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An explicit integral representation
of Whittaker functions
for the representations of the discrete series
—The case of SU(2,2)—

By

Takayuki Oda (ﬁfk’?}& ﬁﬁ@%ﬁ : ff%q’ 121 7§ j?)

§1. Introduction

This paper is a supplement to a paper [Y-II] of Yamashita. Also it is an analogue of a
result in [O].

We consider a Lie group G = SU(2,2) and Whittaker functions of the large discrete
series which have Whittaker model with respect to non-degenerate characters of a maximal
unipotent subgroup N of G. Using Schmid operator, Yamashita [Y-II] explicitly computed
the differential equations satisfied by the minimal K-type vectors in the Whittaker model
of the discrete series representations. ,

The purpose of this paper is to push this computation one step further to obtain an
explicit integral representation of the Whittaker functions representing these vectors be-
longing to the minimal K-type. There is a general integral representation due to Jacquet
- for Whittaker functions. But this representation is sometimes intractable for higher rank
groups. We hope our formula is useful for investigation of L-factors of automorphic repre-
sentations of the discrete series at the real places.

The author thanks to Yamashita for constant communications.
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§2. The group SU(2,2) and its discrete series

2.1 Structure of Lie group and Lie algebra.

Let G be the special unitary group SU(2,2) realized as
G = {g € SL(4,C) | g*Iz,gg = Ig’z}, 12,2 = dJag(l, 1, -—1, —1),

where g* = g denotes the adjoint of a matriz g. We fiz some notation for this group and
its discrete series representations, used throughout this paper.

Let U(4) be the unitary group of degree 4 in SL(4,C). Take a mazimal compact
subgroup K = GNU(4) = S(U(2) x U(2)). We set

a, =RH, + RH, with H; = Xo3 + X320, Hy = X1+ Xq,
where X;; are elementary matrices given by
Xij = (‘5;63)19&54 with Kronecker’s 51];.

Then a, is a mazimally split abelian subalgebra of g. Let ¥ denote the (restricted) root
system of (g,a,). Then ¥ is of type C, and 1s expressed as

B = (£ £ $2)/2, A1, 2} i (Hy) = 260 (5,5 =1,2).

Choose a positive system UF = {(2 £ 1)/2,%1,%2} having 1 and (2 — ¥1)/2 as

its simple roots, and let

Mm = Z a(¥)

vev?t
be the corresponding mazimal nilpotent Lie subalgebra of g. Here a(1) 1s the root subspace

of @ corresponding to 1 € ¥. Then one obtains an Iwasawa decomposition of g and G:
g=t®a,®n,, G=LKA,Nn with A, =expa,, Np =expng,.

Now let
Ey = V—-1(Hz; — Xo3 + X32)/2, Ey=v —.1'(H{4 - X+ Xa)/2,
Bf = (Xi3+ Xaa FX12 F Xu2)/2,  Ef = (Xoa = Xy & Xou F X31)/2,



47

where Hyy = Xkk — Xu for 1 <k, 1< 4. Then it 13 easily seen that

Ei€g($:i), EF €g((¥2£41)/2)®r C Cnmc

for i=1,2, j=3,4, and these siz elements form ¢ basis of the complezification npm c of

N

By a direct computation we obtain the following ezpression of non-compact root vectors

of (gc,tc) along the complezified Iwasawa decomposition.

Lemma 2.1.

Xo3 = %H£3+\/———_1-E1+%H1, X32=~%H£3—\/—_1E1+%H1,
XM = %Hi«; +V-1E; + %Hz, Xy = -—%Hi‘; —V—=1E, + %Hz,
X13 = —Xa3 + (Ef + E7), Xs1 = Xaq + (Ef — Ef),

X24 = Xo1 + (Ef + E7), X4 = — X2 + (B — EY).

The above decomposition is used to compute the radial A,-part of the differential op-

erator Dy 5.

