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On Strongly Closed Subgraphs
of Highly Regular Graphs

KER#EEKE (BEPFE) & A E (Hiroshi SUZUKI)

Abstract

A geodetically closed induced subgraph A of a graph I i defined to be strongly
closed if I';(e) N IT';1(B) stays in A for every 1 and a, 8 € A with 8(a,) = i. We
study the existence conditions of strongly closed subgraphs in highly regular graphs
such as distance-regular graphs or distance-biregular graphs.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. Let I' = (V(T'), E(T')) be a graph. For a subset A C V(I'), we identify A
with the induced subgraph on A. In particular, I' = V(T').

For two vertices a, f in ', let dr(a, ) denote the distance between a and #in T, i.e.,
the length of a shortest path connecting a and § in I'. We also write d(a, §), when no
confusion occurs. Let

Ti(a) = {B € T|0(a, B) =i} and T'(a) =T4(c).
For vertices @, § in ' with 8(a, 8) =1, let
C(a,B) = Cia,p)=Ti1(a)NT(),

A(e, 8) Ai(a, B) = [i(a) NT(B),
B(a’ ﬂ) B:(a7 :B) = Fi+l(a) n F(ﬁ): and

G(e,p) = l:JFj(a)nPi_j(ﬂ)

§=0

= {7 €T9(e,7) +3(7,8) = d(a, B)}.

G(a, B) is the set of vertices which lie on a geodesic between a and (. For the cardinalities,
we use lower case letters, i.e.,

C,‘(Ol,ﬂ) = ]C;(a,ﬂ)l, ai(a,ﬂ) = 'Ai(aaﬂ)l: and bi(aiﬂ) = |Bt(a):3)l

We also write c;(a) [resp. ai(a), bi(e)] if the number c;(a, B) [resp. ai(a, B), bi(e, B)]
does not depend on the choice of § under the condition d(«,8) = i, and ¢; [resp. a;, bi]
if the number ¢;(a, ) [resp. ai(a, B), bi(, )] does not depend on the choices of o and S
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under the condition d(a, #) = i. In these cases we say for example that ¢;(a) exists or ¢;
exists.

A connected graph I is said to be dzstance-regular if ¢;, a;, b; exist for all 7.

A connected bipartite graph I with a bipartition PU L is said to be distance-biregular
if ¢;(e), bi(a) exist for all 7 and these numbers depend only on the part o belongs to.

For convienience, if I' = P U L is a bipartite graph, we also use notations like cf, b7,
ck, b¥, when the corresponding numbers depend only on the part the base point belongs
to. :

A subset A of a graph T' is said to be C;-closed [resp. A;-closed] if Ci(e, B) C A [resp.
A;i(a, B) C A] for every pair of vertices a, § in A with dr(a, f) = 1.

A subset A of I' is said to be geodetically closed if C(a, 8) C A for every pair of vertices
a, Bin A, ie., A is Ci-closed for every . In this case, we have dp(a, ) = da(a, B) for
all @, § € A. It is clear that A is geodetically closed if and only if G(a, §) C A for every
pair of vertices e, # in A.

A subset A of T is said to be strongly closed if C(a, 8) C A and A(e, 8) C A for every
pair of vertices o, §in A, i.e., A is both C;-closed and A;-closed for every i.

We call the induced subgraph on A a geodetically [resp. strongly] closed subgraph
when A is a geodetically [resp. strongly] closed subset. ‘

By definition, every strongly closed subgraph is geodetically closed, in particular con-
nected if I' is connected. When I' is bipartite, every geodetically closed subgraph is
strongly closed and we do not need to distinguish these notions.

In most known distance-regular graphs, there are many nontrivial geodetically closed
subgraphs and in many cases they are even strongly closed. In some cases we can guarantee
the existence of strongly [or geodetically] closed subgraphs if we know a part of the
parameters ¢;, a;. See [6, 18, 19, 21, 24], and [5, Section 4.3]. We believe that the
investigation of strongly [or geodetically] closed subgraphs is a key in the study of distance-
regular graphs. '

The first question is the following:

Is a strongly closed subgraph A of a distance-regular graph T’ always distance-
regqular?

By definition, the answer is ‘yes’ if A is regular. On the contrary, we can find counter
examples easily. For example, if the girth of I" is large, we can construct a strongly closed
subgraph isomorphic to a tree.

Are there any other types of non-regular strongly closed subgraphs of distance-regular

- graphs? Theorem 1.1 gives a solution to this problem.

We need a few more definitions to state the theorem.

Let I(c, a,b) = [{i|(ci, ai, b:) = (¢, a,b)}| and r(T') = l(c1,a1,b1).

Let d(I') = max{d(a, B)|a, § € T'}, and k(a) = |T'(a)| = bo(a, a).
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Let K41 denote the complete graph of valency k, and M, denote a Moore graph of
valency k, which is known to be of diameter 2 and k € {2, 3, 7, 57}. |

For a graph T, 'T" denotes a subdivision graph obtained by replacing each edge by a
path of length .

K, 2K, 3K,

Figure 1.

Theorem 1.1 Let A be a strongly closed subgraph of a distance-regular graph T'. Then
one of the following holds. '

(i) A is a distance-regqular graph,
(i) 2<d(a) <r(D),

(iii) A is a distance-biregular graph with co;—y = co; for all i with 2i < d(A). In particular,
7(I') = d(A) = 0 (mod 2); or

(iv) A is a subdivision graph of a complete graph or a Moore graph obtained by replacing
each edge by a path of length three, i.e., A ~ 3K, or 3M;. In particular, d(A) =
r(T)+2=50r8, anda; =0, ¢py1 = Cr42 = Gry1 = Gppd = 1, where r = r(T).

In particular, (Cm—1, @m—1,0m-1) = (Cm, Qm, bm) with d(A) = m, except the case (i).

For the corresponding result when I is a distance-biregular graph, see the following
section.

It follows easily from Theorem 1.1 that if c; # 1, then every strongly closed subgraph in
a distance-regular graph is distance-regular. Using this fact, one can prove the following
theorem without difficulty, and it is useful when one wants to characterize a distance-
regular graph I' by the structure of its antipode I'y(a).

Theorem 1.2 ([28]) Let T be a distance-reqular graph of diameter d = d(T"). If Ty(ax) is
strongly closed for some o € T, then T'y(B) is a clique for every vertex f € T.

