<table>
<thead>
<tr>
<th>Title</th>
<th>ELLIPTIC BOUNDARY VALUE PROBLEMS IN THE SPACE OF DISTRIBUTIONS (Microlocal Geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ANDRONIKOF, E.; TOSE, N.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 845: 13-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83623</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Introduction

Elliptic boundary value problems have their own long history. For the general system they were, however, first clearly formulated microlocally by M. Kashiwara and T. Kawai [K-K]. Their theorem has enjoyed many applications, for example, to solvability of operators of simple characteristics, hypoelliptic operators, and tangential Cauchy-Riemann systems. The theorem does not give, however, much information if we restrict ourselves in the space of distributions. This note aims at giving an analogous theorem of Kashiwara-Kawai type in case function spaces are tempered. See Theorem 3 in Section 1 for the main theorem. By this theorem, we can obtain many application to distribution boundary values of holomorphic functions (e.g. M. Uchida[U]). The result of this note was obtained while the second author was staying in Univ. de Paris VI and Univ. Paris XIII.
1. Main theorem

Let M be a real analytic manifold of dimension n with a complex neighborhood X. Let \mathcal{M} be a coherent \mathcal{D}_X module on X and assume that \mathcal{M} is elliptic on M, i.e.

\[(1) \quad \text{char}(\mathcal{M}) \cap T^*_M X \subset T^*_X X.\]

Let N be a real analytic submanifold of M of codimension $d \geq 1$ in M, and Y be a complexification of N in X. We assume that Y is non-characteristic for \mathcal{M}, i.e.

\[(2) \quad \text{char}(\mathcal{M}) \cap T^*_Y X \subset T^*_X X.\]

In this situation, we have the canonical morphisms

$$T^*_N M \xrightarrow{\rho} T^*_N X \xrightarrow{\omega} T^*_N X.$$

Under the above notation we have

THEOREM 1. The natural morphism

$$\mathbf{R}_\rho_* \mathbf{R} \text{Hom}_{\mathcal{D}_X}(\mathcal{M}, C^f_{N|X}) \xleftarrow{\sim} \mathbf{R} \text{Hom}_{\mathcal{D}_X}(\mathcal{M}, T-\mu_N(Db_M)) \otimes o_{N/M}$$

is an isomorphism.

In the above theorem $o_{N/M}$ denotes the relativs orientation sheaf of N in M. The sheaf $C^f_{N|X}$ on $T^*_N X$ is the tempered version of $C_{N|X}$ and is given, with the tempered microlocalization due to E. Andronikof[An], by

$$C^f_{N|X} := T-\mu_N(\mathcal{O}_X) \otimes o_{M[n]}.$$

We remark that the above object in the derived category is concentrated in degree 0. For a point $\hat{z} \in T^*_N X$, the stalk of $C^f_{N|X}$ at \hat{z} is given, with the aid of local cohomology with bounds, by

$$C^f_{N|X, \hat{z}} \simeq \lim_{\longrightarrow} H^n_{|Z|}(\mathcal{O}_X)_{\pi_X(\hat{z})}.$$

Here π_X denotes the projection $\pi_X : T^*X \rightarrow X$ and the inductive limit is taken for all closed subanalytic sets Z in X satisfying the property

$$C_N(Z)_{\pi_X(\hat{z})} \subset \{ v \in T_N X; <\hat{z}, v > < 0 \} \cup \{0\}.$$
ELLIPTIC BOUNDARY VALUE PROBLEMS IN THE SPACE OF DISTRIBUTIONS

Refer here to Kashiwara-Schapira[K-S2] for the notion of normal cones $C_N(\cdot)$. The sheaf $T-\mu_N(Db_M)$ on $T^*_N M$ is also constructed by E. Andronikof[An]. We just explain that its stalk at $\overset{\circ}{x} \in T^*_N M$ is given by the isomorphism

$$T-\mu_N(Db_M)_{\overset{\circ}{x}} \simeq \lim_{\to Z} \Gamma_Z(Db_M)_{\pi_M(\overset{\circ}{x})}.$$