2.2 Parametrization of the discrete series.
Let us now parametrize the discrete series of SU(2,2). Take a compact Cartan subal-

gebra t of g consisting of all diagonal matrices in &. Then the root system A of (gc,tc),

of type A3, 13 expressed as

where

Bij(diag(hy, ke, hz, he)) = hi — h;

for diag(hy, he, h3, hs) € tc. Further the set of compact roots is given by A. = {£B12, £ P34}.
We identify the Weyl group W of A with the symmetric group &4 of degree 4 acting on tc
by permutation of the diagonal entries. The compact Weyl group W, is identified canoni-

cally with the subgroup G, x G,.
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Fiz a positive system AY = {f12,B834} of Ac. Then A admits precisely siz positive

systems A'I*', A'I*I, ceey _A'&I, containing A7 :
AY =wyAT with AT ={8;|i< i}
where the elements wy € W are given as

wr =1, wyg =382, wpg = 8283,
Wiy = 8281, Wy = 82838] = 828183, Wy = §2518352

in terms of the transpositions s; = (3,1 +1) (: = 1,2,3).

Let =F be the‘set of linear forms A on tg satisfying the following three conditions:
(1) (A,a) #0 for any o € A, 1.e. A i3 A-regular,
(2) (A,B) 20 for any B € Af, ie. A is Af-dominant,
(3) the map exp H — exp(A + p, H) (H € t) gives a unitary character of T = expt C K,

t.e. A+ p s K-integral _

Then this space =} C t§ of Harish-Chandra parameters are divided into siz parts:

=t= ][ =5, E}={AeE}|AisA}-dominant}.
I<JI<VI

We note that =} (resp. =) corresponds to the holomorphic (resp. anti-holomorphic)

discrete series.

As determined in [Y-1I], the Gelfand-Kirillov dimensions of the discrete series Tepre-

sentations ™ are given as follows,
GK-dim(r) = 4, if [r] e ZFUEY;
GK-dim(r) = 6 = dimn,,, if [r]€ZLUZET,;
GK-dim(r) = 5, if [x]€ZfUEL.
(Recently a more general result is obtained by [Y-I1I]).
Therefore the representations m belonging to E}LIUET, 18 a large representation in the sense

of Vogan [V], hence has a Whittaker model (cf. Kostant [K] for quasi-split groups).

For our later use, we employ a coordinates expression of elements a € t§:
_ : o ,
a = (a1, 0, 3) with a;=a(H; ;).

Here H:J - X,',' —-ij.
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2.3 Repr;esentation of the mazimal compact subgroup.
We want to give ezplicit Tealization of irreducible finite dimensional representation of
the mazimal compact group K = S(U(2) x U(2)). Since tQr C =5((2,C)®sl(2,C) C,
@e first fiz the realization of representation of 5((2, C).
Choose a Cartan basis '
x=[0 o) m=ls &) %=1 3]
in s1(2,C). The set of integral dominant weight is identified with the set of non-negative

integers N via correspondence
d€ N+ {H'— d e Hom(ZH',Z)}. |

Let (14,Va) be the unique irreducible representation with highest weight d. Then Vi has a
) (0 £ n £ d) consisting of weight vectors satisfyinvg‘
Ta(X)fn = fat1;
Ta(H') fn = (2n — d) fz;
Ta(X)fa=n(d-n+1)f,_;.

For convenience, we use the convention that fy41 = f_; = 0. Now the parametrization of

basis fn =

the representation of K is given as follows. Let A = (A1, A2, A3) be a AT -dominant integral
linear form on t, i.e. \; € Z (1 = 1,2,3) and A\;, A3 > 0. Let 3 be the center of tc and
tc = [te,tc) > sl(2,C) @ sl(2, C) the derived algebra. Then tc = ;& ti.

Then the irreducible tc-module (7x,V)) with highest weight \ is realized on V) =
Vy, ® Va, with the action

(YY) =7, (Y1) ® idy,, +idv,, ® Tas(Y2)

for Y = diag(Y1,Y3) € tg with Y; € sl(2,C) (z = 1,2). Moreover the action of the center

3 18 determined by the action of the generator I o:
Ta(d2,2) = (A1 + 2X2 + A3) - idy, .
For our later computation, another coordinates expression for A = (r,s;u] with
r=A = AHp), s=X3=\H;,),
u= A 42X + A = A1)

18 useful.
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(The adjoint representation)

