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On Strongly Closed Subgraphs
of Highly Regular Graphs

大阪教育大学 (数理科学) 鈴木寛 (Hiroshi SUZUKI)

Abstract

A geodeticaUy closed induced subgraph $\Delta$ of a graph $\Gamma$ is defined to be strongly
closed if $\Gamma_{i}(\alpha)\cap\Gamma_{1}(\beta)$ stays in $\Delta$ for every $i$ and $\alpha,$ $\beta\in\Delta$ with $\partial(\alpha,\beta)=i$ . We
study the existence conditions of strongly closed subgraphs in highly regular graphs
such as distance-regular graphs or distance-biregular graphs.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. Let $\Gamma=(V(\Gamma), E(\Gamma))$ be a graph. For a subset $\Delta\subset V(\Gamma)$ , we $identi\phi\Delta$

with the induced subgraph on $\Delta$ . In particular, $\Gamma=V(\Gamma)$ .
For two vertices $\alpha,$

$\beta$ in $\Gamma$ , let $\partial_{\Gamma}(\alpha,\beta)$ denote the distance between $\alpha$ and $\beta$ in $\Gamma$ , i.e.,
the length of a shortest path connecting $\alpha$ and $\beta$ in F. We also write $\partial(\alpha,\beta)$ , when no
confusion occurs. Let

$\Gamma_{i}(\alpha)=\{\beta\in\Gamma|\partial(\alpha,\beta)=i\}$ and $\Gamma(\alpha)=\Gamma_{1}(\alpha)$ .

For vertices $\alpha,$
$\beta$ in $\Gamma$ with $\partial(\alpha, \beta)=i$ , let

$C(\alpha,\beta)$ $=$ $C_{1}(\alpha,\beta)=\Gamma_{i-1}(\alpha)\cap\Gamma(\beta)$ ,
$A(\alpha, \beta)$ $=$ $A_{i}(\alpha, \beta)=\Gamma_{i}(\alpha)\cap\Gamma(\beta)$,
$B(\alpha,\beta)$ $=$ $B_{i}(\alpha,\beta)=\Gamma_{i+1}(\alpha)\cap\Gamma(\beta)$ , and

$G(\alpha,\beta)$ $= \bigcup_{j=0}^{:}\Gamma_{j}(\alpha)\cap\Gamma_{i-j}(\beta)$

$=$ $\{\gamma\in\Gamma|\partial(\alpha,\gamma)+\partial(\gamma,\beta)=\partial(\alpha,\beta)\}$.

$G(\alpha,\beta)$ is the set of vertices which lie on a geodesic between $\alpha$ and $\beta$ . For the cardinalities,
we use lower case letters, i.e.,

$c_{i}(\alpha,\beta)=|C_{1}(\alpha,\beta)|,$ $a_{i}(\alpha,\beta)=|A_{i}(\alpha,\beta)|$ , and $b_{i}(\alpha,\beta)=|B_{i}(\alpha,\beta)|$ .

We also write $c_{i}(\alpha)$ [resp. $a_{i}(\alpha),$ $b_{i}(\alpha)$ ] if the number $c_{i}(\alpha, \beta)$ [resp. $a_{i}(\alpha,$ $\beta),$ $b_{i}(\alpha,$ $\beta)$ ]
does not depend on the choice of $\beta$ under the condition $\partial(\alpha, \beta)=i$ , and ci [resp. $a_{i},$ $.b_{i}$]
if the number $c_{1}(\alpha,\beta)$ [resp. $a_{i}(\alpha,\beta),$ $b_{i}(\alpha,\beta)$ ] does not depend on the choices of $\alpha$ and $\beta$
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under the condition $\partial(\alpha,\beta)=i$ . In these cases we say for example that $c_{i}(\alpha)$ exists or $c_{i}$

exists.
A connected graph $\Gamma$ is said to be distance-regular if $c_{i},$ $a_{1},$

$b_{i}$ exist for a1I $i$ .
A connected bipartite graph $\Gamma$ with a bipartition $P\cup L$ is said to be distance-biregular

if $c_{i}(\alpha),$ $b_{i}(\alpha)$ exist for all $i$ and these numbers depend only on the part $\alpha$ belongs to.
For convienience, if $\Gamma=P\cup L$ is a bipartite graph, we also use notations like $c_{:}^{P},$ $b_{i}^{P}$ ,

$c_{1}^{L}$ , $b_{i}^{L}$ , when the corresponding numbers depend only on the part the base point belongs
to.

A subset $\Delta$ of a graph $\Gamma$ is said to be $C_{i}$ -closed [resp. $A_{i}$ -closed] if $C_{i}(\alpha,\beta)\subset\Delta$ [resp.
$A_{i}(\alpha,\beta)\subset\Delta]$ for every pair of vertices $\alpha,$

$\beta$ in $\Delta$ with $\partial_{\Gamma}(\alpha,\beta)=i$ .
A subset $\Delta$ of $\Gamma$ is said to be geodetically closed if $C(\alpha,\beta)\subset\Delta$ for every pair of vertices

$\alpha,$
$\beta$ in $\Delta$ , i.e., $\Delta$ is $C_{i}$-closed for every $i$ . In this case, we have $\partial_{\Gamma}(\alpha, \beta)=\partial_{\Delta}(\alpha,\beta)$ for

all $\alpha,$ $\beta\in\Delta$ . It is clear that $\Delta$ is geodetically closed if and only if $G(\alpha,\beta)\subset\Delta$ for every
pair of vertices $\alpha,$

$\beta$ in $\Delta$ .
A subset $\Delta$ of $\Gamma$ is said to be strongly closed if $C(\alpha,\beta)\subset\Delta$ and $A(\alpha,\beta)\subset\Delta$ for every

pair of vertices $\alpha,$
$\beta$ in $\Delta$ , i.e., $\Delta$ is both $C_{i}$-closed and $A_{i}$-closed for every $i$ .

We call the induced subgraph on $\Delta$ a geodetically [resp. strongly] closed subgraph
when $\Delta$ is a geodetically [resp. strongly] closed subset.

By definition, every strongly closed subgraph is geodetically closed, in particular con-
nected if $\Gamma$ is connected. When $\Gamma$ is bipartite, every geodetically closed subgraph is
strongly closed and we do not need to distinguish these notions.

In most known distance-regular graphs, there are many nontrivial geodetically closed
subgraphs and in many cases they are even strongly closed. In some cases we can guarantee
the existence of strongly [or geodetically] closed subgraphs if we know a part of the
parameters $c_{i},$ $a_{i}$ . See [6, 18, 19, 21, 24], and [5, Section 4.3]. We believe that the
investigation of strongly [or geodetically] closed subgraphs is a key in the study of distance-
regular graphs.

The first question is the following:

Is a strvngly closed subgraph $\Delta$ of a distance-regular graph $\Gamma$ always distance-
regular?

By definition, the answer is ‘yes’ if $\Delta$ is regular. On the contrary, we can find counter
examples easily. For example, if the girth of $\Gamma$ is large, we can construct a strongly closed
subgraph isomorphic to a tree.

Are there any other types of non-regular strongly closed subgraphs of distance-regular
graphs? Theorem 1.1 gives a solution to this problem.

We need a few more definitions to state the theorem.
Let $l(c, a, b)=|\{i|(c_{i}, a_{i}, b_{i})=(c, a, b)\}|$ and $r(\Gamma)=l(c_{1},a_{1},b_{1})$ .
Let $d( \Gamma)=\max\{\partial(\alpha,\beta)|\alpha,\beta\in\Gamma\}$ , and $k(\alpha)=|\Gamma(\alpha)|=b_{0}(\alpha,\alpha)$ .
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Let $K_{k+1}$ denote the complete graph of valency $k$ , and $M_{k}$ denote a Moore graph of
valency $k$ , which is known to be of diameter 2 and $k\in\{2,3,7,57\}$ .

For a graph $\Gamma,{}^{t}\Gamma$ denotes a subdivision graph obtained by replacing each edge by a
path of length $t$ .

$K_{4}$ $2K_{4}$ $3K_{4}$

Figure 1.

Theorem 1.1 Let $\Delta$ be a strongly closed subgraph of a distance-regular graph $\Gamma$ . Then
one of the following holds.

(i) $\Delta$ is a distance-regular graph,

$(i\ddagger)2\leq d(\Delta)\leq r(\Gamma)$ ,

(iii) $\Delta$ is a distance-biregular graph with $c_{2i-1}=c_{2i}$ for all $i$ with $2i\leq d(\Delta)$ . In particular,
$r(\Gamma)\equiv d(\Delta)\equiv 0(mod 2)$; or

(iv) $\Delta$ is a subdivision graph of a complete graph or a Moore graph obtained by replacing
each edge by a path of length three, $i.e.,$ $\Delta\simeq 3K_{l+1}$ or $\epsilon M_{l}$ . In particular, $d(\Delta)=$

$r(\Gamma)+2=5$ or 8, and $a_{1}=0,$ $c_{r+1}=c_{r+2}=a_{+1}=a_{r+2}=1$ , where $r=r(\Gamma)$ .

In particular, $(c_{m-1}, a_{m-1}, b_{m-1})=(c_{m}, a_{m}, b_{m})$ with $d(\Delta)=m$ , except the case (i).

For the corresponding result when $\Gamma$ is a distance-biregular graph, see the following
section.

It follows easily from Theorem 1.1 that if $c_{2}\neq 1$ , then every strongly closed subgraph in
a distance-regular graph is distance-regular. Using this fact, one can prove the following.
theorem without difficulty, and it is useful when one wants to characterize a distance-
regular graph $\Gamma$ by the structure of its antipode $\Gamma_{d}(\alpha)$ .

Theorem 1.2 ([28]) Let $\Gamma$ be a distance-regular graph of diameter $d=d(\Gamma)$ . If $\Gamma_{d}(\alpha)$ is
strongly closed for some $\alpha\in\Gamma$ , then $\Gamma_{d}(\beta)$ is a clique for every vertex $\beta\in\Gamma$ .

The second question is the following:
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Can we find parametrical conditions for distance-regular graphs to have strongly
closed subgraphs?

In this paper, we shall discuss this problem for the cases (iii) and (iv). Note that if
$2\leq m\leq r(\Gamma)$ , then we can find a strongly closed subgraph $\Delta$ in $\Gamma$ of diameter $m$ which
is, roughly speaking, isomorphic to a graph obtained by replacing each edge of a tree by
a clique.

