<table>
<thead>
<tr>
<th>Title</th>
<th>Determinant representation, Jacobi sum and de Rham discriminant (Algebraic Number Theory: Recent Developments and Their Backgrounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAIOT, TAKESHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 844: 79-83</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83601</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Determinant representation, Jacobi sum and de Rham discriminant

TAKESHI SAIITO

Department of Mathematical Sciences, University of Tokyo.
Tokyo 113 Japan

We give a description of the Galois action on the determinant of cohomologies of ℓ-adic sheaves on varieties in terms of Jacobi sum Hecke characters and of the de Rham discriminant for general base fields. Let k be an arbitrary base field, U be a smooth scheme over k and \mathcal{F} be a smooth ℓ-adic sheaf for $\ell \neq \text{ch}k$. We consider one-dimensional ℓ-adic representation

$$\det R\Gamma_c(U_k, \mathcal{F}) = \bigotimes_i \det H^i_c(U_k, \mathcal{F})^\otimes(-1)^i$$

of $\text{Gal}(k^{sep}/k)$.

Results. 1. Constant coefficient.

First we consider the constant coefficient case. If we assume the resolution of singularity, the problem is reduced to the proper case. Let X be a proper smooth variety over a field k of dimension n and χ be the Euler characteristic of X_k. Then it follows immediately from Poincare duality that

$$\det R\Gamma(X_{\overline{k}}, \mathbb{Q}_\ell) = \mathbb{Q}_\ell(-\frac{1}{2}n\chi) \otimes \begin{cases} 1, & n \text{ odd} \\ \kappa, & n \text{ even} \end{cases}$$

for some character κ of order at most 2 of $\text{Gal}(k^{ab}/k)$.

Theorem 1. Assume $\text{ch}k \neq 2$, X is projective and $n = 2m = \dim X$ is even. Let $\delta_X \in k^\times/(k^\times)^2$ be the discriminant of the cup product on the de Rham cohomology $H^n_{dR}(X/k)$ which is a non-degenerate symmetric bilinear form and let $b^- = \sum_{i<n} \dim H^i_{dR}(X/k)$. Then the character κ corresponds to the quadratic extension $k(\sqrt{(-1)^m b^- \delta_X})/k$.

Remark. When k is finite and $n = 2m$ even, Tate conjecture implies that κ_{et} is trivial if and only if the rank of $\text{CH}^m(X_k')_{h}/\text{CH}^m(X_k)_{h}$ is even. Here the suffix h denotes modulo the homological equivalence and k' is the quadratic extension of k. In particular if κ is not trivial, there is an algebraic cycle of X_k not defined over k.

2. General coefficient.

We proceed to a general coefficient. Let k, U and \mathcal{F} be as above.
Theorem 2. We assume

1. There is a projective and smooth variety X over k containing U such that the complement $D = X - U$ is a divisor with simple normal crossings.

2. The ramification of \mathcal{F} along D is tame.

3. The sheaf \mathcal{F} is defined on a model of U defined over a ring of finite type over \mathbb{Z}.

Then we have

$$\det R\Gamma_c(U_k, \mathcal{F}) \otimes \det R\Gamma_c(U_k, \mathbb{Q}_\ell)^{\otimes -\text{rank} \mathcal{F}} = c_{X, U/k}^*(\det \mathcal{F}) \otimes J_{D,F}^{\otimes -1}$$

as one-dimensional ℓ-adic representations of $\text{Gal}(k^{ab}/k)$.

The precise definition of the right hand side will be given later. A rough idea is as follows. The first term is the pull-back of the determinant character $\det \mathcal{F}$ of $\pi_1(U)^{ab, \text{tame}}$ to $\text{Gal}(k^{ab}/k)$ by the pairing with the relative canonical class $c_{X, U/k} \in CH_0(X, D)$. The second term $J_{D,F}$ denotes a Jacobi sum Hecke character, which is determined by the ramification datum of ρ along D.

Corollary. If k is an algebraic number field, the ℓ-adic representation $J_{D,F}$ is defined by an algebraic Hecke character.

Theorem 2 solves the conjecture (3.11) of [O] affirmatively. By Theorem 2 together with a formula for period integral (joint work with T. Terasoma), we verify a part of a conjecture of Deligne [D2] Conjecture 8.1 (iii): A motive of rank 1 is defined by an algebraic Hecke character, in certain cases.

Definitions. 1. Canonical cycle.