The second question is the following:
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Can we find parametrical conditions for distance-regular graphs to have strongly
closed subgraphs?

In this paper, we shall discuss this problem for the cases (iii) and (iv). Note that if
2 < m < r(T), then we can find a strongly closed subgraph A in I' of diameter m which
is, roughly speaking, isomorphic to a graph obtained by replacing each edge of a tree by
a clique.

Case (iii) is treated in Sections 3 and 4. In this case we have a; = 0 for i < d(A).
Though we discuss in full generality, it seems more natural to state the results on bipartite
graphs. The first result in this case is an improvement of a result of Ray-Chaudhuri and

Sprague on pseudo-projective incidence systems.
Let ¢ = p® be a prime power and V' be a d-dimensional vector space over GF'(¢q) when

g # 1, and a d-elenient set when ¢ = 1. Let [ ‘z/ ] denote the collection of i-dimensional

q
subspaces of V when ¢ # 1, and the collection of :-subsets when ¢ = 1.
Let J,(d, s,s — 1) denote a bipartite graph with a bipartition

[s‘—/l LU[‘:L’

where z € [s‘—/l] , 1 € [‘5/] is adjacent if and only if z C I. J,(d,s,s—1)is a
q

distance-biregular graph and is called an (s, g, d)-projective incidence structure in [24].
Throughout this paper, we make a convention that (¢™ —1)/(¢—1) = m, when ¢ = 1.

Theorem 1.3 LetI' be a connected bipartite graph of diameter at least five with a bipar-
tition P U L. Suppose ca(z) = 1,c3(%) = c4(x) = g+ 1 for every x € P, where q is a
fized positive integer. Then T is a bireqular graph of valencies k¥ = k(zx), and kX = k(1),
where x € P, | € L. If c5(x) exists for every x € P and does not depend on the choice of
z € P, then one of the following holds.

(i) T =~ J,(d,s,s — 1), where kX = (¢ — 1)/(q — 1), kP = (¢#*+1 = 1)/(¢ - 1), or
In particular, q is a power of a prime if k¥ > 3q or k' > 3q.

In [20] Koolen conjectured that under the hypothesis slightly stronger than that of
Theorem 1.3, (i) or d(I") < 4 holds. Hence Theorem 1.3 gives an affirmative (but not
complete) solution to the conjecture. For the detailed information on the case (ii), see
Section 3. :

Ray-Chaudhuri and Sprague obtained only the case (i) under an additional hypothesis
¢+ q+1 < k*. So in this paper we shall treat the case when the valency is not so large
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compared with ¢f, using a result of Terwilliger in [30]. In any case, as we can guess
from the conclusion, one of the keys is to show that every pair of vertices of distance
four determines a geodetically closed (hence, strongly closed but not regular) subgraph
of diameter four assuming that the valency k* is not so small. See Section 3.

Let T be a distance-biregular graph with a bipartition P U L. Assume r is even and

P __ rp _ P
C,. —'1<cr+l—c'.+2.

This is one of the typical cases corresponding to Theorem 1.1.(iii). By Theorem 1.3,
if r = 2 and d(I") > 8, then I" contains a strongly closed subgraph, which is distance-
biregular of diameter four. It seems unlikely to have r > 4 and r = 4 is rare. We do not
have a proof, but we can prove that r < 4 if I' contains a strongly closed subgraph of
diameter 7 + 2. See Section 3. In Section 4, we treat the case ¢Fly =2 with r = 4 and
prove the following.

Theorem 1.4 Let I be a connected bipartite graph with a bipartition P U L. Suppose
ca(z) = c3(z) = cu(z) = 1, e5(x) = c(x) = 2 for every x € P. Then I is a biregular
graph of valencies k¥ and k. If a, B be vertices in T with 8(a, 8) = 5, then there
is a strongly closed subgraph A containing a and 8 isomorphic to 2M,r. In particular,
kP € {2,3,7,57}, if d(T") > 5.

We can show under the hypothesis in Theorem 1.4 that ¢f exists for i = 1,2, 3,4, 5,6,
¢l =---ck =1 and ¢ = ¢ = 2. Hence Theorem 1.4 implies that k- € {2,3,7,57} as
well. When kP = 2 or kX = 2, T" itself is a subdivision graph of a Moore graph isomorphic
to 2M; for some k. When kP = k! = 3, Foster graph is an example. We do not know any
other examples. It may be possible to classify I" satisfying the condition of Theorem 1.4.

Case(iv) in Theorem 1.1 is treated in Section 5, under an additional condition ¢,+3 = 1.

Theorem 1.5 Let T be a distance-regular graph of valency k > 2 satisfying the following.

(cmar)br) = (I,O,k'—l),

(cr+l) ar+1,br+l) = (c,+2,a,+2, br+2) = (la 11k - 2)1

r>1andc.3=1. Thenr =0 (mod 3), and the following holds.

(1) If r = 3, then for every a, B € T with 8(a,B) = 3, there is a strongly closed
subgraph A containing a, § isomorphic to 3Ky,,.

(2) If r = 6, then for every a, B € T with 8(a, B) = 6, there is a strongly closed
subgraph A containing a, B isomorphic to M. In particular k € {3,7,57}.

The first part 7 = 0 (mod 3) is due to Boshier-Nomura [4]. It is known that if
1(1,0,k—1)=r>1,then(1,1,k—2) <3 and if I(1,1,k — 2) = 3, then ¢,+4 > 1 [4, 13].
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It is worth mentioning that both results Theorem 1.4 and 1.5 are related to circuit

chasing technique. See [26] for a result related to Theorem 1.4.

We use intersection diagrams as our tools. We refer those who are not familiar with
them to [4, 13, 14, 16, 23, 25, 26] and (5, Section 5.10] for example.

For subsets A, B of T let (A, B) denote the number of edges between A and B, and
e(z, A) = e({z}, A).

I'®) will denote the distance-i-graph on I‘ i.e., the graph defined on the vertex set
V(T') of I such that a and 3 are adjacent if and only if or(a, ) = i.

We write a ~ § when a € T'(f).

2 Strongly Closed Subgraphs

We shall prove Theorem 1.1 and related results in this section. The key of the proof
is the determination of graphs such that ¢;’s and a;’s exist. Problems in similar settings
are discussed in [12, 30, 20].