Case (iii) is treated in Sections 3 and 4. In this case we have $a_{i}=0$ for $i\leq d(\Delta)$ .
Though we discuss in full generality, it seems more natural to state the results on bipartite
graphs. The first result in this case is an improvement of a result of Ray-Chaudhuri and
Sprague on pseudo-projective incidence systems.

Let $q=p^{e}$ be a prime power and $V$ be a d-dimensional vector space over $GF(q)$ when

$q\neq 1$ , and a $d$-elenient set when $q=1$ . Let $\{\begin{array}{l}Vi\end{array}\}$ denote the collection of i-dimensional

subspaces of $V$ when $q\neq 1$ , and the collection of i-subsets when $q=1$ .
Let $J_{q}(d, s, s-1)$ denote a bipartite graph with a bipartition

$\{\begin{array}{ll} Vs -1\end{array}\}\cup\{\begin{array}{l}Vs\end{array}\}$

where $x\in\{\begin{array}{ll} Vs -1\end{array}\},$ $l\in\{\begin{array}{l}Vs\end{array}\}$ is adjacent if and only if $x\subset l$ . $J_{q}(d, s, s-1)$ is a

distance-biregular graph and is called an $(s, q, d)$-projective incidence structure in [24].
Throughout this paper, we make a convention that $(q^{m}-1)/(q-1)=m$ , when $q=1$ .

Theorem 1.3 Let $\Gamma$ be a connected bipartite graph of diameter at least five with a bipar-
tition $P\cup L$ . Suppose $c_{2}(x)=1,$ $c_{3}(x)=c_{4}(x)=q+1$ for every $x\in P$ , where $q$ is a
fixed positive integer. Then $\Gamma$ is a biregular graph of valencies $k^{P}=k(x)$ , and $k^{L}=k(l)$ ,
where $x\in P,$ $l\in L$ . If $c_{5}(x)$ exists for every $x\in P$ and does not depend on the choice of
$x\in P$ , then one of the following holds.

(i) $\Gamma\simeq J_{q}(d, s, s-1)$ , where $k^{L}=(q^{s}-1)/(q-1),$ $k^{P}=(q^{d-s+1}-1)/(q-1)$ , or

(ii) $d(\Gamma)\leq 7,$ $q\neq 1,$ $k^{P},$ $k^{L}\leq 3q-1$ .

In particular, $q$ is a power of a prime if $k^{P}\geq 3q$ or $k^{L}\geq 3q$ .

In [20] Koolen conjectured that under the hypothesis slightly stronger than that of
Theorem 1.3, (i) or $d(\Gamma)\leq 4$ holds. Hence Theorem 1.3 gives an affirmative (but not
complete) solution to the conjecture. For the detailed information on the case (ii), see
Section 3.

Ray-Chaudhuri and Sprague obtained only the case (i) under an additional hypothesis
$q^{2}+q+1\leq k^{L}$ . So in this paper we shall treat the case when the valency is not so large
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compared with $c_{3}^{P}$ , using a result of Terwilliger in [30]. In any case, as we can guess
from the conclusion, one of the keys is to show that every pair of vertices of distance
four determines a geodetically closed (hence, strongly closed but not regular) subgraph
of diameter four assuming that the valency $k^{L}$ is not so small. See Section 3.

Let $\Gamma$ be a distance-biregular graph with a bipartition P U $L$ . Assume $r$ is even and

$c^{P}=1<c_{+1}^{P}=c_{r+2}^{P}$ .

This is one of the typical cases corresponding to Theorem l.l.(iii). By Theorem 1.3,
if $r=2$ and $d(\Gamma)\geq 8$ , then $\Gamma$ contains a strongly closed subgraph, which is distance-
biregular of diameter four. It seems unlikely to have $r>4$ and $r=4$ is rare. We do not
have a proof, but we can prove that $r\leq 4$ if $\Gamma$ contains a strongly closed subgraph of
diameter $r+2$ . See Section 3. In Section 4, we treat the case $c_{+1}^{P}=2$ with $r=4$ and
prove the following.

Theorem 1.4 Let $\Gamma$ be a $\omega nnected$ bipartite graph with a bipartition PUL. Suppose
$c_{2}(x)=c_{3}(x)=c_{4}(x)=1,$ $c_{5}(x)=c_{6}(x)=2$ for every $x\in P.$ Then $\Gamma$ is a biregular
graph of valencies $k^{P}$ and $k^{L}$ . If $\alpha,$

$\beta$ be vertices in $\Gamma$ with $\partial(\alpha, \beta)=5$, then there
is a strongly closed subgraph $\Delta$ containing $\alpha$ and $\beta$ isomorphic to $2M_{k^{P}}$ . In particular,
$k^{P}\in\{2,3,7,57\}$ , if $d(\Gamma)\geq 5$ .

We can show under the hypothesis in Theorem 1.4 that $c_{:}^{L}$ exists for $i=1,2,3,4,5,6$ ,
$c_{1}^{L}=\cdots c_{4}^{L}=1$ and $c_{5}^{L}=c_{6}^{L}=2$ . Hence Theorem 1.4 implies that $k^{L}\in\{2,3,7,57\}$ as
well. When $k^{P}=2$ or $k^{L}=2,$ $\Gamma$ itself is a subdivision graph of a Moore graph isomorphic
to $2M_{k}$ for some $k$ . When $k^{P}=k^{L}=3$ , Foster graph is an example. We do not know any
other examples. It may be possible to $claSSi\mathfrak{h}r\Gamma satis\Psi ing$ the condition of Theorem 1.4.

Case(iv) in Theorem 1.1 is treated in Section 5, under an additional condition $c_{r+3}=1$ .

Theorem 1.5 Let $\Gamma$ be a distance-regular graph of valency $k>2$ satisfying the following.

$(c_{f},a_{f}, b_{f})$ $=$ $(1,0, k-1)$ ,
$(c_{r+1}, a_{r+1},b_{r+1})$ $=$ $(c_{r+2},a_{r+2}, b_{r+2})=(1,1, k-2)$ ,

$r\geq 1$ and $c_{r+3}=1$ . Then $r\equiv 0(mod 3)$ , and the following holds.
(1) If $r=3$, then for every $\alpha,$ $\beta\in\Gamma$ with $\partial(\alpha,\beta)=3$ , there is a strongly closed

subgraph $\Delta$ containing $\alpha,$
$\beta$ isomorphic to $sK_{k+1}$ .

(2) If $r=6$, then for every $\alpha,$ $\beta\in\Gamma$ with $\partial(\alpha,\beta)=6$ , there is a strongly closed
subgraph $\Delta$ containing $\alpha,$

$\beta$ isomorphic to $3M_{k}$ . In particular $k\in\{3,7,57\}$ .

The first part $r\equiv 0(mod 3)$ is due to Boshier-Nomura [4]. It is known that if
$l(1,0, k-1)=r\geq 1$ , then $l(1,1, k-2)\leq 3$ and if $l(1,1,k-2)=3$ , then $C,.+4>1[4,13]$ .
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It is worth mentioning that both results Theorem 1.4 and 1.5 are related to circuit
chasing technique. See [26] for a result related to Theorem 1.4.

We use intersection diagrams as our tools. We refer those who are not familiar with
them to [4, 13, 14, 16, 23, 25, 26] and [5, Section 5.10] for example.

For subsets $A,$ $B$ of $\Gamma$ let $e(A, B)$ denote the number of edges between $A$ and $B$ , and
$e(x, A)=e(\{x\},A)$ .

$\Gamma^{(i)}$ will denote the distance-i-graph on $\Gamma$ , i.e., the graph defined on the vertex set
$V(\Gamma)$ of $\Gamma$ such that $\alpha$ and $\beta$ are adjacent if and only if $\partial_{\Gamma}(\alpha,\beta)=i$ .

We write $\alpha\sim\beta$ when $\alpha\in\Gamma(\beta)$ .

2 Strongly Closed Subgraphs

We shall prove Theorem 1.1 and related results in this section. The key of the proof
is the determination of graphs such that $c_{i}’ s$ and $a_{i}’ s$ exist. Problems in similar settings
are discussed in [12, 30, 20].

Proposition 2.1 Let $\Gamma$ be a connected bipanite graph with a bipartition $P\cup L$ . Suppose
$c_{i}^{P}$ exists for $i=1,$ $\ldots,$

$m$ with $m\leq d(\Gamma)$ . If $c_{1}^{P}=\cdots=c_{f}^{P}=1<c_{r+1}^{P}$ , with $r+1\leq m$ ,
then the following hold.

(1) If $c^{P}=c_{:}^{L_{-1}}$ for some $i\leq m$ , then $c_{:}^{L}$ enists and $c_{i-1}^{P}=c_{i}^{L}$ . In particular, $c_{1}^{L},$

$\ldots,$
$c_{f}^{L}$

exist and $c_{1}^{L}=\cdots=c_{f}^{L}=1$ .

(2) If $c_{1}^{L},$

$\ldots,$
$c_{2}^{\iota_{:}}$ enist and $2i+1\leq m$ , then $c_{2i+1}^{L}$ exists and $c_{2j}^{P}c_{2j+1}^{P}=c_{2j}^{L}c_{2j+1}^{L}$ for all

$j\leq i$ .

(3) If $r$ is even, then $\Gamma$ is biregular of valencies $b_{0}^{P}$ and $b_{0}^{L}$ . Moreover $c_{r+1}^{L}$ evzsts and
$c_{r+1}^{P}=c_{r+1}^{L}$ .

(4) If $r$ is odd, and $c_{r+1}^{L}$ eststs, then $\Gamma$ is biregular of valencies $b_{0}^{P}$ and $b_{0}^{L}$ . Moreover,

$(c_{r+1}^{P}-1)(b_{0}^{L}-1)=(c^{\iota_{+1}}-1)(b_{0}^{P}-1)$ .

(5) Suppose $\Gamma$ is biregular of valencies $k^{P}=b_{0}^{P}$ and $k^{L}=b_{0}^{L}$ . Then $|P|k^{P}=|L|k^{L}$ .
Moreover, if $c_{1}^{L},$

$\ldots$ , $c_{2}^{\iota_{:}}$ exist with $2i\leq m$ , then $b_{\delta}^{P},$ $b_{t}^{L}$ exist for $s\leq m,$ $t\leq 2i$ and
$b_{2j-1}^{P}b_{2j}^{P}=b_{2j-1}^{L}b_{2j}^{L}$ , for all $j\leq i$ .

We can obtain the following theorem as a direct corollary by applying Proposition 2. 1
to $\Delta$ .