Here the inductive limit is taken for any closed subanalytic set Z in M with the property

$$C_N(Z)_{\pi_M(\overset{\circ}{x})} \subset \{ v \in T_N M; <\overset{\circ}{x}, v > < 0 \} \cup \{0\}$$

$$(\pi_M : T^* M \to M).$$

Next we give another theorem, which is analogous to Theorem 6.3.1 of Kashiwara-Shapira [K-S1] (refer also to Kashiwara-Kawai[K-K] where we find the theorem of [K-S1] in its original form).

THEOREM 2. Let $\tilde{\mathcal{M}} = \mathcal{E}_X \otimes_{\pi^{-1}_X D_X} \pi^{-1}_X \mathcal{M}$. Then the natural morphism

$$\mathbf{RHom}_{\mathcal{E}_X}(\tilde{\mathcal{M}}, C^f_{N|X}) \leftarrow \mathbf{RHom}_{\mathcal{E}_X}(\tilde{\mathcal{M}}, \mathcal{E}_{X-Y}) \bigotimes^L_{\text{End}(\mathcal{E}_{X-Y})} \mathbf{RHom}_{\mathcal{E}_X}(\mathcal{E}_{X-Y}, C^f_{N|X})$$

is an isomorphism outside of $T^*_N X \cap T^*_Y X$. This entails an isomorphism

$$\mathbf{RHom}_{\mathcal{E}_X}(\mathcal{M}, C^f_{N|X}) \simeq \mathbf{RHom}_{\mathcal{E}_X}(\mathcal{M}, \mathcal{E}_{X-Y}) \bigotimes^L_{p^{-1}\mathcal{E}_Y} p^{-1} C^f_N$$

on $T^*_N X \setminus T^*_Y X$ where p is the canonical morphism

$$p : T^*_N X \setminus T^*_Y X \to T^*_N Y.$$

In the above theorem, the object C^f_N on $T^*_N Y$ is the sheaf of temperate microfunctions. This is a subsheaf of C_N and describes microlocal analytic singularities of distributions on N. By the notation of E. Andronikof[An], this sheaf is defined as

$$C^f_N := T-\mu_N(O_Y)[n-d] \otimes \sigma_{N/Y}.$$

The proof of this theorem is essentially the same as in Theorem 6.3.1 of [K-S1] and relies on the division theorem of temperate microfunctions with holomorphic parameters with respect to microdifferential operators. We also remark that only the non-characterlicity of Y is utilized in its proof.

By combining the above theorems into one, we get the main theorem of this note. Let q denote the restriction of ρ to $\overset{\circ}{T}^*_N X \setminus T^*_M X$; $q : \overset{\circ}{T}^*_N X \setminus T^*_M X \to T^*_N M$ and p the projection $\overset{\circ}{T}^*_N X \setminus T^*_Y X \to \overset{\circ}{T}^*_N Y$. Then we have
THEOREM 3. We have a canonical isomorphism on $T_N^* Y$

$$Rq_* \left(R\text{Hom}_{\mathcal{E}_X} (\tilde{\mathcal{M}}, \mathcal{E}_{X-Y})_{\tilde{T}_N X} \otimes_{p^{-1} \mathbb{C}_N^f} \right) \simeq R\text{Hom}_{\mathcal{D}_X} (\mathcal{M}, T-\mu_N(Db_M)) \otimes or_{N/M}. $$

2. Idea of Proof

What is left to us is now to construct the morphism in Theorem 1 and to show it an isomorphism.