The adjoint representation Adpc of K on pe 18 decomposed into a direct sum of two

irreducible subrepresentations: pc = p, @ p_, where

Py = Z (gc)sp and A;r,n-——{ﬂls,ﬁm,ﬂzs,ﬁu}

+
ﬁeAI.n

13 the set of non-compact roots in A}". The highest weights of p, and b_ are f14 = [1,1;2]
and B33 = [1,1; —2], respectively. For later use, we describe the K-isomorphisms ¢y : py o~
Vii,1;2) ezplicitly. The 4 elements fu = f,El) ® fl(l) with k,1 € {0,1} form a basis of
Vi ®@WVi = V1,1,49)- Note that Xo3 € p,, and X4y € p_ are the lowest weight vectors. Then

' ' 2
(X23, X13, Xoa, X14) = (fo0, fr0, — fo1, —f11),

' ' 2-
(X41, X31, X42, X32) = (foo, fo1, — fr0, —f11)-

(Decomposition of the tensor product 7a @ Adyp_)

We decompose the tc-module VAQp into irreducible components, giving the projectors

ezplicitly.
Lemma 2.2.
(1) The tensor product (74 ® 11, Va ® V) of 51(2, C)-modules decomposes as
Va@ Vi ~ Vi1 @ V.

(ii) The projectors Pdi : Va® Vi — V4, are up to scalar multiples, given respectively by

the formulae:

PH(fP @ fN)=(d+1-n)f#*V), P g fM) = flt),

P9 ) = —nfiY, Pr(fP @ V) = f&0

for 0 < n < d. Here {f,(,k)},2 is the basis of V. given above.

This 1s easy to check (cf. Lemma 4.1 of [Y-I)).
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The irreducible decomposition of tc-module V\ @ pe 13 given as follows:

VA@DC:(V,\®9+)@(V,\®IJ_), WZW®py ~ ) V[,_+€1’3+52;ui2]_
€1,626{+1,-1}

Furthermore the operator Pf, = Pf* @ P5? with € = (e1,¢€2) and Pfl = Pf (d > 0), grve
a tc-module homomorphism from V) ® py to the irreducible constituent Viyye, sye,ius)

under the identification
V,\ & p:t = (Vr & ‘/l) ® (Vs ® ‘/l), 1/'[7+€1,8+£2;u:b2] = Vr+sl ® Vs+52

as tg-modules. Noting the coordinates ezpressions of elements in A;',n:
Bij = (-1, (-1)52) (i=1,2% j=3,4)

we can confirm the following.

Lemma 2.3.
(i) Let V) be the irreducible K-module with highest weight A = [r,s;u]. Then the tensor

products Vy @ p, and V) @ p_ decompose into irreducibles as
(#) V,\ ® pi ~ &) V/\:l:ﬂ~ :
geat
(i1) Foreachf € A;’,n, denote by () = (e1,¢€,) the element of {1} x {£1} corresponding
to B through B = [e1,€2;2]. Then the operators PZ¢(3) give projections from Vx ®p,

onto Vayp along (#).
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§3. Radial A,-part of the differential operator D, .

Let (1,V) be any finite dimensional representation of K, and (n,F) a continuous Fréchet
space representation of N,,. Then the space F*° C F of C*®-vectors for n is stable under
the N,,-action, and the representation n on F°° with the usual Fréchet topology 1s smooth.
The induced action of (ny,)c on F™ s denoted by the same symbol n.

Let C5.(G) be the space of (F @ V)-valued C*°-functions F on G satisfying

F(kgn) =d(n) @ 7(k™")F(g), (k,g,n) € K X G X Ny,

Since F is smooth, the value F(g) lies in F*®° Q@ V for every g € G. In view of Iwasawa
decomposition G = KANp, ~ K xAp XNy, (as C®-manifold), one finds that the restriction

map vy : F— F|A, sets up a linear isomorphism:
Cro(G) = C®(A,, FRYV).

Here C°(A,, E) denotes the space of C*-functions on a C*®-manifold A, with values in
a Fréchet space E.
Let (1;, Vi) (2 = 1,2) be K-modules and D : C2%, (G) — C25,(G), a linear mapping.

Set
R(D)=ry,0Do0r L :C®(A, FX®V;) — C®(4,, F* @ V,).