Proposition 2.1 Let I’ be a connected bipartite graph with a bipartition P U L. Suppose
cf exists fori=1,...,m withm < dT). Ifef =---=cf =1<cl,, withr+1<m,
then the following hold.

(1) If ¢f = ¢t for some i < m, then ¢t exists and ¢ | = ¢f. In particular, cf,..., ct

ezistandcf =---=cl =1.
(2) Ifcf,...,c5 evist and 2i + 1 < m, then c3;,, ezists and c};c;,, = cgjc5;, for all
Jj<i.
(3) If r is even, then T' is biregular of valencies bf and bf. Moreover ¢k, ezists and
P L
Crt1 = cr+1'

(4) Ifr is odd, and ck,, ezists, then T' is biregular of valencies bf and b§. Moreover,
(efyr = 1)(8y = 1) = (efy — 1)(b§ — 1)

(5) Suppose T is bz'regular of valencies k¥ = bf and k* = b}. Then |P|kF = |L|kL.
Moreover, if cf,...,ck exist with 2i < m, then bF, bl exist for s < m, t < 2i and
sz 1b3; = bg;_,b3;, for all j < i.

We can obtain the following theorem as a direct corollary by applying Proposition 2.1
to A.

Theorem 2.2 Let I be a connected bipartite graph with a bipartition P U L. Suppose
cf,ctezistfori=1,....m. Letef =---=cf =1<chwithr+1<m. IfAisa
geodetically closed subgraph of T' of diameter m, then A is a distance-bireqular graph.
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Remark. For a diatance-biregular graph I' = PU L, let d” = max{d(z, a)|e € T},
where z € P, and d* = max{9(l,a)|a € T'}, where ! € L. In Theorem 2.2, if dP"4 > L8
then kP"4 = ¢F. But we cannot determine the other valency when dP"2 > gLna,

Proposition 2.3 Let ' be a connected graph. Suppose c; exists for i = 1,...,m with
m < d(T'). Supposec, = --- =¢ =1, ay,...,a, erist and a; = --- = a, and either
Cry1 > 1 or ey =1 and a,4 exists with a,41 # ay, where 2 < r+1<m. Then one of
the following holds.

(i) T is regular.

(ii) T is a bipartite bireqular graph such thatr = 0 (mod 2) and cy;_; = co; for all i with
2t < m.

(iii) T ~ Ky or 3M,, where k is the largest valency of a vertez in T'. In particular,
r=3 oré6.

Lemma 2.4 LetT be a connected graph of diameter d = d(T'). Suppose cq, c4_1, a4, Gy,
ezist. Then ' is reqular of valency cq4 + aq if and only if (ca—y, ag—1) # (ca, aa).

Lemma 2.5 Let T be a distance-regular graph of diameter d = d(T) and m < d. Suppose
I’ has a strongly closed subgraph of diameter m containing o and f for every pair of
vertices o, § with 8(, 8) = m. Then for ally, 6§ € T with 8(,6) <m+1, C(n,96) is a
coclique.

Now we prove Theorem 1.1 under weaker conditions.

Theorem 2.6 Let I' be a connected graph of diameter d = d(T"). Suppose ¢;’s and a;’s
exist for alli=1,...,m, where m < d. Let

r =r(T) = max{i|(c;,a1) = (c2,a2) = - -+ = (ci,4;)}.
IfT contains a strongly closed subgraph A of diameter m, then one of the following holds.
(i) A is a distance-regular graph,
(i) 2<m <,

(iii) A is a distance-bireqular graph and thatr = m =0 (mod 2) and cyi_; = co; for all
1 with 2t < m, or ‘

iv) Ax3Kp or3Myandm=r+2=50r8 a,=--=a=0,¢ = = Cppg =
. + ’ ) +
ar+l=ar+2=1-
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Proof. Since A is a strongly closed subgraph of I'; we can apply Proposition 2.3 to
the subgraph A. If r > m, then (i) or (ii) holds.

Assume r +1 < m. Then A is one of the types in Proposition 2.3. If A is regular,
then A is distance-regular as ¢;’s and a;’s exist for ¢ < d(A) = m. Suppose A is not
regular. Since A is strongly closed, k(a) = k() if @, § € A and 3(e, 3) = m. Soif A is
a bipartite biregular graph, A is distance-biregular and m = 0 (mod 2). Hence we have
(iii). Suppose A ~ 3K, or3M,. Thenr =3 or6andm=r+2,¢, = =¢n =1,
a =---=a, =0, ar41 = ar42 = 1 easily follow from the structure of A.

Lemma 2.7 Let I' be a distance-biregular graph with a bipartition P U L. Suppose
kP, k¥ > 2. Letd = d(T"),

d¥ = max{d(z,a)lz € P, a €T}, d* =max{d(l,a)ll€ L, a €T},
and 7(T') = max{i|c] = 1}. Then r(T") = max{i|c} = 1} and the following are equivalent.
G) r(0) +2=dP +1=dl =d.
(i) d=d* = () +2, ¢k = c& with d even.

In this case T' is a Moore geometry and d = 4 or 6. Ifd = 4, T' is nothing but a
nonsymmetric 2-(|P|, k%, 1) design. If d = 6, then the incidence graph on P is a strongly
reqular graph with parameters (v, k, A, u) = (|P|, kP (k% = 1),k* - 2,1).

For the diameter bound of Moore geometries, see (8, 7, 10, 11] and [5, Section 6.8]

Remark. In the case Theorem 2.6.(iii), the smallest possible value for m is r + 2 if
the minimum valency is at least 2. By the previous lemma, we have r = 2 or 4. We treat
these cases in the following sections. But it may be possible to give a bound of r = r(I)
of distance-regular graphs satisfying a; = 0, ¢,41 = ¢,42 With r even, by showing the
existence of geodetically closed subgraphs of diameter r + 2, i.e., graphs discussed in the

' previous lemma. '

3 A Refinement of a Theorem of Ray-Chaudhuri
and Sprague

In [24], Ray-Chaudhuri and Sprague proved the following theorem in the context of
incidence systems.

