (2.10) is then

\[ y_{\eta+1} = (1 + z + \frac{z^2}{1 - z'}) y_\eta, \]

or

\[ y_{\eta+1} = \pi(z, z') y_\eta, \]

\[ \pi(z, z') = 1 + z + \frac{z^2}{1 - z'}, \quad (3.1) \]

we may write (3.1) in the form

\[ \pi(z, z') = \left( \frac{1}{1-z} \frac{z^2}{1-z'} - \frac{z^2}{1-z} \right), \quad (3.2) \]

so if \( z' \) satisfies the equation

\[ \left| z^2 \left( \frac{1}{1-z'} - \frac{1}{1-z} \right) \right| \left| 1 - \frac{1}{1-z} \right| \]

then the algorithm (3.1) is A-stable. Setting \( z = r e^{i\theta} (\pi/2 < \theta < 3\pi/2) \),
and using the inequality

\[ \left| 1 - z \right| < 1 + r, \]
in (3.3), we have
\[
\left| \frac{z' - z}{z' - 1} \right| < \frac{1}{r + 2},
\]
which lead to the following result.

Theorem 1. The algorithm (2.11) with \( z = z', \ a = 1, \ \beta = -1 \) is A-stable if \( z' \) satisfies the inequality:
\[
\left| \frac{z' - z}{z' - 1} \right| < \frac{1}{r + 2}.
\]

(3.4)

The region \( z' \) satisfying (3.4) lies in the interior of the circle with the center \( m_1 \) and the radius \( r_1 \),
\[
m_1 = -\frac{c^2 - z}{1 - c^2}, \quad r_1 = c \frac{1 - z}{1 - c^2},
\]

(3.5)

with \( c = 1/(r+2) \). Taking the value of \( r \) large enough, we have the following result:

Corollary. For large value of \( z' \) in (2.11), the algorithm (2.11) with \( a = 1, \ \beta = -1 \) is A-stable if \( z' \) satisfies the inequality:
\[
\left| z - z' \right| < 1.
\]

Carrying the same argument to the algorithm (2.14) and (2.20), we have the following results:

Theorem 2. The algorithm (2.15) with \( \gamma = -\beta, \ z = z' \) is A-stable if \( z' \) satisfies the inequality:
\[
\left| \frac{z' - z}{z' - 2} \right| < \frac{1}{\gamma^3} \left( \sqrt{z_1} - \sqrt{z_2} \right).
\]

(3.6)

with
\[
z_1 = r^2 - 4r\cos(\theta) + 4,
\]
\[
z_2 = r^2 + 4r\cos(\theta) + 4.
\]

The region \( z' \) satisfying (3.6) is in the interior of the circle with the
center $m$, and the radius $r$

$$m = - \frac{c^2 - z}{1 - c^2}, \quad r = c \frac{1 - z}{1 - c^2}$$ (3.7)

with $c_z = 1/(r(r+2))$.

Theorem 3. The algorithm (2.21) with $\alpha = 6, \beta = -4, \gamma = 1, \rho = -1, \delta = 1$ and $z = z'$ is A-stable if $z'$ satisfies the following inequality:

$$\frac{|(z - z')(88zz' - 36(z+ z')) + 81|}{|9 - 11zz' + 4zz'^2|} \leq \frac{1}{|1 - 36}} \left\{ \frac{|-9 + 2z|}{|9 - 11z + z^2|} \right\}.$$

References