Theorem 2.2 Let $\Gamma$ be a connected $bipa\hslash ite$ graph with a bipartition $P\cup L$ . Suppose
$c_{i}^{P},$ $c_{i}^{L}$ exist for $i=1,$ $\ldots,$

$m$ . Let $c_{1}^{P}=\cdots=c_{f}^{P}=1<c_{r+1}^{P}$ ruith $r+1\leq m$ . If $\Delta$ is a
geodetically closed subgraph of $\Gamma$ of diameter $m$ , then $\Delta$ is a distance-biregular graph.
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Remark. For a diatance-biregular graph $\Gamma=PUL$ , let $d^{P}= \max\{\partial(x, \alpha)|\alpha\in\Gamma\}$ ,
where $x\in P$ , and $d^{L}= \max\{\partial(l, \alpha)|\alpha\in\Gamma\}$ , where $l\in L$ . In Theorem 2.2, if $d^{P\cap\Delta}\geq d^{L\cap\Delta}$ ,
then $k^{P\cap\Delta}=c_{m}^{P}$ . But we cannot determine the other valency when $d^{P\cap\Delta}>d^{L\cap\Delta}$ .

Proposition 2.3 Let $\Gamma$ be a connected graph. Suppose $c_{i}$ exists for $i=1,$ $\ldots$ , $m$ with
$m\leq d(\Gamma)$ . Suppose $c_{1}=\cdots=c_{f}=1,$ $a_{1},$

$\ldots,$
$a_{f}$ exist and $a_{1}=\cdots=a$. and either

$c_{r+1}>1$ or $c_{r+1}=1$ and $a_{r+1}$ exists with $a_{r+1}\neq a_{1}$ , where $2\leq r+1\leq m$ . Then one of
the following holds.

(i) $\Gamma$ is regular.

(ii) $\Gamma$ is a bipartite biregular graph such that $r\equiv 0(mod 2)$ and $c_{2i-1}=c_{2i}$ for all $i$ with
$2i\leq m$ .

(iii) $\Gamma\simeq 3K_{k+1}$ or $3M_{k}$ , where $k$ is the largest valency of a venex in $\Gamma$ . In particular,
$r=3$ or 6.

Lemma 2.4 $Let\Gamma$ be a connected graph of diameterd $=d(\Gamma)$ . Suppose $c_{d},$ $c_{d-1},$ $a_{d},$ $a_{d-1}$

exist. Then $\Gamma$ is regular of valency $c_{d}+a_{d}$ if and only if $(c_{d-1}, a_{d-1})\neq(c_{d}, a_{d})$ .

Lemma 2.5 Let $\Gamma$ be a distance-regular graph of diameter $d=d(\Gamma)$ and $m<d$ . Suppose
$\Gamma$ has a strongly closed subgraph of diameter $m$ containing $\alpha$ and $\beta$ for every pair of
vertices $\alpha,$

$\beta$ with $\partial(\alpha, \beta)=m$ . Then for all $\gamma,$
$\delta\in\Gamma$ with $\partial(\gamma, \delta)\leq m+1,$ $C(\gamma, \delta)$ is a

coclique.

Now we prove Theorem 1.1 under weaker conditions.

Theorem 2.6 Let $\Gamma$ be a connected graph of diameter $d=d(\Gamma)$ . Suppose $c_{i}s$ and $a_{i}s$

exist for all $i=1,$ $\ldots,$
$m$ , where $m\leq d$ . Let

$r=r( \Gamma)=\max\{i|(c_{1},a_{1})=(c_{2}, a_{2})=\cdots=(c_{i}, a_{i})\}$.

If $\Gamma$ contains a strongly closed subgraph $\Delta$ of diameter $m$ , then one of the following holds.

(i) $\Delta$ is a distance-regular graph,

(ii) $2\leq m\leq r$ ,

(iii) $\Delta$ is a distance-biregular graph and that $r\equiv m\equiv 0(mod 2)$ and $c_{2i-1}=c_{2i}$ for all
$i$ with $2i\leq m$ , or

(iv) $\Delta\simeq 3K_{l+1}$ or $aM_{l}$ and $m=r+2=5$ or 8, $a_{1}=\cdots=a_{f}=0,$ $c_{1}=\cdots=c_{r+2}=$

$a_{r+1}=a_{r+2}=1$ .
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Proof. Since $\Delta$ is a strongly closed subgraph of $\Gamma$ , we can apply Proposition 2.3 to
the subgraph $\Delta$ . If $r\geq m$ , then (i) or (ii) holds.

Assume $r+1\leq m$ . Then $\triangle$ is one of the types in Proposition 2.3. If $\Delta$ is regular,
then $\Delta$ is distance-regular as $c_{i}’ s$ and $a_{i}’ s$ exist for $i\leq d(\Delta)=m$ . Suppose $\Delta$ is not
regular. Since $\Delta$ is strongly closed, $k(\alpha)=k(\beta)$ if $\alpha,$ $\beta\in\Delta$ and $\partial(\alpha,\beta)=m$ . So if $\Delta$ is
a bipartite biregular graph, $\Delta$ is distance-biregular and $m\equiv 0(mod 2)$ . Hence we have
(iii). Suppose $\Delta\simeq aK_{l+1}$ or $3M_{l}$ . Then $r=3$ or 6 and $m=r+2,$ $c_{1}=\cdots=c_{m}=1$ ,
$a_{1}=\cdots=a_{f}=0,$ $a_{r+1}=a_{r+2}=1$ easily follow from the structure of $\Delta$ .

Lemma 2.7 Let $\Gamma$ be a distance-biregular graph with a bipartition P U L. Suppose
$k^{P},$ $k^{L}\geq 2$ . Let $d=d(\Gamma)$ ,

$d^{P}= \max\{\partial(x, \alpha)|x\in P, \alpha\in\Gamma\}$ , $d^{L}= \max\{\partial(l, \alpha)|l\in L, \alpha\in\Gamma\}$ ,

and $r( \Gamma)=\max\{i|c_{i^{P}}=1\}$ . Then $r( \Gamma)=\max\{i|c_{i}^{L}=1\}$ and the following are equivalent.

(i) $r(\Gamma)+2=d^{P}+1=d^{L}=d$ .

(ii) $d=d^{L}=r(\Gamma)+2,$ $c_{d-1}^{L}=c_{d}^{L}$ with $d$ even.

In this case $\Gamma$ is a Moore geometry and $d=4$ or 6. If $d=4,$ $\Gamma$ is nothing but a
nonsymmetrzc $2-(|P|, k^{L}, 1)$ design. If $d=6$, then the $in\acute{c}idence$ graph on $P$ is a strongly
regular graph with parameters $(v, k, \lambda,\mu)=(|P|, k^{P}(k^{L}-1),$ $k^{L}-2,1$ ).

For the diameter bound of Moore geometries, see [8, 7, 10, 11] and [5, Section 6.8]

Remark. In the case Theorem 2.6.(iii), the smallest possible value for $m$ is $r+2$ if
the minimum valency is at least 2. By the previous lemma, we have $r=2$ or 4. We treat
these cases in the following sections. But it may be possible to give a bound of $r=r(\Gamma)$

of distance-regular graphs satisfying $a_{1}=0,$ $c_{r+1}=c_{r+2}$ with $r$ even, by showing the
existence of geodetically closed subgraphs of diameter $r+2$ , i.e., graphs discussed in the
previous lemma.

3 A Refinement of a Theorem of Ray-Chaudhuri
and Sprague

In [24], Ray-Chaudhuri and Sprague proved the following theorem in the context of
incidence systems.

Theorem 3.1 Let $\Gamma$ be a connected bipartite graph with a bipartition $P\cup L.$ For some
positive integer $q$ , suppose $c_{2}(x)=1,$ $c_{3}(x)=c_{4}(x)=q+1$ for every $x\in P$ . Then $\Gamma$ is
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biregular of valencies $k^{P}$ and $k^{L}$ . $Ifk^{P}>q+1$ and $k^{L}\geq q^{2}+q+1^{\cdot}$, then $\Gamma\simeq J_{q}(d, s, s-1)$ ,
where $s$ and $d$ are real numbers defined by

$k^{L}=(q^{s}-1)/(q-1)$ , $k^{P}=(q^{d-\iota+1}-1)/(q-1)$ .

In particular, $q$ is a power of a pnme number and both $s$ and $d$ are integers.

The first part of this section is the following: By reviewing the proof of Ray-Chaudhuri
and Sprague, we show that we can conclude either $d(\Gamma)\leq 4$ or $\Gamma\simeq J_{q}(d, s, s-1)$ if we
can construct a geodetically closed subgraph of diameter 4 having vertices of valency $q+1$

and that such a subgraph exists if one of the valencies $k^{P}$ or $k^{L}$ is at least $3q$ . Roughly
speaking, we want to decrease the lower bound of the condition on the valencies in the
hypothesis from $q^{2}+q+1$ to $3q$ .

Before we start, we prepare a proposition.

Proposition 3.2 Let $\Gamma$ be a connected regular graph of valency $k$ and diameter $d.$ Sup-
pose the distance-2-graph $\Delta=\Gamma^{(2)}$ is distance-regular of diameter $\tilde{d}$. If each pair of
vertices $\alpha,$

$\beta$ at distance three in $\Gamma$ is contained in a shortest circuit of odd length $2m+1$ ,
then $\tilde{d}=m$ and a $\omega nnected$ component of $\Delta_{\overline{d}}(\alpha)$ is a clique of size $k$ . Moreover, $\Delta_{\overline{d}}(\alpha)$

is $\omega nnected$ if and only if $d=\tilde{d}$ and $\Gamma$ is a genemlized Odd graph, $i.e.$ , a distance-regular
graph such that $a_{i}=0,$ $i=1,$ $\ldots,$ $d-1$ and $a_{d}\neq 0$ .

Proof. Firstly, we have $a_{1}=\cdots=a_{m-1}=0,$ $m\geq 3$ . And we have the following.

$\Delta_{1}(\alpha)=\Gamma_{2}(\alpha),$ $\Delta_{m-1}(\alpha)\supset\Gamma_{3}(\alpha),$ $\Delta_{m}(\alpha)\supset\Gamma_{1}(\alpha)$ .

Let $\beta\in\Gamma_{1}(\alpha)$ . Then $\Delta_{m+1}(\alpha)\cap\Delta_{1}(\beta)=\emptyset,\tilde{d}=m$ . Moreover,

$\Gamma_{1}(\alpha)\backslash \{\beta\}\subset\Delta_{1}(\beta)\cap\Delta_{\tilde{d}}(\alpha)\subset\Gamma_{1}(\alpha)\backslash \{\beta\}$ .