Theorem 3.1 Let I" be a connected bipartite graph with a bipartition P U L. For some
positive integer q, suppose co(z) = 1, c3(z) = ca(z) = q+1 for everyz € P. ThenT is
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biregular of valencies k¥ and kL. IfkP > q+1 andkl > ¢*+q+1, thenT ~ J,(d, s,5—1),
where s and d are real numbers defined by

k' =(¢-1)/(g-1), kK =(¢"""-1)/(¢g-1)
In particular, q is a power of a prime number and both s and d are iniegers.

The first part of this section is the following: By reviewing the proof of Ray-Chaudhuri
and Sprague, we show that we can conclude either d(I') < 4 or ' = Jy(d, s, s — 1) if we
can construct a geodetically closed subgraph of diameter 4 having vertices of valency ¢+1
and that such a subgraph exists if one of the valencies k¥ or k” is at least 3¢g. Roughly
speaking, we want to decrease the lower bound of the condition on the valencies in the
hypothesis from ¢% + g + 1 to 3q.

Before we start, we prepare a proposition.

Proposition 3.2 Let I’ be a connected regular graph of valency k and diameter d. Sup-
pose the distance-2-graph A = T'® is distance-reqular of diameter d. If each pair of
vertices o, (3 at distance three in " is contained in a shortest circuit of odd length 2m +1,
then d = m and a connected component of Aj(a) is a clique of size k. Moreover, Ao
is connected if and only if d = d and T is a generalized Odd graph, i.e., a distance-reqular
graph such that a; =0,i=1,..., d—1 and ag # 0.

Proof. Firstly, we have a; = -+ = am—; = 0, m > 3. And we have the following.
Al(aj =Ty(a), Am-1(a) D T3(a), An(a) D Ii(a).
Let § € I'y(a). Then Am+1(a) N A (B) = 8, d = m. Moreover,
Ti(@)\ {8} C Au(B) N Agla) C Ti(e) \ {B}.

Hence d; = k — 1 and a connected component of A j(a) containing g is a clique of size k.

If Aj(a) is connected, as A is distance-regular, A () = I'1(7) is a clique of size k in
A for every v € I'. Hence I is a generalized Odd graph. See [1], [2, Section IIL.4], and [5,
Section 4.2].

In the following we also treat the case when I' is a k-regular with the same conditions
on ¢;’s as those in Theorem 3.1.

Let ¢ be a positive integer and r a positive even integer. A connected graph I is said
to be a P(r,q)-graph if c;, a; exist for 1 <i <r+2,1<j <r+1 and they satisfy

aa=-=¢=lLa==a41=0, 1 =C2=¢q+1.

Lemma 3.3 Let q be a positive integer and r an even positive integer. The following
hold.
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(1) LetT be a connected bipartite graph of diameter at least r+1 with a bipartition PUL.
Ifcf ezistsfor 1 <i<r+2,andcf =---cf =1, ¢l ,=cl,=q+1, thenT is
a P(r,q)-graph.

(2) LetT be a P(r,q)-graph. Then one of the following holds.

(i) T is a bipartite biregqular (possibly reqular) graph; or
(ii) T is a nonbipartite reqular graph, i.e., a regular graph containing a circuit of
odd length.

Proof. (1) This follows from Proposition 2.1.(1), (2).
(2) This follows from Proposition 2.3.

Let I be a P(r, ¢q)-graph of diameter at least r + 1. According to the previous lemma,
there are two possibilities.

(i) T is a bipartite graph with a bipartition P U L and biregular of valencies k¥ and k”.
(ii) T is a nonbipartite graph and regular of valency k. In this case, let ' = P = L.

We give a list of known P(r,q)-graphs, which is not a polygon. r = 2 for the first
three examples and r = 4 for the rest.

1. Jy(d,s,s —1).
2. O, the Odd graph of valency k, (nonbipartite).
3. 2My, the doubled Hoffman-Singleton graph, (d = 5, ¢ = 5).

4. 2M,, k=3,7,(d=6, g=1).

5. Foster graph, that is the three fold cover of the incidence graph of GQ(2,2), the
generalized quadrangle of order (2,2), (d =8, ¢ =1).

In this section we study P(2, ¢)-graphs. Let I be a P(2, ¢)-graph of diameter at least

five.
For a, B € I" with 9(a, 8) = 2 and v € C(a, ), let

T(e, §) = T'2(a) NTy(B) N T3(7).

‘We say I satisfies the condition #7 [resp. #P), if 6, n € T(a, B) implies 3(6,7n) < 2 for
all a, B € L [resp. P] with 9(e, 8) = 2.
The condition above is called ‘Pasch’s axiom’ in [24].

Lemma 3.4 (1) Ifk% > 3q or g =1, then T satisfies the condition #~.
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(2) Ifk? > 3q or g =1, then T satisfies the condition #F.

Proof. By symmetry it suffices to prove (1).
Let my, mg € L with 8(my,mg) = 2 and {z} = C(my, my). Let T = T(my, ma).
If | € T, then C(mq,l) C I'3(m,;). Hence

IT| = |T(m1, ma)| = b5 (c5 — 1) = (k" - 1)g.

Suppose the condition #~ fails. Then there exist I, I’ € T with 8(l,I') = 4. Let
{z:} =C(,m;), {z}} =C{l'ym;), i=1, 2. Sincecg=cy, =q+1,fori, j=1, 2,

#, € C(L,I") = C(z;,V'), or 8(z}, z;)=2.
So we have that
T} € C(z9,m1) \ {z,11}, 25 € C(z1,m2) \ {2, 22}.
Hence |T NT4(1)| < (¢— 1) Similarly, |TNT4(!')] < (¢—1)% In particular, g # 1. Thus

(g+1)°

I

IT2(1) N (1)l

[T N (1) N To(l')] + [{m1, ma}|

|T| + [{m1, ma}| — [T NTa(D)] = |T NTa(l')|
(k" —1)g+2-2(¢—1)%

vV iV IV

So 3¢ ~2¢+1 > (k" —1)gor k* <3¢ —1+ . Since ¢ # 1, k* < 3¢ — 1, as desired.

For m;, mq € T'y(l) with m; # mg, we write m; =~ my if d(m;,me) = 2 and
C(my,ms) C T3(l), or equivalently if mg € T'(I,m,). Since the relation = is symmet-
ric, it defines a graph on I'(I).