First, we define the relative Chow group $CH_0(X, D)$ of dimension 0 and the relative canonical cycle $c_{X, U/k} \in CH_0(X, D)$. Let X be a smooth scheme over a field k of dimension n and $D = \bigcup_{i \in I} D_i$ be a divisor with simple normal crossings. Let $\mathcal{K}_n(X)$ denotes the sheaf of Quillen's K-theory on X_{Zar}. Namely the Zariski sheafification of the presheaf $U \mapsto K_n(U)$. Let $\mathcal{K}_n(X, D)$ be the complex $[\mathcal{K}_n(X) \to \oplus_i \mathcal{K}_n(D_i)]$. Here $\mathcal{K}_n(X)$ is put on degree 0 and $\mathcal{K}_n(D_i)$ denotes their direct image on X. We call the hypercohomology $H^n(X, \mathcal{K}_n(X, D))$ the relative Chow group of dimension 0 and write

$$CH_0(X, D) = H^n(X, \mathcal{K}_n(X, D)).$$

We define the relative canonical class

$$c_{X, U/k} = (-1)^n c_n(\Omega^1_{X/k}(\log D), \text{res}) \in CH_0(X, D).$$
Let V be the covariant vector bundle associated to the locally free \mathcal{O}_X-module $\Omega_{X/k}^1(\log D)$ of rank n. For each irreducible component D_i, let $\Delta_i = \pi_i^{-1}(1)$. Here $r_i : V|_{D_i} \to \mathcal{O}_{D_i}$ is induced by the Poincare residue $\text{res}_i : \Omega_{X/k}^1(\log D)|_{D_i} \to \mathcal{O}_{D_i}$ and $1 \subset \mathcal{A}^1$ is the 1-section. Let $\mathcal{K}_n(V, \Delta)$ be the complex $[\mathcal{K}_n(V) \to \bigoplus_i \mathcal{K}_n(\Delta_i)]$ defined similarly as above and $\{0\} \subset V$ be the zero section. Then we have

$$H^n_{\{0\}}(V, \mathcal{K}_n(V, \Delta)) \simeq H^n_{\{0\}}(V, \mathcal{K}_n(V)) \simeq H^0(X, \mathcal{K}_n(V, \Delta)) \simeq H^0(X, Z)$$

by the purity and homotopy property of K-cohomology. The relative top chern class $c_n(\Omega_{X/k}^1(\log D), \text{res}) \in CH_0(X, D)$ is defined as the image of $1 \in H^0(X, Z)$.

Next we consider the canonical pairing

$$CH_0(X, D) \times \text{Gal}(k^{ab}/k) \to \pi_1(U)^{ab, \text{tame}}.$$

For its definition require an adelic description of the group $CH_0(X, D)$, we only give a definition of a quotient

$$CH_0(X) \times \text{Gal}(k^{ab}/k) \to \pi_1(X)^{ab}.$$

It is characterized by the following property. For a closed point $x \in X$, the pairing with the class $[x]$ coincides with the inseparable degree times the Galois transfer followed by i_{x*} for $i_x : x \to X$

$$\text{Gal}(k^{ab}/k) \xrightarrow{\text{tr}_x(x)/k \times [\kappa(x)/k]} \text{Gal}(\kappa(x)^{ab}/\kappa(x)) \xrightarrow{i_{x*}} \pi_1(X)^{ab}.$$

The required reciprocity law follows from the fact that P^1 is simply connected.

Remark. If k is finite, the pairing $CH_0(X) \times \hat{Z} \to \pi_1^{ab}(X)$ coincides with the reciprocity map of higher dimensional unramified class field theory.

For a smooth ℓ-adic sheaf \mathcal{F} on U tamely ramified along D, the determinant $\det \mathcal{F}$ determines an ℓ-adic character of $\pi_1(U)^{ab, \text{tame}}$. Therefore by pulling it back by the pairing with $c_{X,U/k}$, we obtain the first term $c_{X,U/k}^* (\det \mathcal{F})$.

2. Jacobi sum.

We call a Jacobi datum on k a triple (T, χ, n) as follows

1. $T = (k_i)_{i \in I}$ is a finite family of finite separable extensions of k.
2. $\chi = (\chi_i)_{i \in I}$ is a family of characters $\chi_i : \mu_{d_i}(k_i)$ of the group of d_i-th roots of unity for some integer d_i invertible in k such that $\mu_{d_i} \simeq \mathbb{Z}/d_i$ on k_i.
3. $n = (n_i)_{i \in I}$ is a family of integers.
satisfying the condition
\[\prod_{i \in I} N_{k_i/k}(\chi_i)^{n_i} = 1. \]

Here the norm \(N_{k_i/k}(\chi_i) : \zeta \in \mu_{d_i}(\overline{k}) \rightarrow \chi_i(N_{k_i/k}(\zeta)) \) is the product of the conjugates. It is easy to see that each \(N_{k_i/k}(\chi_i) \) factors some \(\mu_{d_i'} \) such that \(d_i'|d_i \) and \(\mu_{d_i'} \simeq \mathbb{Z}/d_i' \) on \(S \). The product is taken as a character of \(\mu_{d,k} \) for some common multiple of \(d_i' \)'s which is invertible on \(k \).