Hence $\tilde{a}_{\tilde{d}}=k-1$ and a connected component of $\Delta_{\overline{d}}(\alpha)$ containing $\beta$ is a clique of size $k$ .
If $\Delta_{\overline{d}}(\alpha)$ is connected, as $\Delta$ is distance-regular, $\Delta_{\tilde{d}}(\gamma)=\Gamma_{1}(\gamma)$ is a clique of size $k$ in

$\Delta$ for every $\gamma\in\Gamma$ . Hence $\Gamma$ is a generalized Odd graph. See [1], [2, Section III.4], and [5,
Section 4.2].

In the following we also treat the case when $\Gamma$ is a k-regular with the same conditions
on $c_{i}’ s$ as those in Theorem 3.1.

Let $q$ be a positive integer and $r$ a positive even integer. A connected graph $\Gamma$ is said
to be a $P(r, q)$ -graph if $c_{i},$ $a_{j}$ exist for $1\leq i\leq r+2,1\leq j\leq r+1$ and they $satiS\mathfrak{h}r$

$c_{1}=\cdots=c_{f}=1,$ $a_{1}=\cdots=a_{r+1}=0,$ $c_{r+1}=c_{r+2}=q+1$ .

Lemma 3.3 Let $q$ be a positive integer and $r$ an even positive integer. The following
hold.
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(1) Let $\Gamma$ be a connected bipartite gmph of diameter at least $r+1$ with a bipartition $P\cup L$ .
If $c_{i}^{P}$ eststs for $1\leq i\leq r+2$ , and $c_{1}^{P}=\cdots c_{f}^{P}=1,$ $c_{f}^{P_{+1}}=c_{r+2}^{P}=q+1$ , then $\Gamma$ is
a $P(r, q)$ -graph.

(2) Let $\Gamma$ be a $P(r, q)$ -graph. Then one of the following holds.

(i) $\Gamma$ is a bipartite biregular (possibly regular) graph; $or$

(ii) $\Gamma$ is a nonbipartite regular graph, $i.e.$ , a regular gmph containing a circuit of
odd length.

Proof. (1) This follows from Proposition 2.1.(1), (2).
(2) This follows from Proposition 2.3.

Let $\Gamma$ be a $P(r, q)$-graph of diameter at least $r+1$ . According to the previous lemma,
there are two possibilities.

(i) $\Gamma$ is a bipartite graph with a bipartition P U $L$ and biregular of valencies $k^{P}$ and $k^{L}$ .

(ii) $\Gamma$ is a nonbipartite graph and regular of valency $k$ . In this case, let $\Gamma=P=L$ .

We give a list of known $P(r, q)$-graphs, which is not a polygon. $r=2$ for the first
three examples and $r=4$ for the rest.

1. $J_{q}(d, s, s-1)$ .

2. $O_{k}$ , the Odd graph of valency $k$ , (nonbipartite).

3. $2M_{7}$ , the doubled Hoffman-Singleton graph, $(d=5, q=5)$ .

4. $2M_{k},$ $k=3,7,$ $(d=6, q=1)$ .

5. Foster graph, that is the three fold cover of the incidence graph of $GQ(2,2)$ , the
generalized quadrangle of order $(2, 2)$ , $(d=8, q=1)$ .

In this section we study $P(2,q)$-graphs. Let $\Gamma$ be a $P(2, q)$-graph of diameter at least
five.

For $\alpha,$ $\beta\in\Gamma$ with $\partial(\alpha, \beta)=2$ and $\gamma\in C(\alpha, \beta)$ , let

$T(\alpha,\beta)=\Gamma_{2}(\alpha)\cap\Gamma_{2}(\beta)\cap\Gamma_{3}(\gamma)$.

We say $\Gamma$ satisfies the condition $\#^{L}$ [resp. $\#^{P}$], if $\delta,$ $\eta\in T(\alpha, \beta)$ implies $\partial(\delta, \eta)\leq 2$ for
$dJ\alpha,$ $\beta\in L$ [resp. $P$] with $\partial(\alpha,\beta)=2$ .

The condition above is called ‘Pasch’s axiom’ in [24].

Lemma 3.4 (1) If $k^{L}\geq 3q$ or $q=1$ , then $\Gamma$ satisfies the $\omega ndition\#^{\iota}$ .
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(2) If $k^{P}\geq 3q$ or $q=1$ , then $\Gamma$ satisfies the condition $\#^{P}$ .

Proof. By symmetry it suffices to prove (1).
Let $m_{1},$ $m_{2}\in L$ with $\partial(m_{1}, m_{2})=2$ and $\{x\}=C(m_{1}, m_{2})$ . Let $T=T(m_{1},m_{2})$ .
If $l\in T$ , then $C(m_{2},l)\subset\Gamma_{3}(m_{1})$ . Hence

$|T|=|T(m_{1}, m_{2})|=b_{2}^{L}(c_{3}^{L}-1)=(k^{L}-1)q$ .

Suppose the condition $\#^{L}$ fails. Then there exist $l,$ $l’\in T$ with $\partial(l, l’)=4$ . Let
$\{x_{i}\}=C(l, m_{i}),$ $\{x_{i}’\}=C(l’)m_{i}),$ $i=1,2$ . Since $c_{3}=c_{4}=q+1$ , for $i,$ $j=1,2$,

$x_{1}’\in C(l, l’)=C(x_{j}, l’)$ , or $\partial(x_{i}’,x_{j})=2$.

So we have that

$x_{1}’\in C(x_{2}, m_{1})\backslash \{x, x_{1}\},$ $x_{2}’\in C(x_{1},m_{2})\backslash \{x,x_{2}\}$ .

Hence $|T\cap\Gamma_{4}(l)|\leq(q-1)^{2}$ . Similarly, $|T\cap\Gamma_{4}(l’)|\leq(q-1)^{2}$ . In particular, $q\neq 1$ . Thus

$(q+1)^{2}$ $=$ I $\Gamma_{2}(l)\cap\Gamma_{2}(l’)|$

$\geq$ $|T\cap\Gamma_{2}(l)\cap\Gamma_{2}(l’)|+|\{m_{1}, m_{2}\}|$

$\geq$ $|T|+|\{m_{1}, m_{2}\}|-|T\cap\Gamma_{4}(l)|-|T\cap\Gamma_{4}(l’)|$

$\geq$ $(k^{L}-1)q+2-2(q-1)^{2}$ .

So 3$q^{2}-2q+1\geq(k^{L}-1)q$ or $k^{L} \leq 3q-1+\frac{1}{q}$ . Since $q\neq 1,$ $k^{L}\leq 3q-1$ , as desired.

For $m_{1},$ $m_{2}\in\Gamma_{2}(l)$ with $m_{1}\neq m_{2}$ , we write $m_{1}\approx m_{2}$ if $\partial(m_{1}, m_{2})=2$ and
$C(m_{1}, m_{2})\subset\Gamma_{3}(l)$ , or equivalently if $m_{2}\in T(l, m_{1})$ . Since the relation $\approx$ is symmet-
ric, it defines a graph on $\Gamma_{2}(l)$ .

Let $L_{1}(l, m)$ be a connected component in $\Gamma_{2}(l)$ containing $m$ witli respect $to\approx$ . Let

$L(l, m)=\{l\}\cup L_{1}(l, m),$
$P(l,m)= \bigcup_{n\in L(l,m)}\Gamma(n),$

$\Delta(l, m)=P(l, m)\cup L(l, m)$ .

Lemma 3.5 Suppose $\Gamma$ satisfies the condition $\#^{\iota}$ . Then for $l,$ $m\in L$ with $\partial(l, m)=2$ ,
$\Delta=\Delta(l, m)$ is a geodetically closed subgraph of $\Gamma$ of diameter 4.

Proof. Since $\Gamma$ satisfies the condition $\#^{\iota}$ , we have $\partial(m_{1}, m_{2})\leq 2$ , if $m_{1},$ $m_{2}\in$

$T(l, m)$ . Hence we can prove the assertion without difficulty.

Let $D=\{\Delta(l, m)|\partial(l, m)=2, l, m\in L\}$ .

Corollary 3.6 If $\Gamma$ satisfies the condition $\#^{L}$ , then the following hold.

(1) $L(l, m)$ is a maximal clique in $\Gamma^{(2)}$ .
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(2) If $l,$
$m\in\Delta_{1}\cap\Delta_{2}\cap L’$, then $\Delta_{1}=\Delta_{2}$ or $l=m$ .

(3) $\Delta$ is a bipartite biregular graph of valencies $q+1$ on $P(l, m)$ and $k^{L}$ on $L(l, m)$ .

(4) $|L(l, m)|=qk^{L}+1$ .

(5) 1 $\{\Delta\in D|l\in\Delta\}|=(k^{P}-1)/q$ for every $l\in L$ .

Let $\Pi$ be a bipartite graph on $L\cup D$ with adjacency defined as follows: For $l\in L,$ $\Delta\in$

$D,$ $l\in\Delta$ and the valency of $l$ in $\Delta$ is $k^{L}$ . Note that $k^{L}>q+1$ as $d(\Gamma)\geq 5$ .

Lemma 3.7 If $\Gamma$ satisfies the condition $\#^{L}$ , then $\Pi$ is a $P(2, q)$ -graph of valencies $(k^{P}-$

$1)/q$ on $L$ and $qk^{L}+1$ on $D$ .

Proposition 3.8 Let $\Gamma$ be a $P(2, q)$ -graph of diameter at least five satisfying the condition
$\#^{L}$ . Then one of the following holds.

(i) $\Gamma\simeq J_{q}(d, s, s-1)$ , where $k^{L}=(q^{s}-1)/(q-1),$ $k^{P}=(q^{d-s+1}-1)/(q-1)$ , or

(ii) $\Gamma$ is a regular nonbipantte graph of valency $k$ and $\Gamma^{(2)}$ is isomorphic to a connected
component of the $distance- 2rightarrow graph$ of $J_{q}(2s-3, s-2, s-3)$ , where $k=(q^{s-1}-$

$1)/(q-1)$ . Moreover, if each pair of vertices of $\Gamma$ at distance three is contained in
a shortest circuit of odd length, then $q=1$ and $\Gamma$ is isomorphic to an Odd graph.

Proof. Firstly, note that $J_{q}(d, s, s-1)\simeq J_{q}(d, d-s+1, d-s)$ , if we take the dual
interchanging $P$ and $L$ .