Let L;(I,m) be a connected component in I'y(!) containing m with respect to =. Let

L{,m) = {I}UL,(,m), P,m)= |J T(n), A(l,m) = P(l,m) U L(i,m).

neL(l,m)

Lemma 3.5 Suppose T' satisfies the condition #*. Then forl, m € L with B(i,m) =2,
A = A(l,m) is a geodetically closed subgraph of T' of diameter 4.

Proof. Since T' satisfies the condition #%, we have 8(m;,my) < 2, if my, my €
T(I,m). Hence we can prove the assertion without difficulty.

Let D = {A(I,m)|d(l,m) =2, |, me L}.
Corollary 3.6 IfT satisfies the condition #*, then the following hold.

(1) L(l,m) is a mazimal clique in T,



112

(2) Ifl, m€ A;NAyN L, then Ay = Ay orl =m.
(3) A is a bipartite biregular graph of valencies ¢ +1 on P(l,m) and k* on L(l,m).
(4) |L(I,m)| = gk* + 1.

(5) {A € D|jl € A} = (kP —1)/q for everyl € L.

Let II be a bipartite graph on LU D with adjacency defined as follows: Forl € L, A €
D, € A and the valency of I in A is k. Note that kX > g+ 1 as d(T") > 5.

Lemma 3.7 IfT satisfies the condition #~, thenII is a P(2, q)-graph of valencies (k¥ —
1)/q on L and gk* +1 on D.

Proposition 3.8 LetT" be a P(2, q)-graph of diameter at least five satisfying the condition
#L. Then one of the following holds.

(i) T~ J,(d,s,s — 1), where k¥ = (¢ = 1)/(¢ - 1), k¥ = (¢**** - 1)/(¢ - 1), or

(ii) T is a reqular nonbipartite graph of valency k and T'® is isomorphic to a connected
component of the distance-2-graph of Jo(2s — 3,5 — 2,5 — 3), where k = (¢°~! —
1)/(¢ — 1). Moreover, if each pair of vertices of ' at distance three is contained in
a shortest circuit of odd length, then ¢ =1 and I’ is isomorphic to an Odd graph.

Proof. Firstly, note that Jy(d,s,s — 1) ~ Jy(d,d — s + 1,d — s), if we take the dual
interchanging P and L.

Suppose I' is bipartite. Since d(T") > 5, k¥, k¥ > ¢+ 1. By Theorem 3.1, (i) holds if
kP > ¢ + g + 1, using the first remark above.

Assume k¥ < g% + ¢ + 1. Since T satisfies the condition #Z, IT is a P(2, q)-graph of
valencies (k¥ —1)/q on L. Since (kP —1)/g < q+1, 8p(l,m) < 2for all I, m € L. Hence
dr(l,m) <2 for all I, m € L, which is not the case.

Suppose I' is not bipartite. By the previous lemma, II is a bipartite P(2, ¢q)-graph of
valencies (k —1)/g on L and gk + 1 on D.

Suppose (k —1)/q < ¢+ 1. Since d(I") > 5, there are vertices ly, I, ls, I3 such that

6(10,11) = 6(!1,’2) - 8(12,l3) = 2, 8(10,12) = 4

Since |II3(lp) NTI(le)| = ¢+ 1, (k—1)/g = g+ 1 and A(ly,13) € H3(lp) NII(l). So there
is a vertex | € A(ls,l3) such that 8(l,13) = d(lp,!) = 2. Hence 9(I3,1p) < 4. In particular
d(T") = 5, a5 exists and a5 = 0. Since I' is not bipartite, we may assume that 9(ly, l3) = 3.
Then [T3(l3) N T2(lp)| = 0. This is a contradiction.

Thus (k—1)/¢ > q+1, gk+1 > ¢*+ ¢+ 1. Hence by Theorem 3.1, IT ~ J,(d, 5,5 — 1),
where gk +1 = (¢ - 1)/(¢ - 1), (k - 1)/g = (¢*** - 1)/(g - 1).
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‘Therefore k = (¢*~' — 1)/(¢ — 1) and d = 25 — 3. Since dp(l,m) = 2 if and only if
on(l,m) = 2, I'® is isomorphic to a connected component of the distance-2-graph of I
on L.

If T" satisfies the additional condition in (ii), we can apply Proposition 2.2. If ¢ # 1,
then I'® is a Grassman graph, which is also called a g-analogue of Johnson graph. But in
this case it is easy to check that the antipode is connected, while it is not a clique. Hence
g=1and I'® ~ J(2s — 3,5 — 2). Thus I' is an Odd graph.

In the following, we investigate the case when I' does not satisfy #L. By symmetry
proved in Lemma 3.3, we may assume that I' does not satisfy #7 either. Hence by Lemma
3.4, we need only to consider the case kP, kL < 3¢ — 1.

The key to analize this case is the following proposition proved by Terwilliger. We
kept the notations in [30], where M; is no longer a Moore graph. |

Proposition 3.9 ([30]) Let integers ¢, p and s all be at least 2. Suppose the vertices
of some graph I' can be partitioned into s + 1 disjoint sets VI' = Ui_y M;, where for any
u, v € VI, u € M;, v € M; and (u,v) € ET implies |i — j| < 1. Fori=1 ors, letl;
and L; denote the minimum and mazimum number of vertices in M;_, any vertex in M;
is adjacent to, and for i = 0 or s — 1, let r; and R; denote the minimum and mazimum
number of vertices in M;., any vertex in M; is adjacent to. Also assume

i) KB(u,v') = s for some u € My and v € M,,

(ii) for integers 0 < i, j < s and for any u € M; and v € M, there are either ¢ or 0
paths of length s connecting them if |j — i| = s, and either 0 or 1 paths of length
|7 — 1| connecting them if 1 < |j —i| < s—1, and

(iii) for any u, v € VT with u € My, v € M,_,, and 8(u,v) > s — 2, there are at most p

paths {u = v, v1,...,vs_1,v, = v}, where either vy € My or v,_; € M,.

Then
¥4 Ts—1 + ll
c—1~" Ry—1 L,-1

Proposition 3.10 Let T' be a P(2,q)-graph of diameter at least five. If cf ezists, then
cs exists, i.e., ¢t ezists and c¢f = ck, cs > g+ 1 and the following hold.

