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A Generalization of Bochner’s Tube Theorem
for Elliptic Boundary Value Problems
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Osaka University
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The classical Bochner’s tube theorem states that every holomorphic func-
tion defined on a connected tube domain T', T' = R™ + i}, in C™ can be
extended holomorphically to the convex hull T T=R"+ zQ of T. Asis
well-known, this property of holomorphic functmns in several Varlables can
be mjcrolocalized along a totally real manifold M in a complex manifold X
and is called a local version of Bochner’s tube theorem (cf. [SKK, chap.l,
prop.1.5.4] and also [H, lem.2.5.10; Ko] for a more precise statement).
This kind of (microlocal) analytic continuation theorem is also proved for
a generic CR-submanifold M of a complex manifold X (cf. [AT2, BT]).

In this note, we announce that a local version of Bochner’s tube theorem
holds good for boundary value problems for elliptic systems of differential
equations on a real manifold X (Theorem 1). Our method also gives a
tempered version of Theorem 1 by using the recent result [AT1] of An-
‘dronikof and Tose, reported in this conference (cf. the exposition of Tose
in this volume). As a related subject, in the last section, we note that
one can prove quite easily Epstein’s edge-of-the-wedge theorem for elliptic
boundary value problems.
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1. Main Theorem

Let X be a real analytic manifold, with Ax being the sheaf of analytic
functions on X, M a submanifold of X of codimension d > 1. Let Dx
denote the sheaf of differential operators with analytic coefficients on X,
and let M be a coherent D x-module defined on X. Throughout this section
we assume the following conditions on' M :

(a.1) M is elliptic :
T%: X N Char(M) C T;?X',

where X isa complex neighborhood of X on which M is defined as coherent
Dg-module, and Char(M) denotes the characteristic variety of M.

(a.2) The complexification Z of M in X is noncharacteristic for M :
| T3X N Char(M) C T4X
We set : Ax® = RHomyp, (M, Ax).

Let 7 : TyX — M be the normal bundle of M in X. Recalling the
specialization functor [KS]

vy : DP(X) — DR, (T X),

we have :

Theorem 1. Let U be an open conic subset of Tyy X with connected fibres,
U the convex hull of U in each fibre. Then

(11) - D(T, Hovm(Ax") — DU, Hovy(Ax*))
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is an isomorphism.

EXAMPLE. Let (X€, Oxc) be a complex manifold, X the underlying real
manifold of X©, M a generic CR-submanifold of X€. Let M be the
Cauchy-Riemann system of differential equations on X. Then (X, M, M)
satisfies conditions (a.1) and (a.2). Hence the theorem above holds for

Ax*® = RHomp, (M, Ax) =2 Oxc;

this is nothing but the microlocal version of Bochner’s tube theorem for
a generic CR-submanifold M, proved by Aoki and Tajima [AT2] (cf. also
[BT, sect.3] for a related, but different problem).

2. Specialization and boundary value rhorphism

In this section and the next section, we fix a field k of characteristic zero
and work with sheaves of kx-modules on a topological manifold X. We
denote by DP(X) the derived category of kx-modules.

Let X be a C?-manifold, M a submanifold of X of codimension d > 1,
j : M — X the embedding, 7 : Ty X — M the normal bundle of M in X,

var : DP(X) — D24 (T X)

the spemahzatmn functor [KS]. For F € Ob(D(X)), we have the canonical
morphism

(2.1) vp(F) — 7'Rrvy(F) 2 17 F@ t'ky.
Applying the functor H®(e), we have a sheaf-homomorphism
(2.2) b: Hovy(F) — 7 HY(F) ® orux,

with orarx being the relative orientation sheaf for M — X.
Let U be an open conic subset of Ty X. If 7|y : U — M has connected
(non-empty) fibres on M, (2.2) gives

(2.3) by : T(U, Hovpm(F)) — T(M, HY (F) ® orpx)-

This is nothing but the boundary value map to M for F. Note that we
have a canonical map

HU, va(F)) — T(U, Hovp(F)),
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and an isomorphism

0 ~ 1 0
H(U, vy (F)) = %nH (V, F),

where V ranges through the family Vi of the open subsets of X satisfying
Cu(X\V)NU = <. Hence, from (2.3), we get a canonical map

(2.4) HY(V, F) — T(M, HY(F) ® orpx)-

Remark. — The description of boundary value morphism given here is
classical for F' = Ox (cf. e.g. [SKK, chap.1]). On the other hand, Schapira

[S] constructed the canonical boundary value morphism
RTv(F)|u — ROMF @ orppx[d]

for an open subset V of X with VoM , satisfying a weaker condition.