7,71

We call this linear map R(D) the radial A,-part of D.
We want to write down ezplicitly the radial A,-part R(D, ) of the differential operator
Dy :C (G) — C§°T (G) for each A. By definition, D, x is ezpressed as

7,TA ;

DyaF = (idr= @ PA) (Vo F)(+), FeCTL(G),

where V5 1 C7% (G) = CFF 944(G) with Ad = Adyp_, 1s defined as

77X

Vo F = ZLX,‘F(') ® Xk,
k

by means of an orthonormal basis (X}) of p.
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Moreover Py i3 a projector from V) ® pg to Vi~ & Vi_g. Then
peat

R(Dy )¢ = (idr= @ PA)R(Vy2)$()) for ¢ € CP(4,,F> @ W)
Choose as an orthonormal basis, the elements
(Xij + X5)/2v2, V=1(Xij — Xj)/2V2 (i=1,2; j =3,4).

Then
AV Z\F =V F+V_F

with

v F=Z.~ 'LX,';F(‘)®X1";
{ A o 7 i=1,2, j =3,4)

v;,z\F = Zi,j LX.',' F() Q in-
The operator Vf\tm are from C:f,n(G) to CRloady n(G), respectively. Here Ady 1s the

adjoint representation of K on py. Thus we have 4R(V) ,) = R(V:\"’Vn) + R(V5 )

To ezpress R(Vf,ﬂ) concisely, we introduce some notations.

Notation 3.1.

(i) For the basis {E,-,Eii; 1=1,2, j =3,4} of nn,c, denote the operators n(E;) and
n(E;t) on F*° by n; and n;b, respectively.

(ii) We set 9; = (Lp; restricted to A,).

(ili) The function a € A, — a¥ = e¥(96%) wil] be written as e¥ for each 1 € (ap)&-

(iv) Furthermore, it is convenient to employ the convention: for a £C—modille V,X etc
and E € n,, ¢, express the operators X ® idr~ and idy @ n(E) on V @ F>® simply
by X and n(E), respectively.

(v) We define linear differential operators L and Sjt on C®(A,, Vi ® F) by

LF¢=(0i+2vV=Te™¥n)p (i=1,2),

SJﬂ:d) = (e—(¢z+¢1)/2n;}' + 6—(¢2—¢1)/277j—)¢ (j = 3,4),

for ¢ € C®(A,, Va @ F®).

Under the above notation we have the following
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Proposition 3.1. The operators R(Vin) :C®(Ap, MA@ F®) = C(A4p, i@ F < ®py),

are expressed as

) R(V},) = 5(£7 + His — 2)(8 ® Xas) + (X1 — 57)($ ® Xza)
~ (X34 +857)(¢® X13) + ';‘(55 + Hyy — 6)(¢ ® X14).
(i) R(V5,,) = 2(CF = iy = 6)(6 ® Xa) + (Xas + 53)(6 © X32)

F (= Xar + 576 Xaa) + 5(£F — Hiy —2)(8 ® Xs2).

This is the proposition 5.1 of [Y-]].

§4. Differential difference equations for the minimal K-type

Retain the notation of §§2.9, and realize the representation (7x,Vy) (A = [r,s;u]) of K as
in there V) = V. @ V, with a basis

) - fD @Y (0<k<r, 0<1<s)
“consisting of weight vectors. Ezpand a function ¢ € C°(Ap, Vi ® F*°) as

é(a) = Z f,EI”) Qcri(a) (a€ A,) with ck € C®(A,, F*).
[,

We are going to write down the differential equation R(Dy )¢ = 0 by means of these
coefficients (cri). Let B = [e1,€2;2] be a non-compact root in A}h with €1,e2 € {1}, and
recall the K-homomorphism P:k(e1 1) from VA @py onto Vayp given in Lemma (2.2). For

simplicity, we denote the operators pEleve g tdre by pEleves)

Lemma 4.1. Let (7, V) be the minimal K -type of a discrete series, and ¢ € C™(A4,,VrQ
F°°). Then R(Dj,y)¢ = 0 if and only if

P (R(VE )¢) =0 and PSV*D(R(V3,)$) = 0.
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Here (61,62) and (e1,¢2) run over the elements of {1} x {1} in the following table.