(1) Ifd(T) > 7, then cs > 2q + 1.
(2) Ifa, B, v €T with 8(a, B) =8, da,v) =3, 8(v,8) =5, then k() > 3¢+ 2.

(8) Fora €T letj = k(a) — cs. Ifas =0, then

2¢+j7+3+/4jg®+(j — 1)?
Koy > 22 \/23q -1

In particular, if j > 4, then k(a) > 3¢+ 4.
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Proof. It follows from Proposition 2.1.(2) that cs exists.
(1) Let @, B € T with d(a, ) = 7. Let

M; =Ty(a)NTs_i(B), i=0, 1, 2, 3.

Apply Proposition 3.9.
(2) Since d > 8, we can apply (1). We have

k(7) > es(e, ) + ¢s5(8,7) > 3g + 2.
(3) Let @ € ' and M; =Ty49(a), i =0, 1, 2, 3. Apply Proposition 3.8.

We now summarize our results in this sectlon from which we have Theorem 1.3 as a
corollary.

Theorem 3.11 Let ' be a P(2,q)-graph of diameter at least five. Suppose cs ezxists.
Then T is a bipartite biregular graph of valencies k¥ and k%, or a regular graph of valency
k = kP = kL and one of the following holds.

(i) T = Jy(d,s,5 — 1), where k* = (¢ —1)/(g - 1), k¥ = (¢"~**' = 1)/(¢ - 1),

(ii) T is a reqular nonbipartite graph of valency k and the distance-2-graph T'® is iso-
morphic to a connected component of the distance-2-graph of J,(2s—3,s—2,5—3),
where k = (¢*~! — 1)/(qg — 1). Moreover, if each pair of vertices of I' at distance
three is contained in a shortest circuit of odd length, then ¢ = 1 and T’ is isomorphic
to an Odd graph; or

(iii) d(T') < 7 and k¥, k¥ < 3¢ -1, ¢ # 1. Moreover if ay = 0, then " is bipartite and
kP —c5, k' —c5 < 3. In particular, if T' is not bipartite and a4 exists, then d(T') < 6.

Corollary 3.12 Let I’ be a distance-regular graph of valency k. Suppose c2 = 1, ¢3 =
cs = q+ 1 and a; = a; = a3 = 0 for some positive integer q. Then one of the following
holds.

(i) P~ J,(2s-1,5—2,5—3), where k = (¢* —1)/(qg - 1).
(ii) T ~ Oy, an Odd graph of valency k; or
(iii) d(T") <7, and the equality holds only if T' is bipartite.
Koolen [20] conjectured the following:

If T is a distance-biregular graph of diameter at least 5 such that ¢; exists for
all 4, and c; = 1, c3 = ¢4 > 2, then " ~ J,(d, 8,5 — 1).



115

Our results asserts that d(I') < 7 and the parameters are restricted very much. It is
known that if d(I') = 5 or 7, then T is distance-regular, under the assumption of the

conjecture above. See [9, 20].

We also note that for d(I') = 5, the doubled Moore graph satisfy the hypothesis with
¢s = g+2. Moreover if it’s valency is not 3, say 7, then it does not come from J,(d, s, s—1).
So this gives a counter example to the conjecture above.

4 P(r,1)-graphs

According to the remark following Lemma 3.3, a P(r,1)-graph is a connected graph
I, which is either a bipartite biregular graph with a bipartition P U L or a nonbipartite
regular graph such that

Cl=°°'=c,-=1, a1=-~=ar+1=0, c,.,_1=c,+2=2,

where 7 is an even positive integer. In this section we study P(r,1)-graphs and we show
the following when r = 4. We do not know any P(r,1)-graphs with r > 4.

Theorem 4.1 Let I' be a P(4,1)-graph of diameter at least four and a, v € T' with
O(a,v) = 4. Then there is a geodetically closed subgraph A containing o, vy isomorphic
to 2Mja). Here k(o) denotes the valency of o in T'. In particular, k(a) € {2,3,7,57}.

Let I be a P(r,1)-graph with r > 4.

Fix a vertex a@ € I'. For v, ¢ € I';(a), we write v = § if 9(v,8) = 2 and €(v,6) C
I'ryi1(@). For v € I'y(a), let C = C, be the connected component in I'.(a) containing -y
with respect to the relation ~. Let II = II, be a graph on C, defined by the relation ~.
For 7, § € T with 9(,6) =r,and 0 <i <, let

{gi(')'a 5)} = Fr—i(7) N Pz(é)
For § € T'r(v), let
a(6) = g1(8, @), B(0) = go(6, @), and ~y(8) = ga(4, a)

Firstly we note that the intersection diagram with respect to z, ! with d(z,!) = 1 has the
following shape, where D; = T'i(x) N T;(I). See the properties (a) ~ (e) below.

=D0— ... - -1 +1
{z}=Dj D; Dry\—— Diis

{(}=Dy— ----.. —Dr_,
Figure 2.
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(a) Di=0,for1<i<r+1.

(b) Fory € Di*!, z € Di,,, e(y,Di_) =e(2,D{)=1,1<i<r.
(c) For y € Di13, z € D31}, e(y, Ditt) = e(2, Dr,,) = 2.

(d) Fory € DI*!, z€ DIy, e(y,Dry,) = e(z,Di*1) = 1.

(e) (DY, Di,)=0,1<i<r—landi=r+1.

The following two lemmas are related to circuit chasing technique. See [4, 13, 14] and
[5, Section 5.10].

Lemma 4.2 Let 1o ~ 1 ~ « -+ ~ Topp9: = To be a circuit of length 2r + 2t. i.e., a closed
path and x;_y # Tip1, 0=1,..., 2r+2t -1 and Topyoi-1 # T1. Suppose

Try Trg2y0.0y Ixr+2t € Pr(.’l?()), Trily Trg3y ooy Trg2t-1 € P,-+1(.’L'0).
- Set D; =Ty(zo) NTj(z1). Then the following hold.
(1) t>1 and z, € DI_,, Tpy1 € DIM, 2,40 € DI,.
(2) Ift > 2, then z,43 € D[} and z,44 € DI;.

(8) Ift = 2, then the mutual distance of the vertices in the circuit is uniquely determined.
In particular,

(%2, Tri2) = O(T2,Trya) =T, O(T2,Tpys) =71+ 1.