Suppose $\Gamma$ is bipartite. Since $d(\Gamma)\geq 5,$ $k^{P},$ $k^{L}>q+1$ . By Theorem 3.1, (i) holds if
$k^{P}\geq q^{2}+q+1$ , using the first remark above.

Assume $k^{P}<q^{2}+q+1$ . Since $\Gamma$ satisfies the condition $\#^{L},$ $\Pi$ is a $P(2, q)$-graph of
valencies $(k^{P}-1)/q$ on L. Since $(k^{P}-1)/q<q+1,$ $\partial_{\Pi}(l, m)\leq 2$ for all $l,$ $m\in L$ . Hence
$\partial_{\Gamma}(l, m)\leq 2$ for all $l,$ $m\in L$ , which is not the case.

Suppose $\Gamma$ is not bipartite. By the previous lemma, $\Pi$ is a bipartite $P(2, q)$-graph of
valencies $(k-1)/q$ on $L$ and $qk+1$ on $D$ .

Suppose $(k-1)/q\leq q+1$ . Since $d(\Gamma)\geq 5$ , there are vertices $l_{0},$ $l_{1},$ $l_{2},$ $l_{3}$ such that

$\partial(l_{0},l_{1})=\partial(l_{1}, l_{2})=\partial(l_{2}, l_{3})=2$, $\partial(l_{0},l_{2})=4$ .

Since $|\Pi_{3}(l_{0})\cap\Pi(l_{2})|=q+1,$ $(k-1)/q=q+1$ and $\Delta(l_{2},l_{3})\in\Pi_{3}(l_{0})\cap\Pi(l_{2})$ . So there
is a vertex $l\in\Delta(l_{2}, l_{3})$ such that $\partial(l, l_{3})=\partial(l_{0}, l)=2$ . Hence $\partial(l_{3}, l_{0})\leq 4$ . In particular
$d(\Gamma)=5,$ $a_{5}$ exists and $a_{5}=0$ . Since $\Gamma$ is not bipartite, we may assume that $\partial(l_{0}, l_{3})=3$ .
Then $|\Gamma_{2}(l_{3})\cap\Gamma_{2}(l_{0})|=0$ . This is a contradiction.

Thus $(k-1)/q>q+1,$ $qk+1>q^{2}+q+1$ . Hence by Theorem 3.1, $\Pi\simeq J_{q}(d, s, s-1)$ ,
where $qk+1=(q^{s}-1)/(q-1),$ $(k-1)/q=(q^{d-s+1}-1)/(q-1)$ .
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Therefore $k=(q^{s-1}-1)/(q-1)$ and $d=2s-3$ . Since $\partial_{\Gamma}(l, m)=2$ if and only if
$\partial_{JJ}(l, m)=2,$ $\Gamma^{(2)}$ is isomorphic to a connected component of the distance-2-graph of $\Pi$

on $L$ .
If $\Gamma$ satisfies the additional condition in (ii), we can apply Proposition 2.2. If $q\neq 1$ ,

then $\Gamma^{(2)}$ is a Grassman graph, which is also called a q-analogue of Johnson graph. But in
this case it is easy to check that the antipode is connected, while it is not a clique. Hence
$q=1$ and $\Gamma^{(2)}\simeq J(2s-3, s-2)$ . Thus $\Gamma$ is an Odd graph.

In the following, we investigate the case when $\Gamma$ does not $satis\Phi\#^{\iota}$ . By symmetry
proved in Lemma 3.3, we may assume that $\Gamma$ does not $satis6^{r}\#^{P}$ either. Hence by Lemma
3.4, we need only to consider the case $k^{P},$ $k^{L}\leq 3q-1$ .

The key to analize this case is the following proposition proved by Terwilliger. We
kept the notations in [30], where $M_{i}$ is no longer a Moore graph.

Proposition 3.9 ([30]) Let integers $c,$ $p$ and $s$ all be at least 2. Suppose the vertices
of some graph $\Gamma$ can be partitioned into $s+1$ disjoint sets $V \Gamma=\bigcup_{i=0}^{l}M_{i}$ , where for any
$u,$ $v\in V\Gamma,$ $u\in M_{i},$ $v\in M_{j}$ and $(u,v)\in E\Gamma$ implies $|i-j|\leq 1$ . For $i=1$ or $s$ , let $l_{i}$

and $L_{i}$ denote the minimum and manimum number of vertices in $M_{i-1}$ any vertex in $M_{i}$

is adjacent to, and for $i=0$ or $s-1$ , let $r_{i}$ and $R_{i}$ denote the minimum and maximum
number of vertices in $M_{i+1}$ any vertex in $M_{i}$ is adjacent to. Also assume

(i) $\partial(u, v)=s$ for some $u\in M_{0}$ and $v\in M_{s}$ ,

(ii) for integers $o.\leq i,$ $j\leq s$ and for any $u\in M_{i}$ and $v\in M_{j}$ , there are either $c$ or $0$

paths of length $s$ connecting them $if|j-i|=s$ , and either $0$ or 1 paths of length
$|j-i|$ connecting them if $1\leq|j-i|\leq s-1$ , and

(iii) for any $u,$ $v\in V\Gamma$ with $u\in M_{1},$ $v\in M_{s-1}$ , and $\partial(u,v)>s-2$ , there are at most $p$

paths $\{u=v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}=v\}$ , where either $v_{1}\in M_{0}$ or $v_{s-1}\in M_{s}$ .

Then
$\frac{p}{c-1}\geq\frac{r_{\epsilon-1}}{R_{0}-1}+\frac{l_{1}}{L_{s}-1}$.

Proposition 3.10 Let $\Gamma$ be a $P(2, q)$ -graph of diameter at least five. If $c_{5}^{P}$ exzsts, then
$c_{5}$ exists, $i.e.,$ $c_{5}^{L}$ exists and $c_{5}^{P}=c_{5}^{L},$ $c_{5}>q+1$ and the following hold.

(1) If $d(\Gamma)\geq 7$ , then $c_{5}\geq 2q+1$ .

(2) If $a,$ $\beta,$ $\gamma\in\Gamma$ with $\partial(\alpha,\beta)=8,$ $\partial(a_{\nu}\gamma)=3,$ $\partial(\gamma,\beta)=5$ , then $k(\gamma)\geq 3q+2$ .

(3) For $a\in\Gamma$ $letj=k(\alpha)-c_{5}$ . If $a_{4}=0$ , then

$k( \alpha)\geq\frac{2q+j+3+\sqrt{4jq^{2}+(j-1)^{2}}}{2}$ .

In part\’icular, $ifj\geq 4$ , then $k(a)\geq 3q+4$ .
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Proof. It follows from Proposition 2.1.(2) that $c_{5}$ exists.
(1) Let $\alpha,$ $\beta\in\Gamma$ with $\partial(a,\beta)=7$. Let

$M_{i}=\Gamma_{2+i}(a)\cap\Gamma_{5-i}(\beta),$ $i=0,1,2,3$.

Apply Proposition 3.9.
(2) Since $d\geq 8$ , we can apply (1). We have

$k(\gamma)\geq c_{3}(\alpha,\gamma)+c_{5}(\beta,\gamma)\geq 3q+2$ .

(3) Let $\alpha\in\Gamma$ and $M_{i}=\Gamma_{i+2}(a),$ $i=0,1,2,3$ . Apply Proposition 3.8.

We now summarize our results in this section, from which we have Theorem 1.3 as a
corollary.

Theorem 3.11 Let $\Gamma$ be a $P(2, q)$ -gmph of diameter at least five. Suppose $c_{5}$ exists.
Then $\Gamma$ is a bipartite biregular gmph of valencies $k^{P}$ and $k^{L}$ , or a regular gmph of valency
$k=k^{P}=k^{L}$ and one of the following holds.

(i) $\Gamma\simeq J_{q}(d, s, s-1)$ , where $k^{L}=(q^{s}-1)/(q-1),$ $k^{P}=(q^{d-s+1}-1)/(q-1)$ ,

(ii) $\Gamma$ is a regular nonbipartite graph of valency $k$ and the distanoe-2-graph $\Gamma^{(2)}$ is iso-
morphic to a $\omega nnected$ component of the $distance\sim 2$ -graph of $J_{q}(2s-3, s-2, s-3)$ ,
where $k=(q^{s-1}-1)/(q-1)$ . Moreover, if each pair of vertices of $\Gamma$ at distance
three is contained in a shortest circuit of odd length, then $q=1$ and $\Gamma$ is isomorphic
to an Odd graph; $or$

(iii) $d(\Gamma)\leq 7$ and $k^{P},$ $k^{L}\leq 3q-1,$ $q\neq 1$ . Moreover if $a_{4}=0$ , then $\Gamma$ is bipartite and
$k^{P}-c_{5},$ $k^{L}-c_{5}\leq 3$ . In particular, $if\Gamma$ is not bipartite and $a_{4}$ exists, then $d(\Gamma)\leq 6$ .

Corollary 3.12 Let $\Gamma$ be a distance-regular gmph of valency $k$ . Suppose $c_{2}=1,$ $c_{3}=$

$c_{4}=q+1$ and $a_{1}=a_{2}=a_{3}=0$ for some positive integer $q$ . Then one of the following
holds.

(i) $\Gamma\simeq J_{q}(2s-1, s-2,s-3)$ , where $k=(q^{s}-1)/(q-1)$ .

(ii) $\Gamma\simeq O_{k}$ , an Odd graph of valency $k$ ; or

(iii) $d(\Gamma)\leq 7$ , and the equality holds only if $\Gamma$ is bipartite.

Koolen [20] conjectured the following:

If $\Gamma$ is a distance-biregular graph of diameter at least 5 such that $C$; exists for
all $i$ , and $c_{2}=1,$ $c_{3}=c_{4}>2$ , then $\Gamma\simeq J_{q}(d,s,s-1)$ .
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Our results asserts that $d(\Gamma)\leq 7$ and the parameters are restricted very much. It is
known that if $d(\Gamma)=5$ or 7, then $\Gamma$ is distance-regular, under the assumption of the
conjecture above. See $[9, 20]$ .

We also note that for $d(\Gamma)=5$ , the doubled Moore graph satisfy the hypothesis with
$c_{5}=q+2$ . Moreover if it’s valency is not 3, say 7, then it does not come from $J_{q}(d, s, s-1)$ .
So this gives a counter example to the conjecture above.