(61,62) (e1,€2)
(I) none arbitrary, i.e. (£1,+£1)
(II) (_17—1) (—lvil), (_1’ _1)
(i | (=1, +1) (—1,41)
(IV) (:tl""l) (il,'—l)
(V> (—l,il),(l,—l) (—1’_1)
(VI) arbitrary none

where (J) means the case when A = A + p. — p, is A -dominant.

This is Lemma 5.2 of [Y1].

We modify some of the above differential equations in the following manner:

(ct) PSUTU(R(VE,)$) = 0;

(CE) (P7 @idy,)(R(VE,)$) =0 with P @®idy, = PV @ P
(CF) (idv, ® PY)R(VR,)$) =0 with idy, ®P; =P~ @ PG
(C¥) R(V%,)é=0.

Then R(Dy )¢ = 0 1s equivalent to

(CT),(C5),(C3)  for the case (II) and
(CT),(CH),(CT)  for the case (V).

Now let us rewrite (C) (i = 1,2,3,4) more ezplicitly in terms of the component cgy

of ¢.
We put

bo =(r +s+u)/2, by =(-r+s+u)/2=0by—r,

b =(r—s+u)/2=0by—s, by=(r+s—u)/2=—by+1+s,

which are integers by the integrability of A = [r,s; u].
In the following definition, we understand the undefined coefficients, say cx,_1 and

Ck,s+l are zZero.
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Definition 4.1.

(i) First, we define the equation (Ct) = (C{ : 1) on the coefficients (ck) by

ch) (k+ 1)1+ 1)(L7 — k=14 by — 2) ckgr41 — 2(k + 1)S5 crt1,
+ 2(l + 1)$;Ck,[+1 — ([:2— —k—-1-0b3— 4) ¢k, =0,

where 0 < k<r—1aeand0<I[<s—1.

(i1) Second we set

(CF:1) (k+1)(L7 —k —14bp — 1) ckyr,0 + 2ck,1-1 + 255 ¢kt = 0;

(C;- 12) (Ez_ —k+l—b3—2)ck‘,+2(k+1)$3"ck+1,,:O,

for0<k<r—-1and0<I<s.

(iii) Moreover we put

(C; : 1) (l + 1)([:1_ - k=1 + bo — 1) Ck,1+1 + 2Ck._1,1 - 253_Ck'( = O,

(C;. : 2) ([:; +k‘—l—b3 -2)Ck’(—2(1+1)$4_6k,1+1 ZO,

for0<k<rand0<Il<s-—1.

(iv) Finally we set

(ct:1) ; (LT —k—=14bo)cki =0
(Cy :2) Cko11 = S5 cxt = 0;
(Ct:3) k-1 + S5 ek = 0;
(Cf :4) (L7 +k+1—=b3)ck1 =0,

where 0 <k <rand 0 <[ <s.

Remark. We note that (Cf : i) is obtained from (CJ : i) through the replacements:
(kyr;ls) > (Lsskyr) and (S57,S7) = (=S, =85).

Definition 4.2. The equation (C] : q) is given as follows in relation to (C}, : ¢). We put

k ! -1
di = (Hn(r—n+1)- H/z(s—h+l)> CCr—k,s—1-
n=1 h=1
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Rewrite (C : ¢) to a system of differential equations for (dx ), and then replace the
operators S, SE, £F (1 =1,2) and the constant u, respectively by SF, S, £LF and —u.

We name the resulting system of equations (C; : gq).

Remark. For instance, (Cy : 2) is given as
(CZ_ : 2) (k + 1)(£_2*_ +k—=1l—r—0by— 1)¢k+1,l + ZSjck,I =0 (OSkST—l, OSlSS).

It should be noticed that (C} : q) is regained from (C, : q) by the same procedure as in

the above definition.

Proposition 4.2. Let m (1 < m < 4) be an integer and ¢ € {+,—}. A function
6 = Sricuf) € C®(A,, Va ® F*) fulfills (CS) if and only if its coefficients (cxi)
satisfy the system of differential difference equations on A, : (Cf,: :q) with1l < ¢ < Km,
defined in Definition 4.1 and 4.2. Here km =1 (m = 1); km = 2 (m = 2,3); km =4
(m = 4).