First we construct a commutative diagram

$$\begin{array}{ccc}
R\rho! C_{N|X}^f \otimes or_{N/X} & \longrightarrow & T-\mu_N(A_M) \\
\downarrow & & \downarrow \\
R\rho_* C_{N|X}^f \otimes or_{N/X} & \longrightarrow & T-\mu_N(Db_M)
\end{array}$$

(A)

where $T-\mu_N(A_M)$ is the tempered microlocalization of the sheaf A_M along N and is constructed by E. Andronikof[A]. This object is the Fourier transform of the tempered specialization $T-\nu_N(A_M)$ whose stalk at $\overset{\circ}{v} \in T_N M$ is given by

$$T-\nu_N(A_M)_{\overset{\circ}{v}} \simeq \lim_{\longrightarrow U} \{ u \in \mathcal{A}(U); \text{ u is tempered on M as a distribution} \}.$$

Here U in the inductive limit ranges through any open subanalytic set in M with the property

$$\overset{\circ}{v} \notin C_N(M \setminus U).$$

To construct (A), it is sufficient to construct its image by the inverse Fourier transformation

$$\begin{array}{ccc}
\iota^{-1} T-\nu_N(\mathcal{O}_X) \otimes or_{N/X} & \longrightarrow & T-\nu_N(A_M) \\
\downarrow & & \downarrow \\
\iota^! T-\nu_N(\mathcal{O}_X) \otimes or_{N/X} & \longrightarrow & T-\nu_N(Db_M)
\end{array}$$

(A')

Here ι is the canonical embedding

$$\iota : T_N M \longrightarrow T_N X,$$

and $T-\nu_N(\mathcal{O}_X)$ is the tempered specialization of the sheaf \mathcal{O}_X along N, which is concentrated in degree 0. The stalk of $T-\nu_N(\mathcal{O}_X)$ at $\overset{\circ}{v} \in T_N X$ is given by

$$T-\nu_N(\mathcal{O}_X)_{\overset{\circ}{v}} \simeq \lim_{\longrightarrow U} \{ u \in \mathcal{O}(U); \text{ u can be extended to X as a distribution} \}.$$
where U runs through all open subanalytic sets in X with $\bar{v} \not\in C_N(M \setminus U)$. The diagram (A') can be constructed easily if we scrutinize the construction by E. Andronikof[An].

Next we apply $R\underline{Hom}_{D_X}(\mathcal{M}, \cdot)$ to the diagram (A') and obtain the commutative diagram

$$
\begin{array}{c}
R\underline{Hom}_{D_X}(\mathcal{M}, \iota^{-1}T-v_N(\mathcal{O}_X)) \otimes or_{N/X} \xrightarrow{\Phi_1} R\underline{Hom}_{D_X}(\mathcal{M}, T-v_N(\mathcal{A}_M)) \\
\Phi_4 \\
\Phi_3 \\
R\underline{Hom}_{D_X}(\mathcal{M}, \iota^!T-v_N(\mathcal{O}_X)) \otimes or_{N/X} \xleftarrow{\Phi_3} R\underline{Hom}_{D_X}(\mathcal{M}, T-v_N(\mathcal{D}b_M)).
\end{array}
$$

It is easy to see from the ellipticity of \mathcal{M} that Φ_4 and Φ_2 are isomorphisms. (To show Φ_4 is an isomorphism, it is easier to consider its image by Fourier transformation). Thus to prove that Φ_3 and thus its image by Fourier transformation are isomorphisms, it suffices to show that Φ_1 is an isomorphism. The problem for Φ_1 can be reduced to the case where \mathcal{M} is a single equation; i.e. $\mathcal{M} = D_X/D_XP$. Moreover it is sufficient to show that

$$
\underline{Hom}_{D_X}(D_X/D_XP, \iota^{-1}T-v_M(\mathcal{O}_X)) \otimes or_{N/X} \longrightarrow \underline{Hom}_{D_X}(D_X/D_XP, T-v_N(\mathcal{A}_M))
$$

is surjective. This problem can be solved by using the construction of the elementary solution of P by means of Radon transformation and microdifferential operators.
REFERENCES

[U] Uchida, M., in these proceedings.

E. Andronikof
Département de Mathématiques, Univ. Paris XIII
93430 Villetaneuse, France

N. Tose
Mathematics, General Education, Keio Univ.
4-1-1 Hiyoshi, Yokohama 223, Japan