4 $P(r, 1)$-graphs

According to the remark following Lemma 3.3, a $P(r, 1)$-graph is a connected graph
$\Gamma$ , which is either a bipartite biregular graph with a bipartition P U $L$ or a nonbipartite
regular graph such that

$c_{1}=\cdots=c_{f}=1,$ $a_{1}=\cdots=a_{r+1}=0,$ $c_{r+1}=c_{r+2}=2$ ,

where $r$ is an even positive integer. In this’ section we study $P(r, 1)$-graphs and we show
the following when $r=4$ . We do not know any $P(r, 1)$-graphs with $r>4$ .

Theorem 4.1 Let $\Gamma$ be a $P(4,1)$ -graph of diameter at least four and $\alpha,$ $\gamma\in\Gamma$ with
$\partial(\alpha,\gamma)=4$ . Then there is a geodetically closed subgraph $\Delta$ containing $\alpha,$ $\gamma$ isomorphic
to $2M_{k(\alpha)}$ . Here $k(\alpha)$ denotes the valency of $\alpha$ in $\Gamma$ . In particular, $k(\alpha)\in\{2,3,7,57\}$ .

Let $\Gamma$ be a $P(r, 1)$-graph with $r\geq 4$ .
Fix a vertex $\alpha\in$ F. For $\gamma,$ $\delta\in\Gamma_{f}(a)$ , we write $\gamma\approx\delta$ if $\partial(\gamma, \delta)=2$ and $C(\gamma, \delta)\subset$

$\Gamma_{r+1}(a)$ . For $\gamma\in\Gamma_{r}(a)$ , let $C=C_{\gamma}$ be the connected component in $\Gamma_{f}(\alpha)$ containing $\gamma$

with respect to the $relation\approx$ . Let $\Pi=\Pi_{\gamma}$ be a graph on $C_{\gamma}$ defined by the $relation\approx$ .
For $\gamma,$

$\delta\in\Gamma$ with $\partial(\gamma, \delta)=r$ , and $0\leq i\leq r$ , let‘

$\{g_{i}(\gamma, \delta)\}=\Gamma_{\tau-i}(\gamma)\cap\Gamma_{i}(\delta)$ .

For $\delta\in\Gamma_{f}(\alpha)$ , let

$\alpha(\delta)=g_{1}(\delta,\alpha),$ $\beta(\delta)=g_{2}(\delta, \alpha)$ , and $\gamma(\delta)=g_{4}(\delta, a)$ .

Firstly we note that the intersection diagram with respect to $x,$ $l$ with $\partial(x, l)=1$ has the
following shape, where $D_{j}^{i}=\Gamma_{i}(x)\cap\Gamma_{j}(l)$ . See the properties $(a)\sim(e)$ below.

$\{x\}=D_{1^{0}}-\{l\}=D_{0^{1}}-|\ldots\ldots-D_{f}^{r-1}-D_{r+_{1}-D_{r+_{1}^{2}}^{r+1}}^{f}-D_{r-1}^{f}-D_{f}^{r+^{1}-D_{r+-}^{r+_{2}-}}|_{\nearrow^{\backslash }}^{\backslash _{D_{r+2^{-}}^{r+2}}}/$

Figure 2.
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(a) $D_{i}^{i}=\emptyset$ , for $1\leq i\leq r+1$ .

(b) For $y\in D_{i}^{i+1},$ $z\in D_{1+1}^{j},$ $e(y, D_{j-1}^{i})=e(z, D_{i}^{:-1})=1,1\leq i\leq\gamma$ .

(c) For $y\in D_{r+1}^{r+2},$ $z\in D_{f+2}^{\prime\cdot+1},$ $e(y, Dt^{+1})=e(z, D_{r+1}^{f})=2$.
(d) For $y\in D_{f}^{\tau+1},$ $z\in D_{f+1}^{f},$ $e(y, D_{r+1}^{f})=e(z, Df^{+1})=1$ .
(e) $e(D_{i}^{:+1}, D_{i+1}^{i})=0,1\leq i\leq r-1$ and $i=r+1$ .

The following two lemmas are related to circuit chasing technique. See [4, 13, 14] and
[5, Section 5.10].

Lemma 4.2 Let $x_{0}\sim x_{1}\sim\cdots\sim x_{2,.+2t}=x_{0}$ be a circuit of length $2r+2t$ . $i.e.$ , a closed
path and $x_{i-1}\neq x_{i+1,\backslash },$ $i=1,$ $\ldots$ , $2r+2t-1$ and $x_{2r+2t-1}\neq x_{1}$ . Suppose

$x_{f},$ $x_{r+2},$ $\ldots,$
$x_{+2t}\in\Gamma_{f}(x_{0}),$ $x_{r+1},$ $X,.+3$ , ... , $x_{r+2t-1}\in\Gamma_{+1}(x_{0})$ .

Set $D_{j}^{i}=\Gamma_{i}(x_{0})\cap\Gamma_{j}(x_{1})$ . Then the following hold.

(1) $t\geq 1$ and $x_{f}\in D_{f}^{r_{-1}},$ $x_{r+1}\in D^{r+1},$ $x_{r+2}\in D_{+1}^{f}$ .

(2) If $t\geq 2$ , then $x_{r+3}\in D_{r+2}^{f+1}$ and $x_{r+4}\in D_{r+1}^{f}$ .

(3) If$t=2$ , then the mutual distance of the vertices in the circuit is uniquely determined.
In particular,

$\partial(x_{2},x_{r+2})=\partial(x_{2},x_{r+4})=r,$ $\partial(x_{2},x_{r+5})=r+1$ .

(4) If $t=3$ , then $x_{f+5}\in D_{f+2}^{r+1},$ $x,.+\epsilon\in D_{r+1}^{f}$ a$nd$

$\partial(x_{2},x_{r+4})=\partial(x_{2},x_{\tau+6})=\partial(x_{4},x_{+6})=r,$ $\partial(x_{4},x_{f+5})=\partial(x_{4},x_{r+7})=r+1$ .

Proof. In the following, we use (a) $\sim(e)$ to determine the locations of $x_{j}’ s$ in the
diagram with respect to an edge $x_{i-1}\sim x_{i}$ , using the information on the distances from
$x_{i-1}$ .

(1) Since $x_{i-1}\neq x_{i+1}$ , for all $i$ , and $c_{1}=\cdots=c_{f}=1,$ $t\geq 1$ . It is clear that $x_{r}\in D_{-1}^{r}$ .
Since $x_{f+1}\in\Gamma_{r+1}(x_{0})\cap\Gamma(x_{r}),$ $x_{r+1}\in D^{r+1}$ . $x_{f}\neq x_{r+2}\in\Gamma_{f}(x_{0})\cap\Gamma(x_{r+1})$ implies that
$x_{r+2}\in D_{f+1}^{f}$ .

(2) Since $x_{r+2}\in D_{r+1}^{f}$ and $e(x_{r+2}, D_{r}^{r+1})=1$ with $x_{r+1}\in D_{f}^{r+1}\cap\Gamma(x_{r+2}),$ $x_{r+3}\in D_{+2}^{r+1}$ ,
$x_{r+4}\in D_{r+1}^{f}$ .

(3) It is easy to determine the mutual distances as follows.

$x_{0}$

$x_{r^{f}}$ $r^{x,}+^{+1}1$ $x,r^{+2}$ $r^{x_{f}}+^{+s_{1}}$ $x_{r}r^{+4}$ $r^{x_{r+5}}-1$

$x_{1}$ $r-1$ $r$ $r+1$ $r+2$ $r+1$ $r$

$x_{2}$ $r-2$ $r-1$ $r$ $r+1$ $r$ $r+1$
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Now the distance pattern with respect to $x_{2}$ is the same as that with respect to $x_{0}$ , the
mutual distance of the vertices in the circuit is uniquely determined and the assertion
follows.

(4) We do the same as in (3).

$x_{r}$ $x_{r+1}$ $x_{r+2}$ $x_{r+3}$ $x_{r+4}$ $x_{r+5}$ $x_{r+6}$ $x_{r+7}$ $x_{r+8}$ $x_{r+9}$

$x_{0}$ $r$ $r+1$ $r$ $r+1$ $r$ $r+1$ $r$ $r-1$ $r-2$ $r-3$
$x_{1}$ $r-1$ $r$ $r+1$ $r+2$ $r+1$ $r+2$ $r+1$ $r$ $r-1$ $r-2$
$x_{2}$ $r-2$ $r-l$ $r$ $r+1$ $r$ $r+1$ $r$ $r+1$ $r$ $r-1$
$x_{3}$ $r-3$ $r-2$ $r-1$ $r$ $r+1$ $r+2$ $r+1$ $r+2$ $r+1$ $r$

$x_{4}$ $r-4$ $r-3$ $r-2$ $r-1$ $r$ $r+1$ $r$ $r+1$ $r$ $r+1$

Note that since $x_{r+7}\in D_{f}^{r-1},$ $x_{r+5}$ cannot be in $D_{f}^{f+1}$ .

Lemma 4.3 Let $y_{0}\sim y_{1}\sim y_{2}\sim y_{3}\sim y_{4}$ be a path of length four such that $y_{1-1}\neq y_{i+1}$ ,
$i=1,$ $\ldots$ , 3. Suppose $y_{0},$ $y_{4}\in\Gamma,.(\alpha)$ . Then one of the folloning holds.

(i) $y_{2}\in\Gamma_{r-2}(a)$ ,

(ii) $y_{1}\in\Gamma_{r-1}(a)$ or $y_{3}\in\Gamma_{-1}(a)$ and $a(y_{0})\neq a(y_{4})$ ,

$(iii)\cdot y_{1},$ $y_{3}\in\Gamma_{+1}(\alpha),$ $y_{2}\in\Gamma,.(\alpha)$ and $a(y_{0})\neq a(y_{4})$ ,

(iv) $y_{2}\in\Gamma_{r+2}(\alpha)$ and $a(y_{0})=\alpha(y_{4})$ , while $\beta(y_{0})\neq\beta(y_{4})$ , or

(v) $y_{2}\in\Gamma_{r+2}(\alpha)$ and $a(y_{0})\neq a(y_{4}),$ $\partial(\beta(y_{0}), y_{4})=r+2$ .

By Lemma 4.2 and 4.3, we can prove the following concerning the connected compo-
nent in $\Gamma_{f}(a)$ with respect $to\approx$ .

Lemma 4.4 Let $\{\alpha_{1}, \ldots, a_{k(\alpha)}\}=\Gamma(a),$ $\gamma\in\Gamma_{f}(\alpha),$ $C=C_{\gamma}$ . Let $s_{:}=\{\delta\in C|a(\delta)=$

$\alpha_{i}\}$ . Then the following hold.