§5. Solution of differential equation for a character n in the case II

Let n be a one-dimensional representation of N,,. Then we solve explicitly the system of
differential equations Ci", Cy, C5 for the minimal K-type T\ of a discrete series repre-
sentation mp with A € Zj7. In pérticular we have an integral formula for the highest weight
vector in the minimal K -type of the Whittaker realization of wy.

In what follows, we identify the vector group A, with R? via
(t1,t2) € R? — exp(—t, Hy — t,Hy) € A,

using the basis {H;}i=1,2 of ap in (2.1). Then the differential operator 8; and the function
e ¥ in (3.1) turn out to be 8/0t; and €% respectively.
Note that

because Eg,EJ‘-F € [Mm,c, "m,c]. This in turn implies that

LT =L; =8/8t,, St =-87=er""1y7,
2 2 J J J



58

which we denote respectively by Ly and S; from now on.
We transfer the system (C7), (C5 : 1), (Cy : 1), (i = 1,2) for (cx), cri € C(R?)

(0<k<r, 0L1<s), into a more convenient form to handle.

Definition 5.1. Set for each cyy,
hkl = k!l exp{v -1 6‘72“171 + (k + l— bO)tl + (b3 —k—-1- Z)tg} * Ckl

where n; = n(E;) and r,s,b; (0 < j < 3) are integers before Definition (4.1)

Proposition 5.1. The system of functions (cx) is a solution of (C), (C5) (Cy), if and

only if (hy) satisfy the following differential equations:

(i) eXt2=t) (L) 4 2Ly — 4v/=T ey — 2b3)hig1 141 — (L2 — 2b3 — 2)hgy =0

(0<k<r—1,0<I1<s—1),
(i) e~ (Lo + Dhpyr1 101 + Lihu=0  (0<k<r—1,0 g’ [<s—1),
(i) (Le4+2k+1=m)hipr g+ 20 =0 (0<k<r—1,0<1<5s)
(iv) (Lo +2(14+1=r))heit1 — 203 hiy=0  (0<k<r, 0<I<s—1),
(v) 2O pshigy 4 Lk =0 (0<k<r-—1),

(vi) =22 Wprh o+ Likn=0  (0<1<s—1),

where L; = 8/0t; for i = 1,2.

This i3 Proposition 4.1 of [Y-1I].

Now we assume that n is generic.
Assumption 5.1. n3 -0y # 0 and n; # 0.

In this case, any solution (hii) of (i)-(vi) in Proposition 5.1 is uniquely determined
by h = hy, (i.e. the highest weight vector) through the relation (1) and (). By (1) and
(vi), h should fulfil the equation |

(H-1) (L, Ly — 4535,)h = 0.
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Further one get from (i), (iii) and (vi),
(H-2)  {(L2—2b3 = 2)L] + 4S354(Ly +2L; — 4vV/—1€*"iny — 2b3)} A = 0.

Conversely, it 13 easily checked that any h € C*(R) satisfying (H-1) and (H-2) can be
eztended uniquely to a solution (hii) of (1)-(vi) of Proposition (5.1) through (iii), (iv).
Apply the operator Ly to (H-2)' and use (H-1) to replace LyLih by 4S3S4h. Then

we have
(H-Q) {(L1 + L2)2 + (—2b3 — 2)(L1 + Lz) + (—4\/:_1—62t17h)L1} h=0.

Conversely, apply Ly to (H-2) and use (H-1), then we recover (H-2).

Thus we get the following lemma.

Lemma 5.2. The solutions (ki) of (i)—(vi) in Proposition (5.1) correspond bijectively to
h € C°(R?) satisfying (H-1) and (H-2) through h = h,,.

§6. Explicit integral formula for Whittaker functions

Now we want to solve the equations (H-1), (H-2). Changing the variables fromt; (z =1,2)

to a; = €' (1 =1,2), we put
Wi(ay,az) = h(loga;,logas) € C°°(R220).
Then (H-1) and (H-2) are replaced by

2
(W-1) {LILZ —anyng (%) }W.—_O,
1

and

(W-2) {(Ll + Ly)* + (—2by — 2)(L; + Ly)+ (—4\/:T7hafl}1)} W =0,

where L; = aigﬁaj (1=1,2). Note that the system of equations (W-1), (W-2) is very similar
to the system of partial differential equations (H-1), (H-2) of Lemma (8.1) of [O].