EXAMPLE. Let X, M be as in section 1. Let M be a coherent D x-module
defined on X, and assume the condition (a.2). Let Bx denote the sheaf of
Sato’s hyperfunctions on X and set : F' = RHomp, (M, Bx). Then the
target of morphism (2.1) is isomorphic to 7~ 'RHomp,, (M, Bar), with
M being the induced coherent Djr-module of M by M — X. Thus we
obtain a canonical boundary value morphism for hyperfunction solutions

of M :

(25) Homr—l(DX|M)(T*1(MlM), HOI/M(B)()).
— 7" YHomp,, (M, Bar).

Note that Qaku [O] constructed the same homomorphism as (2.5) by using
the notion of F-mild hyperfunctions, which is also proved by [O] to be
injective. :
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3. A key lemma — Fourier-Sato transformation

In this section, since we work only in the derived category DP(kx), with
k a fixed field, we denote simply by f,, fi the right derived push-forward
functors by a continuous map f.

Let M be a Cl-manifold, 7 : E — M a C' vector bundle on M, = :
E* — M the dual bundle of E. Consider the diagram

Exy B* —— E*

pll T |
E —/ M

and set :

P' = {(z,y) € E xy E* | (z, y) < 0}.
Recall the Fourier-Sato transformation [KS, ¢f. also BMV]
®: Dy (E) — Dp+(E*),  &(G) =palpi G)pr

for G € Ob(D% (E)). Then we have
Theorem [KS, BMV]. There is a canonical isomorphism :

G —~—) Pl*RFp: (p;@(G))

Moreover we have the following result :

Lemma 3.1. There is a canonical commutative diagram :

G —— p.RIpi(p2'®(G))

l !

NG ——  pup2®(G),

where the vertical arrows are natural ones. In this diagram, every horizon-
tal arrow is an isomorphism. ‘

This lemma is proved by direct, but careful calculation. It is not very
difficult to obtain an isomorphism from 7'1/G to p1.p2'®(G), but we have
to be more careful in proving commutativity of the diagram. '

As a corollary of 3.1, we have : |
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Corollary 3.2. There is a canonical distinguished triangle in D}’H (E) :

+1
G — 7'nG — pf.pt'®(G) —,
where p} = pi|p+ and p§ = pa|p+, with

P* ={(z,y) € Exy E* | (z, y) > 0}.

Remark. — In my talk at the conference, I reported the result of Corollary
3.2 by working on the sphere bundle S(E\ M) and its dual S(E*\ M). In
this case, the calculation is more complicated.

4. Elliptic boundary value problems

Let M, X, M be as in section 1. In particular, M is an elliptic system
of differential equations on X.
Let 7 : T3y X — M be the conormal bundle of M-in X. Recalling the

Sato microlocalization functor [KS]
piar : DP(X) — Dy (T, ),

~ we have :
Theorem 4.1 [KK]. For j <d, H upy(Ax*®) = 0.

This is a conclusion of the isomorphism obtained in [KK].

5. Proof of Theorem 1

Let M, X, M be as in section 1, and set : G = vp(Ax®); then G is
an object of D®(Ty X)) and by definition &(G) = pp(Ax*). Therefore, by
Theorem 4.1, we have H’(®(G)) = 0 for j < d. Hence, from Lemma 3.2,
we have an exact sequence of sheaf-homomorphisms on T/ X :

0— HO(G) — T_leT!G ® orTy, x|M — PT*P;—_I(HOI@(G) ® OTT;QXIM)'

We note here that R4nG = HY,(Ax*)|y and the second arrow of this
sequence is nothing but morphism (2.2) for FF = Ax*. Using this exact
sequence, and following the argument of [SKK, chap.1, prop.1.5.4], we can
easily prove Theorem 1. The details are left to the reader.
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6. A tempered version of Theorem 1

Let M, X, M be again as in section 1. In particular, M is an elliptic
system of differential equations on X. Let Dbx be the sheaf of Schwartz’s
distributions on X.

Recently Andronikof and Tose [AT1] have proved an analogue of the cel-
ebrated formula of [KK] in elliptic boundary value problems for tempered
distributions. By their result, we have in particular :

Theorem [AT1]. For j < d,
.HjRHomw—l'DX (W_I(MIM), T-pp(Dbx)) = 0.