(4) Ift =3, then 2,45 € D[}, z.46 € D7, and

O(T2, Trpa) = O(22, Tris) = O(T4, Tri6) =T, O(T4, Trys) = (T4, Tppr) =T+ L.

Proof. 1In the following, we use (a) ~ (e) to determine the locations of z;’s in the
diagram with respect to an edge z;_; ~ z;, using the information on the distances from
Ti-1. \

(1) Since z4—1 # i1, forallé, and ¢; =--- = ¢, =1,¢ > 1. It is clear that z, € Dr_,.
Since z,41 € Trya(zo) NT(2,), 1 € DIFL. 2, # 2,42 € T'p(xp) N I(2,41) implies that
Zpy2 € DI, +1

(2) Since T,42 € D7, and e(z,42, DI*) = 1 with z,41 € DINT(2,42), Tri3 € DiL3,
Tryq € Dpyy.

(3) It is easy to determine the mutual distances as follows.

Ty Tr+1 Tr42 Tr43 Tr4d  Trqs
T r r+1 r r+1 r r-1
T r—1 r r+1 r4+2 r+41 r
) r—-2r—-1 r r+1 r r+1
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Now the distance pattern with respect to z, is the same as that with respect to zo, the
mutual distance of the vertices in the circuit is uniquely determined and the assertion

follows.
(4) We do the same as in (3).

Ty Tyl Tr42 Tr43 Trya Teg5 Tr46 Try7  Try8  Trig9
T r r+1 r r+1 r r+1 7 r-171-2 r-3
T r—-1 r 741 r4+2 r+1 r42 741 r r—-1 r-2
Ty r-2r-1 r r+1 r r+1 r r41 r 1r-1
zz r—-3 r—-2r-1 r r+1 742 r+1 r42 r4+1 r
T4 r-4 r-3 r-2r-1 r r+1 r r41 r 7141

Note that since a:,.;-, € DI, z,,5 cannot be in D7+,

Lemma 4.3 Let yo ~ y1 ~ Y2 ~ Y3 ~ Y1 be a path of length four such that y;—1 # yin1,
i=1,...,3. Suppose ¥, ys € I':(a). Then one of the following holds.

(i) 12 € T'rs(a),
(ii) g1 € Ty_1(a) or y3 € T,_1(a) and a(yo) # a(ys),
(iii) y1, y3 € Try1(@), 12 € T(a) and a(y) # ays),
(iv) ye € T'ry2(a) and a(yo) = a(ys), while B(yo) # B(ys), or

(v) y2 € I'rya(@) and a(yo) # a(ys), d(B(w),ys) =1+ 2.

By Lemma 4.2 and 4.3, we can prove the following concerhing the connected compo-
nent in I',(a) with respect to ~.

Lemma 4.4 Let {oy,...,0rq} =T(a), vy € Tr(a), C =C,. Let S; = {6 € Cla(b) =
a;}. Then the following hold.

(1) For 6 € S;, [IN(6)N S| =1~ 6; and S; C T'y_9(B(6)). In particular, 11 is a k(a)-
partite (k(a) — 1)-reqular graph.

(2) Let 6o = 61 = 6, = 63 be a path in I1. If a(by) # a(83), then there ezists 04 €
I1(63), 05 € T1(84) such that y(6o) = v(85)-

If r =4, 4(6) = 6 for every § € II. So by Lemma 4.4, we have the following.

Lemma 4.5 If r = 4, then the following holds.

(1) If 6p = 6, = b5 = 63 and a(8p) # (83), then there erists b4 such that o = b4 = 83.
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(2) If §p = ) = 65 = 63 and (o) = a(83), then B(6o) = B(63).

(3) If b = 61 = by = 63 = 84 with a(bo) = a(83), a(6,) = a(b,), then there exists 65 such
that 60 ~ 65 ~ 54.

(4) d(II) < 3 and if 3(6,8') = 3, then B(8) = B(8).

Proof. (1) Since y(6) = é for every § € II, (1) is a direct consequence of Lemma
4.4.(2). :
(2) This follows from Lemma 4.4.(1).
(3) By (2), ﬂ(&o) = ,3(53) 75 ,3(51) = ﬂ(54) Now 53, ,8(51) € I‘4(5o), and there is a
path of length 4, |
Yo =03~y ~ya =064~ y3~ys = P(61),

where y; € C(83,64), Y3 = g1(c, 64).

It is easy to check that g, ys3 € I's(8) and that g;(83,8) # 91(8(61),80). Hence by
Lemma 4.3.(iii) or (v) occurs. ;

If (v) occurs, (8(o), 64) = 6, which is not the case. Hence 8(8o0,64) = 4.

Let 8 = zg ~ 21 ~ 29 ~ 23 ~ 24 = 04 be a path connecting dp and d4. Then by Lemma
4.3, we have (iii) as 8(08(é), d4) = 4. Hence we can set 2, = 6.

(4) This follows from (1), (2) and (3).

Proof of Theorem 4.1. Let r = 4 and
L(a,7) = {a}u |J (Ta(e)NTa())UC,
5€C,

P(a’7) = U Fl(a):

seL(ayy)
A = A(a,’)’) = P(a,')')UL(aaF)')

In this definition we also write P(A) = P(«,7), and L(A) = L(e, 7). -

We shall show in the sequel that A is a geodetically closed subgraph isomorphic to
2Mi(a)-

Let v = and {72,...,Vka)} = [I(7). Thanks to Lemma 4.4,

L(A) = {a} U{B(n), -, B(1R)} U Cy.

By Lemma 4.5, the distance-2-graph induced on L(A) is of diameter 2 and geodetically

closed.
If k(a) = 2, there is nothing to prove. Assume k(a) > 2.

3(B(7),72) = 4 and
I{y2) \ {m} = {61,...,6ka)-1} C T4(B(7)),
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there is a vertex 8] € TI(§;) N T'2(B(y)) for each i. Since the girth of I' is 10, we can
conclude that the valenncy of #(7y) in the distance-2-graph induced on L(A) equals k(c).
By Lemma 4.5, this means that the valency of vertex in P(A) is 2.

Now we can conclude that A is geodetically closed subgraph of I" isomotphic to 2Mk(a)
easily.

This completes the proof of Theorem 4.1.

We remark that in the final step, we can also apply [5, Theorem 1.17.1] to determine
the regularity of the distance-2-graph induced on L(A). See the proof of [5, Proposition
4.3.11].