Now we assume that the character n: N, — C 1s unitary.



60

Lemma 6.1. When n is unitary, n; is a purely imaginary number, and v/—113; and

V=110, are mutually conjugate complex numbers. In particular n; n; < 0.

Proof. Since Ey € np r, M 8 purely tmaginary. Because E; +E; € np, g and /—1E7
V=1E; € nn R, n; +n; and V/—=1(n; —n,; ) are purely imaginary numbers. This settles
the proof.

By assumption n 18 generic. Hence nyn, < 0.
We first find a formal solution of (W-1), (W-2). Write W as a Laplace tmnsformation'
of &:
W(ay,a2) = / ; <I>(u1,U2)e("‘“l—2+“’“§)du1dug.
R

‘Then
LiL,W = /(—4u1u2)<1>(u1,u2) e("‘al_z'*""’“g)dulduz.

Therefore (W-1) implies an equation for a distribution $:

a

2
a _
(—2) (uruz + 130y )@ =0.

Hence @ has support on the hyperbola uyus = —n;ny > 0. Thus with a function ¢ on

R — {0}, we can write

3 Mg d
W(al,az) = / (,D(u) exp {C(% . 773 774 a%)} _}i’
R aj u u

where ¢ 138 a constant +1.

Note that

0 —2cu U n,n, du
— W = — _ 37 2 e
' 8a, /R{ aj }v(u)em {C<a? u a2>} u’
g —2cny ny al o nn; du
—W = =3 42 X — _ B o2\
a2 Oay /R { u plu)exp ¢ a? w2 u

Assume that
o) exp {(_ _ ’7__"_)} o
ai u

and
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when u — 0 or u — oo, then integration by part implies that

(Ly + L)W = '/}‘-(fQ)ga(u)a—azl exp {C(Zu? _ M3 a§>} . %u_

u

. d U NN du
= Qe : X _ i
oo} om0 )

Hence (W-2) implies a differential equation for o:

{(w%)? + (—2b3 — 2) <2u;—) + 8cx/—n1}

Assume that ¢ has support in {u € R | u > 0}. Then we should choose c = —1, in

order to justify the integration by part.
Write
p(u) = vl (y)
with v = \/u. Then po(v) satisfies the differential equation

(*): 2d ¢O(v)+{__(b +1) +(—8\/———IT]1)U2}(,90=0

dv?
Assume further that —8v—1mn; 13 a negative real numbef, t.e. V/—=1m; s a positive

real number. Recall that Al -dominancy of the Harish-Chandra parameter A implies that
rT+s+2>—-u>|r—s|+2

Hence b3 = %(r + s — u) satisfies inequalities
r+s+1> b3 > 1+ max(r,s).

In particular by is a positive integer.
When Re (k — 1 —m) <0, an integral representation
|54 32 —k—i4m kot —t
km(z) = Tk )/ t <1+ ) e~ 'dt
defined for z ¢ (—o00,0) 3atzsﬁes the Whittaker differential equation

W 11 1
2 2 . .2 W =
pA d22 +Z{Z—m +LZ+(—Z)~} —0
Setk=0and m =0b3+1, and
wo(v) = Wob,41(V/32|m1] - ).

Then ¢q satisfies the differential equation (*). This gives an integral representation of the

function W(ay,as).
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Theorem 6.2. Let w5 be a discrete series representation of SU(2,2) with a A'}}-dominant
Harish-Chandra parameter A. Assume that the character n : N,, — C is unitary and

generic. Then
(1) ma has a Whittaker model for n if and only if Im(m) < 0.

(i) In this case, the function h(loga,,logaz) = W(a,, ay) has an integral representation

o
W(al,a2)=const./ vt GO, L (V32]m | v)

0
v? -5 Ny dv
xexp{—(z?+(s—24)a§> et

Here by = %(r-}-s-—u) = —Ay = —Ay—1 with Harish-Chandra parameter A = (A1, Aa, A3).

Qutline of the proof. The argument of the proof is completely similar to the case of Sp(2, R).
We note here some key points. When Im(n;) < 0, i.e. /=11 18 positive, the function h
satisfies the differential equations (H-1), (H-2).
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