If \(k \) is finite of order \(q \), we define the Jacobi sum \(j_X = j_{T,\chi, n} \) for each Jacobi datum \((T, \chi, n)\) on \(k \) by
\[j_X = \prod_{i \in I}(\tau_{k_i}(\overline{\chi}_i, \psi_0 \circ \text{Tr}_{k_i/k}))^{n_i}. \]

Here if \(k_i \) is of order \(q_i \), \(\overline{\chi}_i \) is a multiplicative character of \(k_i \) defined by \(\overline{\chi}_i(a) = \chi_i(a^{q_i-1}/d_i) \) for \(a \in k_i^x \), \(\psi_0 \) is a non-trivial additive character of \(k \) and \(\tau \) denotes the Gauss sum \(\tau_E(\chi, \psi) = -\sum_{\alpha \in E^x} \chi^{-1}(\alpha)\psi(\alpha) \).

The Jacobi sum \(j_X \) is independent of choice of \(\psi_0 \) by the condition \(\prod_{i \in I} N_{k_i/k}(\chi_i)^{n_i} = 1 \). In fact the product of the restrictions \(\prod_j \overline{\chi}_{ij}|_{k^x} \) coincides with \(N_{k_i/k}(\chi_i) \) regarded as a character of \(\mu_{q-1}(k) = k^x \).

To each Jacobi datum \((T, \chi, n)\) on a field \(k \), we define an \(\ell \)-adic representation \(J_\chi \) of \(\text{Gal}(k^{\text{sep}}/k) \) as follows. A Jacobi datum on \(k \) is defined on a normal ring \(A \) of finite type over \(\mathcal{O} \). The representation \(J_\chi \) is the pull-back of one of \(\pi_1(\text{Spec } A)^{ab} \) characterized by the following condition: For each closed point \(s \) of \(\text{Spec } A \), the action of the geometric Frobenius \(\mathcal{F}_s \) at \(s \) is given by the multiplication by the Jacobi sum \(J_\chi(s) \) defined by the reduction of the Jacobi datum \((T, \chi, n)\) at \(s \). Uniqueness follows from the Cebotarev density and the existence is essentially shown in SGA 4\(\frac{1}{2} \).

Let \(\mathcal{U} \) and \(\mathcal{F} \) be as in Theorem 1 and we define a Jacobi datum on \(k \) associated to the ramification of \(\mathcal{F} \) along \(D \). Let \(k_i \in I \) be the constant field of irreducible components \(D_i \) of \(D \). Let \(\rho \) be the \(\ell \)-adic representation of \(\pi_1(\mathcal{U}, \mathcal{E})^{\text{tame}} \) corresponding to \(\mathcal{F} \). The kernel \(\pi_1(\mathcal{U}, \mathcal{E})^{\text{tame}} \rightarrow \pi_1(\mathcal{U}, \mathcal{E}) \) is the normal subgroup topologically generated by the local monodromy groups \(\hat{\mathcal{U}}(1)_{D_i} \) along \(D_i \)'s where \(\hat{\mathcal{U}}(1) = \lim_{\rightarrow} \mu_d \) with \(d \) invertible in \(k \).

Let \(\rho_i \) be the restriction of \(\rho \) to \(\hat{\mathcal{U}}(1)_{D_i} \simeq \hat{\mathcal{U}}(1)_{k_i} \). By the assumption of the existence of a model of finite type over \(\mathcal{O} \) and by the monodromy theorem of Grothendieck, the restrictions \(\rho_i \)'s are quasi-unipotent. Namely the action of \(\hat{\mathcal{U}}(1) \) on the semi-simplification \(\rho_i^{ss} \) factors a finite quotient. Hence we can decompose it in the form \(\rho_i^{ss} \simeq \bigoplus_{j \in I_i} \text{Tr}_{k_{ij}/k_i}(\chi_{ij}) \). Here
k_{ij} is the finite extension of k_i obtained by adjoining the d_{ij}-th roots of unity, χ_{ij} is a character of $\mu_{d_{ij}}(k_{ij})$ of order d_{ij} and Tr denotes the direct sum of the conjugates. For $i \in I$, let $D^*_i = D_i - \bigcup_{j \neq i} D_j$ and c_i be the Euler number of $D^*_i \otimes_{k_i} \overline{k_i}$. Thus we obtain a triple (T, χ, n) by putting the index set $\overline{I} = \coprod_{i} I_i$, $T = (k_{ij})$, $\chi = (\chi_{ij})$ and $n = (n_{ij})$ with $n_{ij} = c_i$ for $i \in I$ and $j \in I_i$. The second term $J_{D,F}$ is defined as the p-adic representation determined by the Jacobi datum (T, χ, n).

Outline of proof.

For the detail of the proof, we refer to [S1] and [S2]. We give an outline of the proof of theorems. By a standard argument using Cebotarev density and specialization, we may assume k is finite. Then the determinant of the Frobenius is the constant of the functional equation of the L-function. We apply the product formula of Deligne-Laumon [D1],[L] for the constant by taking a Lefshetz pencil [SGA7]. For theorem 1, we show that the local terms are the Hessians at the singularities of the pencil and relate them to the de Rham discriminant using the Picard-Lefshetz formula (loc.cit).

REFERENCES

[S1] T.Saito, ϵ-factor of a tamely ramified sheaf on a variety, to appear in Inventiones Math.