(1) For $\delta\in S_{i},$ $|\Pi(\delta)\cap S_{j}|=1-\delta_{i,j}$ and $S_{i}\subset\Gamma_{f}-2(\beta(\delta))$ . In particular, $\Pi$ is a $k(a)-$

$pa\hslash ite(k(a)-1)$ -regular gmph.

(2) Let $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ be a path in $\Pi$ . If $\alpha(\delta_{0})\neq a(\delta_{3})$, then there exists $\delta_{4}\in$

$\Pi(\delta_{3}),$ $\delta_{5}\in\Pi(\delta_{4})$ such that $\gamma(\delta_{0})=\gamma(\delta_{5})$ .

If $r=4,$ $\gamma(\delta)=\delta$ for every $\delta\in\Pi$ . So by Lemma 4.4, we have the following.

Lemma 4.5 If $r=4$, then the folloning holds.

(1) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ and $\alpha(\delta_{0})\neq\alpha(\delta_{3})$ , then there exists $\delta_{4}$ such that $\delta_{0}\approx\delta_{4}\approx\delta_{3}$ .
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(2) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ and $a(\delta_{0})=a(\delta_{3})$ , then $\beta(\delta_{0})=\beta(\delta_{3})$ .

(3) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}\approx\delta_{4}$ with $a(\delta_{0})=\alpha(\delta_{3}),$ $a(\delta_{1})=\alpha(\delta_{4})$ , then there exzsts $\delta_{5}$ such
that $\delta_{0}\approx\delta_{5}\approx\delta_{4}$ .

(4) $d(\Pi)\leq 3$ and if $\partial_{\mathbb{I}}(\delta, \delta’)=3$ , then $\beta(\delta)=\beta(\delta’)$ .

Proof. (1) Since $\gamma(\delta)=\delta$ for every $\delta\in\Pi,$ (1) is a direct consequence of Lemma
4.4.(2).

(2) This follows from Lemma 4.4.(1).
(3) By (2), $\beta(\delta_{0})=\beta(\delta_{3})\neq\beta(\delta_{1})=\beta(\delta_{4})$ . Now $\delta_{3},$ $\beta(\delta_{1})\in\Gamma_{4}(\delta_{0})$ , and there is a

path of length 4,
$y_{0}=\delta_{3}\sim y_{1}\sim y_{2}=\delta_{4}\sim y_{3}\sim y_{4}=\beta(\delta_{1})$,

where $y_{1}\in C(\delta_{3}, \delta_{4}),$ $y_{3}=g_{1}(\alpha, \delta_{4})$ .
It is easy to check that $y_{1},$ $y_{3}\in\Gamma_{5}(\delta_{0})$ and that $g_{1}(\delta_{3}, \delta_{0})\neq g_{1}(\beta(\delta_{1}), \delta_{0})$ . Hence by

Lemma 4.3.(iii) or (v) occurs.
If (v) occurs, $\partial(\beta(\delta_{0}), \delta_{4})=6$ , which is not the case. Hence $\partial(\delta_{0}, \delta_{4})=4$ .
Let $\delta_{0}=z_{0}\sim z_{1}\sim z_{2}\sim z_{3}\sim z_{4}=\delta_{4}$ be a path connecting $\delta_{0}$ and $\delta_{4}$ . Then by Lemma

4.3, we have (iii) as $\partial(\beta(\delta_{0}), \delta_{4})=4$ . Hence we can set $z_{2}=\delta_{5}$ .
(4) This follows from (1), (2) and (3).

Proof of Theorem 4.1. Let $r=4$ and

$L(\alpha, \gamma)$ $=$
$\{\alpha\}\cup\bigcup_{\delta\in C_{\gamma}}(\Gamma_{2}(a)\cap\Gamma_{2}(\delta))\cup C_{\gamma}$

,

$P(a,\gamma)$
$= \bigcup_{\delta\in L(\alpha,\gamma)}\Gamma_{1}(\delta)$

,

$\Delta$ $=$ $\Delta(\alpha,\gamma)=P(\alpha,\gamma)\cup L(a,\gamma)$

In this definition we also write $P(\Delta)=P(a, \gamma)$ , and $L(\Delta)=L(a, \gamma)$ .
We $shaU$ show in the sequel that $\Delta$ is a geodetically closed subgraph isomorphic to

$2M_{k(\alpha)}$ .
Let $\gamma=\gamma_{1}$ and $\{\gamma_{2}, \ldots,\gamma_{k(\alpha)}\}=\Pi(\gamma)$ . Thanks to Lemma 4.4,

$L(\Delta)=\{a\}U\{\beta(\gamma_{1}), \ldots,\beta(\gamma_{k(\alpha)})\}\cup C_{\gamma}$ .

By Lemma 4.5, the distance-2-graph induced on $L(\Delta)$ is of diameter 2 and geodetically
closed.

If $k(a)=2$ , there is nothing to prove. Assume $k(a)>2$ .
$\partial(\beta(\gamma),\gamma_{2})=4$ and

$\Pi(\gamma_{2})\backslash \{\gamma_{1}\}=\{\delta_{1}, \ldots, \delta_{k(\alpha)-1}\}\subset\Gamma_{4}(\beta(\gamma))$ ,
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there is a vertex $\delta_{i}’\in\Pi(\delta_{i})\cap\Gamma_{2}(\beta(\gamma))$ for each $i$ . Since the girth of $\Gamma$ is 10, we can
conclude that the valenncy of $\beta(\gamma)$ in the distance-2-graph induced on $L(\Delta)$ equals $k(a)$ .
By Lemma 4.5, this means that the valency of vertex in $P(\Delta)$ is 2.

Now we can conclude that $\Delta$ is geodetically closed subgraph of $\Gamma$ isomotphic to $2M_{k(\alpha)}$

easily.
This completes the proof of Theorem 4.1.
We remark that in the final step, we can also apply [5, Theorem 1.17.1] to determine

the regularity of the distance-2-graph induced on $L(\Delta)$ . See the proof of [5, Proposition
4.3.11].

5 Proof of Theorem 1.5
In this section, we give a proof of Theorem 1.5. We can follow the proof in the previous

section step by step, replacing each path of length 2 by a path of length 3.

Let $\Gamma$ be a graph satisfying the hypothesis in Theorem 1.5.
Fix a vertex $a\in\Gamma$ . For $\gamma,$ $\delta\in\Gamma_{f}(a)$ , we write $\gamma\approx\delta$ if $\partial(\gamma, \delta)=3$ . Then

$C(\gamma, \delta)\cup C(\delta, \gamma)\subset\Gamma_{r+1}(\alpha)$ . For $\gamma\in\Gamma_{f}(a)$ , let $C=C_{\gamma}$ be the connected component
in $\Gamma_{f}(\alpha)$ containing $\gamma$ with respect to the relation $\approx$ . Let $\Pi=\Pi_{\gamma}$ be a graph on $C_{\gamma}$

defined by the $relation\approx$ . Hence $C$ is a connected component of the distance-3-graph of
$\Gamma$ induced on the set $\Gamma_{f}(\alpha)$ .

For $\gamma,$
$\delta\in\Gamma$ with $\partial(\gamma, \delta)=r$ , and $0\leq i\leq r$ , let

$\{g_{i}(\gamma, \delta)\}=\Gamma_{r-i}(\gamma)\cap\Gamma_{i}(\delta)$.

For $\delta\in\Gamma_{f}(\alpha)$ , let

$\alpha(\delta)=g_{1}(\delta, \alpha),$ $a’(\delta)=g_{2}(\delta, \alpha),$ $\beta(\delta)=g_{3}(\delta, \alpha)$ , and $\gamma(\delta)=g_{6}(\delta,a)$ .

Firstly we note that the intersection diagram with respect to $x,$ $y$ with $\partial(x, y)=1$ has
the following shape, where $D_{j}^{i}=\Gamma_{i}(x)\cap\Gamma_{j}(y)$ . See the properties $(a)\sim(g)$ below.

$\{x\}=D_{1}^{0}-\{y\}=D_{0}^{1}-|$

.. .. ..

$-D_{f}^{r-1}-D^{f}D_{t+^{2}-D_{r+2^{\backslash }}^{r+^{2}}-}^{+1}-D_{r-1^{-D_{f}^{r+r+_{2}-D_{r+_{3}}^{r+_{3}}}}}^{r}r+-D_{r+1}’\nearrow_{1}^{1}/^{-}\overline{\backslash _{D_{r+1^{-D_{r+2}^{r+2}}}^{r+1}}}$

Figure 3.

(a) $D_{i}^{:}=\emptyset$ , for $1\leq i\leq r$ .

(b) For $y\in D_{i}^{:+1},$ $z\in D_{i+1}^{:},$ $e(y, D_{i-1}^{i})=e(z, D_{i}^{i-1})=1,1\leq i^{a}\leq r+2$ .



120

(c) For $y\in D_{i}^{i+1},$ $z\in\acute{D}_{i+1}^{i},$ $e(y,D_{i}^{i+1})=e(z, D_{i+1}^{i})=0,1\leq i\leq r$ and $e(y, D_{i}^{i+1})=$

$e(z, D_{i+1}^{i})=1,$ $i=r+1,$ $r+2$ .

(d) For $y\in D_{r+1}^{r+1},$ $e(y, D_{f}^{r+1})=e(y, D_{r+1}^{r})=1$ and $e(y, D:\ddagger^{1}1)=0$ .

(e) For $y\in D_{f}^{r+1},$ $z\in D_{r+1}^{f},$ $e(y, D_{r+1}^{r+1})=e(z, D_{+1}^{r+1})=1$ .

(f) For $y\in D_{r+2}^{r+2},$ $e(y, D_{r+1}^{r+1})=e(y, D_{r+2}^{r+2})=1$ .

(g) $e(D_{i}^{i+1}, D_{i+1}^{i})=0,1\leq i\leq r+2$ .

We again apply circuit chasing technique.

Lemma 5.1 Let $x_{0}\sim x_{1}\sim\cdots\sim x_{2r+3t}=x_{0}$ be a circuit of length $2r+3t$ . $i.e.$ , a closed
path and $x_{i-1}\neq x_{i+1},$ $i=1,$ $\ldots$ , $2r+3t-1$ and $x_{2r+3t-1}\neq x_{1}$ . Suppose

$x_{r},$ $X_{r+3},$ $\ldots,$
$x_{r+3t}\in\Gamma_{f}(x_{0}),$ $x_{r+1},$ $x_{r+2},$ $X_{f}+4,$ $X_{f}+5$ , ... , $X_{x+3t-2},$ $x_{r+3t-1}\in\Gamma_{r+1}(x_{0})$ .