Here T-pup(Dbx) is the tempered microlocalization of Dby along M due
to Andronikof; this is, by the definition, the Fourier-Sato transform of the
conic 77 (Dx|n)-submodule T-vy(Dbx) of Hp(Dbx). For an open
conic subset U of Tys X, we have '

L(U, T-vu(Dbx)) = UmTy—p(V, Dbx),
\%4

where V ranges through the family Vi of the open subsets of X satisfying
Cu(X\V)NU =&, and

Ci—m(V, Dbx) = { f € Dbx(V) | For any u € U,
there is an open subset V' of V such that Cp (X \ V') F u
and f|y is tempered at every point of V' }.

Since M is coherent over Dx, we have :

®(RHom,-1p, (171 (M]n), T—VM(DbX)))
= RHomy-1py (7~ (M| n), T-pm(Dbx))

and

HO(U, RHom,-1py (7Y M|um), T-var(Dbx)))
= 1_i§Ft_M(V, Homp, (M, Dbx))
> |

Hence, in virtue of the theorem [AT1] above, by the same argument as in
section 5 with G = RHom,-1p, (171 (M|u), T-vam(Dbx)), the following
tempered version of Theorem 1 is obtained :

-
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Theorem 6.1. Let U and U be as in Theorem 1. Then

61)  lim Teu(T, HOAx") — lim Toy(V, HO(Ax"))
Vev~ Vevu |
U

is an isomorphism, where H°(Ax*) = Homp, (M, Ax).

Remark. — (6.1) is nothing but morphism (1.1) with a growth condition.

7. Concluding remarks

‘Let X, M be as in section 2. We follow the notations of section 2.
Let w : T3 X — M be the conormal bundle of M in X,

uas : DY(X) — Dy (T X)

the microlocalization functor [KS].
Let U be an open conic subset of Ths X, with convez (non-empty) fibres
on M. Then we have a canonical isomorphism [KS, prop.3.7.12]

(7.1) RI(U, vy (F)) = RL(TH X, pu(F) ® m'kar)

for F € Ob(D?(X)), where v = U°®. From this isomorphism, we get a
canonical morphism

(7.2) RI(U, vy (F)) — RT3 X, pu(F) ® n'kar)
>~ RI'(M, j'F[d] ® orx).

Such a description of the boundary value morphism is given in [ST, sect.4].
This is compatible with morphism (2.1); in fact, we have :

Lemma 7.1. There is a canonical commutative diagram :

RI(U, vy (F)) —— R (T4 X, i (F) @ w'kar)

(7.3) l l

RI(U, 'Ry (F)) —— RI(T4X, pu(F) @ w'kar).
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Assume now that Hipp(F) = 0 for j < d. Then, noting also that
Hivpy(F) =0 for j < 0, we have from (7.3) :

T(U, Hovm(F))  —— Dy (T3X, Hipy(F) @ 7 'oryx)

oo | ]

(M, Hy(F) ® oryx) —— T(TiX, Hpam(F) ® 7~ or prix).

By this diagram, it is quite easy to prove a microlocal version of Epstein’s
edge-of-the-wedge theorem in elliptic boundary value problems :

Proposition 7.2. Let M, X, M be as in section 1. Let U;, Uy be open
conic subsets of Ty X, with convex (non-empty) fibres on M. Then the
sequence

D(Uy+Us,, Hvp(Ax*)) — T(Uy, Hvi(Ax*))OT(Ua, Hvpr(Ax®))

by, —bu,

——— (M, Hy;(Ax") ® orax)

is exact, where Ax®* = RHomyp, (M, Ax).

For a general edge-of-the-wedge theorem of Martineau type (i.e., for N
convex, open infinitesimal wedge domains U;, ---, Uy with the edge on
M), the suppleness of the sheaf H%up(Ax®) seems to be necessary (cf.

[ST, sect.4]). We finally remark that, in virtue of the result of [AT1] (cf.
theorem of section 6), one can replace

| Hvp(Ax®) = H'RHom,—1p, (17 (M|um), vmr(Ax))
in the proposition above by
H°RHom,-1p, (17 (M|nr), T-var(Dbx)) ;

this gives a tempered version of generalized Epstein’s theorem in elliptic
boundary value problems.

Acknowledgements. I thank E. Andronikof for discussions on the result

of [AT1].
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