<table>
<thead>
<tr>
<th>Title</th>
<th>REGULARITY THEOREMS FOR HOLONOMIC MODULES (Microlocal Geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>HONDA, NAOFUMI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 845: 49-52</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83619</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
REGULARITY THEOREMS FOR HOLONOMIC MODULES

Naofumi Honda
University of Hokkaido

0. Introduction

The regularity theorem for the ordinary differential equations has a long history. Malgrange [17] has shown the regular singularity of the system is equivalent to the convergence of its formal power series solutions. Ramis [18] extend the results to the irregular singular case, that is, the irregularity is characterized by the Gevrey growth order of its formal power series solutions. In the real domain, Komatsu [15] also has a similar result comparing ultra-distribution and hyperfunction solutions.

One of the important problems is to extend these results to the higher dimension. The deep study of holonomic systems due to Kashiwara-Kawai [10] and Kashiwara [9] established the regularity theorems for holonomic modules in the regular singular case. The purpose of this paper is to give several regularity theorem for the irregular singular holonomic modules.

1. Preliminary

Let X be a complex manifold of dimension n and $\pi : T^*X \rightarrow X$ its cotangent bundle. Set $\tilde{T}^*X = T^*X \setminus T^*_X X$ and denote by $\tilde{\pi}$ the restriction of π to \tilde{T}^*X. We choose a local coordinate system of X as (x_1, \cdots, x_n) and that of T^*X as $(x_1, \cdots, x_n; \xi_1, \cdots, \xi_n)$. T^*X is endowed with the sheaf \mathcal{E}_X^∞ of micro-differential operators of infinite order constructed by Sato-Kashiwara-Kawai [19].

We denote by \mathcal{E}_X (resp. $\mathcal{E}_X(m)$) the subsheaf of \mathcal{E}_X^∞ consisting of micro-differential operators of finite order (resp. micro-differential operators of order at most m). For the theory of \mathcal{E}_X, refer to [19] and Schapira [20]. Now we define the subsheaf $\mathcal{E}_X^{(s)}$ of micro-differential operators of Gevrey growth order (s) for any $s \in (1, \infty)$.

Definition 1.1. For an open subset U of T^*X, a sum $\sum_{i\in\mathbb{Z}} P_i(x, \xi) \in \mathcal{E}_X^\infty(U)$ belongs to $\mathcal{E}_X^{(s)}(U)$ if and only if $\{P_i\}_{i\in\mathbb{N}}$ satisfies the following estimate (1.1); for any compact set K of U, there exists a positive constant C_K such that

\[
\sup_K |P_i(x, \xi)| \leq \frac{C_i}{i!^s} \quad (i \geq 0). \tag{1.1}
\]

For convenience, we set $\mathcal{E}_X^{(1)} := \mathcal{E}_X^\infty$ and $\mathcal{E}_X^{(\infty)} := \mathcal{E}_X$.

Next we review briefly the definition of the sheaf of holomorphic microfunctions in Gevrey class. Let Y be a complex submanifold of X and $T^*_Y X$ its conormal
bundle. Then we define the subsheaf $\mathcal{C}^{R,(s)}_{Y|X}$ of the holomorphic microfunctions $\mathcal{C}^{R}_{Y|X}$ as
$$\mathcal{C}^{R,(s)}_{Y|X} := \mathcal{E}^{(s)}_{X} \cap \mathcal{C}^{R}_{Y|X}$$
where $\mathcal{C}^{R}_{Y|X}$ is the sheaf of tempered holomorphic microfunctions (for the definition, refer to Andronikof [1,2]). Remark that these sheaves are also defined by the functor $T - \mu^{(s)}(\mathcal{O})$, which is a natural extension of tempered microlocalization functor $T - \mu(\mathcal{O})$ constructed by Andronikof [1,2],
$$\mathcal{E}^{(s)}_{X} := \tau^{-1} \tau_{*} T - \mu^{(s)}(\mathcal{O}_{X \times X}) \otimes \Omega_{X}[\dim X]$$
where $\tau : \hat{O}^{*}X \to P^{*}X$ is a canonical projection, and
$$\mathcal{C}^{R,(s)}_{Y|X} := T - \mu^{(s)}(\mathcal{O}_{X})[\codim Y].$$

For the definition and properties of the Gevrey microlocalization functor, refer to Honda [5].

Let V be a regular or maximally degenerate involutive submanifold of codimension $d \geq 1$ in $\hat{T}^{*}X := T^{*}X \backslash T^{*}X$. We define the subsheaf $I_{V} \subset \mathcal{E}_{X}(1)$ by
$$I_{V} := \{ P \in \mathcal{E}_{X}(1); \delta_{1}(P)|_{V} \equiv 0 \}.$$ Here we denote the symbol map of degree 1 by $\delta_{1}(-)$. Now we define the sheaf of rings $\mathcal{E}^{(\sigma)}_{V}$ in $\hat{T}^{*}X$ for a rational number $\sigma \in [1, \infty)$.
$$\mathcal{E}^{(\sigma)}_{V} := \sum_{n \geq 0} \mathcal{E}_{X}(\frac{(1-\sigma)n}{\sigma})I_{V}^{n}.$$ In case $\sigma = 1$, this sheaf coincides with the sheaf \mathcal{E}_{V} defined in Kashiwara-Oshima [12] and [10].