Set $D_{j}^{i}=\Gamma_{i}(x_{0})\cap\Gamma_{j}(x_{1})$ . Then the following hold.

(1) $t\geq 1$ and $x_{r}\in D_{r-1}^{f},$ $x_{r+1}\in D_{f}^{r+1},$ $x_{r+2}\in D_{r+1}^{r+1}$ and $x_{r+3}\in D_{f+1}^{r}$ .

(2) If $t\geq 2$ , then $x_{r+4},$
$x_{\uparrow\cdot+5}\in D_{r+2}^{r+1}$ and $x_{r+6}\in D_{f+1}^{r}$ .

(3) If $t=2$ , then the mutual distance of the vertices in the circuit is uniquely determined.
In particular, $r\equiv 0(mod 3)$ , and

$\partial(x_{3},x_{r+3})=\partial(x_{3},x_{r+6})=r,$ $\partial(x_{3},x_{r+7})=r+1$ .

(4) Suppose $r\geq 6$ . If $t=3$ , then $x_{r+7},$ $x_{r+8}\in D_{r+2}^{r+1},$ $x_{r+9}\in D_{f+1}^{f}$ and

$\partial(x_{3},x_{f+6})=\partial(x_{3},x_{f+9})=\partial(x_{6},x_{r+9})=r,$ $\partial(x_{6},x_{r+8})=\partial(x_{6},x_{r+10})=r+1$ .

Lemma 5.2 Let $y_{0}\sim y_{1}\sim y_{2}\sim y_{3}\sim y_{4}\sim y_{5}\sim y_{6}$ be a path of length 6 such that
$- y_{i-1}\neq y_{i+1},$ $i=1,$ $\ldots,$

$5$ . Suppose $y_{0},$ $y_{6}\in\Gamma_{f}(\alpha)$ . Then one of the following holds.

(i) $y_{3}\in\Gamma_{r-3}(\alpha)$ ,

(ii) $y_{1},$ $y_{2},$ $y_{4},$ $y_{5}\in\Gamma_{r+1}(a),$ $y_{3}\in\Gamma_{r}(a)$ and $\alpha(y_{0})\neq a(y_{6})$ ,

(iii) $y_{3}\in\Gamma_{r+2}(\alpha)$ and $y_{5}\in\Gamma_{f+1}(\alpha)\cap\Gamma_{r+1}(a(y_{0}))$ , while $\partial(\beta(y_{0}),y_{5})\geq r+1$ .

Lemma 5.3 Let $\{\alpha_{1}, \ldots , \alpha_{k}\}=\Gamma(\alpha)_{2}\gamma\in\Gamma_{r}(a)_{2}C=C_{\gamma}$ . Let $S_{i}=\{\delta\in C|a(\delta)=a_{i}\}$ .
Then the following hold.

(1) For $\delta\in S_{i},$ $|\Pi(\delta)\cap S_{j}|=1-\delta_{i,j}$ and $S_{i}\subset\Gamma_{r-3}(\beta(\delta))$ . In particular, $\Pi$ is a k-partite
$(k-1)$ -regular graph.
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(2) Let $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ be a path in $\Pi$ . If $\alpha(\delta_{0})\neq a(\delta_{3})$ , then there earzsts $\delta_{4}\in$

$\Pi(\delta_{3}),$ $\delta_{5}\in\Pi(\delta_{4})$ such that $\gamma(\delta_{0})=\gamma(\delta_{5})$ .

Lemma 5.4 If $r=6$, then the following holds.

(1) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ and $a(\delta_{0})\neq\alpha(\delta_{3})$ , then there eststs $\delta_{4}$ such that $\delta_{0}\approx\delta_{4}\approx\delta_{3}$ .

(2) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}$ and $\alpha(\delta_{0})=\alpha(\delta_{3})$ , then $\beta(\delta_{0})=\beta(\delta_{3})$ .

(3) If $\delta_{0}\approx\delta_{1}\approx\delta_{2}\approx\delta_{3}\approx\delta_{4}$ with $\alpha(\delta_{0})=\alpha(\delta_{3}),$ $a(\delta_{1})=a(\delta_{4})$ , then there enists $\delta_{5}$ such
that $\delta_{0}\approx\delta_{5}\approx\delta_{4}$ .

(4) $d(\Pi)\leq 3$ and if $\partial_{\Pi}(\delta, \delta’)=3$, then $\beta(\delta)=\beta(\delta’)$ .

Proof of Theorem 1.5. Suppose $r=3$ . Let

$L(\alpha,\gamma)$ $=$ $\{a\}\cup C_{\gamma}$ ,

$P( \alpha,\gamma)=\bigcup_{\delta\in L(\alpha,\gamma)}\Gamma_{1}(\delta)$
,

$\Delta=$ $\Delta(a,\gamma)=P(a,\gamma)\cup L(a,\gamma)$

In this definition we also write $P(\Delta)=P(\alpha,\gamma)$ , and $L(\Delta)=L(a,\gamma)$ . Clearly $L(\Delta)$ is a
maximal clique in the distance-3-graph of $\Gamma$ , and the assertion follows easily from Lemma
5.3.

Let $r=6$ and

$L(a,\gamma)$ $=$
$\{\alpha\}\cup\bigcup_{\delta\in C_{\gamma}}(\Gamma_{3}(\alpha)\cap\Gamma_{3}(\delta))UC_{\gamma}$

,

$P(\alpha,\gamma)$
$= \bigcup_{\delta\in L(\alpha,\gamma)}\Gamma_{1}(\delta)$

,

$\Delta$ $=\Delta(a,\gamma)=P(a,\gamma)UL(a,\gamma)$

In this definition we also write $P(\Delta)=P(a,\gamma)$ , and $L(\Delta)=L(\alpha,\gamma)$ .
We shall show in the sequel that $\Delta$ is a geodetically closed subgraph isomorphic to

$3M_{k(\alpha)}$ .
Let $\gamma=\gamma_{1}$ and $\{\gamma_{2}, \ldots,\gamma_{k}\}=\Pi(\gamma)$ . Thanks to Lemma 4.4,

$L(\Delta)=\{\alpha\}\cup\{\beta(\gamma_{1}), \ldots,\beta(\gamma_{k})\}\cup C_{\gamma}$ .

By Lemma 5.4, the distance-3-graph induced on $L(\triangle)$ is of diameter 2 and geodetically
closed.

$\partial(\beta(\gamma),\gamma_{2})=6$ and

$\Pi(\gamma_{2})\backslash \{\gamma_{1}\}=\{\delta_{1}, \ldots, \delta_{k-1}\}\subset\Gamma_{6}(\beta(\gamma))$,
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there is a vertex $\delta_{i}’\in\Pi(\delta_{i})\cap\Gamma_{3}(\beta(\gamma))$ for each $i$ . Since the girth of $\Gamma$ is 15, we can
conclude that the valenncy of $\beta(\gamma)$ in the distance-3-graph induced on $L(\Delta)$ equals $k$ . By
Lemma 5.4, this means that the valency of vertex in $P(\Delta)$ is 2.

Now we can conclude that $\Delta$ is geodetically closed easily.
This completes the proof of Theorem 1.5.

6 Concluding Remarks

It may be too optimistic to expect a classification of $P(r, q)$-graphs or the graphs
similar to those discussed in the previous section in the near future. But we believe that
the investigation of such graphs plays a key role to give an absolute bound of the girth of
distance-biregular graphs or distance-regular graphs.

We list several problems, which we want to see solved.

1. Study geodetically closed subgraphs of distance-regular graphs and prove results
corresponding to Proposition 2.3 and Theorem 2.6, especially when $a_{1}\neq 0$ . See
[20].

2. Classify $P(r, q)$-graphs.

a) For $r=2$ , it may be possible to improve Lemma 3.4 to have $2q$ as the lower
bound. Then we have $d\leq 5$ , by Proposition 3.10.

b) For $q=1$ , the classffication implies a classification of distance-biregular graphs
with vertices of valency three, [26]. Hence we can obtain an absolute diameter
bound of distance-regular graphs of order $(s, 2)$ , i.e., those with $\Gamma(x)\simeq 3\cdot K_{s}$ .
See [17, 3, 15, 31].

3. Let $\Gamma$ be a bipartite biregular graph with a bipartition P U $L$ , or a regular graph
with $\Gamma=P=L$ . For a positive integer $q$ and a positive odd integer $r$ , we call $\Gamma$ a
$P(r, q)$-graph, if it is a connected graph such that

$c_{1}^{P}=\cdots=c_{r}^{P}=1,$ $a_{1}=\cdots=a_{r+1}=0,$ $c_{f}^{P_{+1}}=q+1$ and $c_{r+1}^{L}=c_{r+2}^{P}$ .

Classify them. If $q=1$ , then $\Gamma$ is a thin generalized polygon by a result in [26].

4. Study a distance-regular graphs $\Gamma$ with $r=r(\Gamma),$ $c_{r+1}=C,.+2=1$ , and clarify the
correspondence with $P(r, q)$-graphs. In particular, show $r\leq 6$ in Theorem 1.5.

5. Let $\Gamma$ be a connected graph of diameter $d$ . For a subset $I\subset\{1, \ldots , d\}$ , let $\Gamma^{\langle t)}$

denote the distance-I-graph, i.e., $V(\Gamma^{\langle I)})=V(\Gamma)$ , and $\alpha,$
$\beta$ are adjacent in $\Gamma^{(I)}$ if

and only if $\partial(\alpha, \beta)\in I$ . Study $\Gamma$ such that at least one of the connected components
of $\Gamma^{(I)}$ is distance-regular of diameter at least three. To start with, assume $\Gamma^{(I)}$
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is connected. It is not hard to determine parametrical conditions if $\Gamma$ itself is a
diatance-regular graph. In particular, $classi\mathfrak{g}_{\Gamma}$ distance-regular graphs $\Gamma$ such that
$\Gamma^{(2)}$ is distance-regular of diameter $d(\Gamma)\neq d(\Gamma^{(2)})\geq 3$ . See Proposition 3.2 and
$[27, 29]$ .

6. Give a geometrical classification of Moore graphs. One of the reasons, we could not
obtain the results for $P(r, 1)$-graphs with $r\geq 6$ , is a lack of such classification. We
believe that this is one of the keys when we develope structure theories of distance-
regular graphs just as the group theoretical proof of Burnside’s $p^{a}q^{b}$ theorem gave
a breakthrough to the classification of finite simple groups.
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