We list up the main properties of the sheaf $\mathcal{E}^{(\sigma)}_{V}$.

1. $\mathcal{E}^{(\sigma)}_{V}$ is a subring of \mathcal{E}_{X}.
2. $\mathcal{E}_{X}(0) \subset \mathcal{E}^{(\sigma)}_{V}$, and $\mathcal{E}^{(\sigma)}_{V}$ is a left and right $\mathcal{E}_{X}(0)$ module.
3. $\mathcal{E}^{(\sigma)}_{V}$ is a sheaf of Noetherian ring, and any coherent \mathcal{E}_{X} module is pseudo-coherent over $\mathcal{E}^{(\sigma)}_{V}$.
4. If $P \in \mathcal{E}^{(\sigma)}_{V}$, then its formal adjoint operator P^{*} belongs to $\mathcal{E}^{(\sigma)}_{V}$.

Let \mathcal{M} be a holonomic \mathcal{E}_{X} modules in a neighborhood of $p \in \hat{T}^{*}X$. We first define the weak irregularity of \mathcal{M} at a smooth point of its support. Given $p \notin \text{supp}(\mathcal{M})_{\text{sing}} \cup T^{*}X$.

Definition 1.2. \mathcal{M} has weak irregularity at most σ at p if and only if \mathcal{M} satisfies the following conditions.

There exist an open neighborhood U of p, maximally degenerate involutive submanifold V with its singular locus $\text{supp}(\mathcal{M})$, and an $\mathcal{E}^{(\sigma)}_{V}$ modules \mathcal{M}_{0} in U which generates \mathcal{M} over \mathcal{E}_{X} and is finitely generated over $\mathcal{E}_{X}(0)$ at any point of a dense subset in $\text{supp}(\mathcal{M}) \cap U$.

Next we define weak irregularity in the general case.
Definition 1.3.

(1) A holonomic \mathcal{E}_X module \mathcal{M} has weak irregularity at most σ at p if and only if there exists an open neighborhood U of p and a closed analytic subset $Z \supset \text{supp}(\mathcal{M})_{\text{sing}}$ with codim $Z \geq \dim X + 1$, \mathcal{M} has weak irregularity at most σ at any point in $U \setminus Z \cap T^*X$.

(2) A holonomic \mathcal{D}_X module \mathcal{N} has weak irregularity at most σ if and only if $\mathcal{E}_X \otimes_{\mathcal{D}_X} \mathcal{N}$ has irregularity at most σ at any point in T^*X.

2. STATEMENT OF MAIN THEOREM

Main Theorem. Let $U \subset T^*X$ be a C^∞ conic open set, \mathcal{M} a holonomic \mathcal{E}_X modules in U and $\sigma \geq 1$ a rational number. The following conditions (1),(2) and (3) are equivalent.

(1) There exists a holonomic \mathcal{E}_X module \mathcal{M}_{reg} with regular singularities satisfying

$$\mathcal{E}_X^{(s)} \otimes_{\mathcal{E}_X} \mathcal{M} \simeq \mathcal{E}_X^{(s)} \otimes_{\mathcal{E}_X} \mathcal{M}_{\text{reg}}$$

in U for all $s \in [1, \frac{\sigma}{\sigma-1}]$.

(2) For any submanifold $Y \subset X$ and any $s \in [1, \frac{\sigma}{\sigma-1}]$, we have

$$\mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{Y|X}^{(s)})|_U \simeq \mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{Y|X}^{(s)})|_U.$$

(3) \mathcal{M} has weak irregularity at most σ in U.

Using the same technique of the proof, we deduce the following corollary. Let M be a real analytic manifold with its complexification X.

Corollary 1. Let \mathcal{M} be a holonomic \mathcal{E}_X modules at $p \in T^*X$ with weak irregularity at most σ. Then we have the isomorphisms for all $s \in [1, \frac{\sigma}{\sigma-1}]$,

$$\mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{M}^{(s)}) \simeq \mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{M})$$

where C_M and (resp. $C_{M}^{(s)}$) is the sheaf of microfunctions (resp. microfunctions of Gevrey class (s)).

In the case that \mathcal{M} is regular singular and the solution sheaf is tempered microfunctions, this result is already obtained by Andronikof [3]. Finally we remark that applying the functor τ_* to the result (2) of the main theorem, we can recover the results of Laurent [16].

Corollary 2 [16]. Let \mathcal{M} be a holonomic \mathcal{E}_X modules at $p \in T^*X$ with weak irregularity at most σ. Then we have the isomorphisms for all $s \in [1, \frac{\sigma}{\sigma-1}]$ and for any submanifold $Y \subset X$,

$$\mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{Y|X}^{(s)}) \simeq \mathbb{R}\text{Hom}_{\mathcal{E}_X}(\mathcal{M}, C_{Y|X}^{\infty}).$$
REFERENCES