5 Proof of Theorem 1.5

In this section, we give a proof of Theorem 1.5. We can follow the proof in the previous
section step by step, replacing each path of length 2 by a path of length 3.

Let T" be a graph satisfying the hypothesis in Theorem 1.5.

Fix a vertex @ € I'. For v, § € I'.(a), we write v =~ § if 3(y,8) = 3. Then
C(v,6) U C(8,7) C I'ry1(a). For v € T'y(a), let C = C, be the connected component
in I';(a) containing 7 with respect to the relation ~. Let IT = II, be a graph on C,
defined by the relation =. Hence C is a connected component of the distance-3-graph of
T induced on the set I'.(a).

For v, 6 € T with 8(,6) =r,and 0 <i < r, let

{9:(7,6)} =T,_i(v) NT:(6).
For § € T'.(a), let
a(b) = gi(6,a), o/(8) = g2(6, @), B(8) = g3(6,), and (6) = ge(6, @).

Firstly we note that the intersection diagram with respect to z, y with 8(z,y) = 1 has
the following shape, where D} = ['y(z) N T;(y). See the properties (a) ~ (g) below.

=D0— ...... — pr-1 ‘ +1 +2
{z} =D} Dy r+1 Diis Dri3
\ , N\
r+1 r+2
Dr+1 Dr+2
7
=Dl ...... —_ +1 r+2 r+3 __
{y} _DO- D:—l D: Dr+1 Dr+2
Figure 3.

(a) Di=0,for1 <i<r.

(b) For ye D:'.-H) zZ € D::+11 e(yaD::—l) = e(z’D::_l) = 1) 1 S 2S r+2.
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c) For y € Di*!, z € Di,,, e(y,Di*') = e(2,Di,)) = 0,1 <i < r and e(y, Di*') =
) i+1 +1
e(2,Di)=1,i=r+1,1+2

(d) For y € Difi, e(y, D;*') = e(y, Df4,) = 1 and e(y, D{{]) = 0.
(e) For y € DI*1, 2 ‘e Dr,y, e(y, Ditl) = e(2, Difl) = 1.

(f) For y € D13, e(y, Dif1) = e(y, D13) = 1.

(g) e(Di*',Di,,) = 0; 1<i<r+2.

We again apply circuit chasing technique.

Lemma 5.1 Let zg ~ Ty ~ -+ ~ Ta.43:. = Zg be a circuit of length 2r + 3t. i.e., a closed
path and 2,y # i1, 1 =1,..., 2r+ 3t — 1 and Tory3t-1 # 21. Suppose

Try Trtdy-- -y Tryst € [e(T0), Tri1, Zr42y Trids Trt5y vy Tz43t-2y Tridt-1 € L' t1(x0).
Set Dj = Ti(z0) NTj(x1). Then the following hold.
(1) t>1 and z, € DI_y, %41 € DIY, 2,19 € D[] and z,43 € DI,,;.
(2) Ift > 2, then T,14, T,r45 € DiF) and z,.6 € Dr;.

(8) Ift = 2, then the mutual distance of the vertices in the circuit is uniquely determined.
In particular, r = 0 (mod 3), and

(3, Tr43) = O(23,Tri6) =T, O(T3,Tpy7) =7 + 1.

(4) Supposer > 6. Ift =3, then Tri7, Tr4s € DI}, Tryo € DT, and

0(x3, Tr6) = 0(Z3, Tr19) = O(Ts, Trpo) =T, O(Z6, Trys) = (6, Try10) =T + L.

Lemma 5.2 Let yp ~ Y1 ~ Y2 ~ Y3 ~ Ys ~ Ys ~ ys be a path of length 6 such that
- Yie1 # Yip1, 1= 1,...,5. Suppose yo, Yo € I'+(a). Then one of the following holds.

(i) Y3 € Fr-—3(a))
(i1) v1, Y2, Ys, ¥s € Trpa(@), y3 € I'(a) and a(yo) # a(ys),
(iii) y3 € I'ry2(@) and ys € Trya(@) NTrp1(a(yo)), while 0(B(yo),ys) > 7+ 1.

Lemma 5.3 Let {ay,...,ar} =T(a), vy € I'w(a), C =C,. Let S; = {§ € C|a(d) = as}.
Then the following hold.

(1) Foré € S;, II(6)NS;| =1—10;; and S; C Tr_3(B(6)). In particular, 11 is a k-partite
(k — 1)-regular graph.
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(2) Let b = 6, = 8, = 65 be a path in II. If d(éo) # a(b3), then there exists 6, €
H(63), 05 € H(64) such that ’)‘(60) = ’)’(65).

Lemma 5.4 Ifr = 6, then the following holds.
(1) If 6o = 6, = 82 = 63 and (b)) # a(d3), then there ezists 84 such that 6y =~ 64 = §3.
(2) If 6o =~ 61 = by = 63 and a(bp) = a(63), then (&) = B(d3).

(3) If 6p = 6, = 8, = b3 = b4 with a(b) = a(83), (1) = a(bs), then there exists 85 such
that 60 ~ 65 ~ 64.

(4) d(IT) < 3 and if 0 (6, &) = 3, then A(6) = B(¥).

Proof of Theorem 1.5. Suppose r = 3. Let

L(arf)l) = {a}UC’h
Pla,y) = U Tu(o),

s€L(a,y)
A = Aa,y) = P(a,)U L(a,)

In this definition we also write P(A) = P(e,7), and L(A) = L(a,). Clearly L(A) is a
maximal clique in the distance-3-graph of I', and the assertion follows easily from Lemma,
5.3.

Let r = 6 and
L(a,y) = {a}u slg (Ts(a) NT5(6)) U Cy,
P(a’7) = U Pl(a),
d€L(ayy)

A = Ala,7) = P(a,7) U L(a,7)

In this definition we also write P(A) = P(a,7), and L(A) = L(a, 7).
We shall show in the sequel that A is a geodetically closed subgraph isomorphic to

3Mk
(a)-
Let v =7 and {7s,...,%} = [I(7). Thanks to Lemma 4.4,

L(A) = {a} U{B(n),...,B(m)}UC,.

By Lemma 5.4, the distance-3-graph induced on L(A) is of diameter 2 and geodetically
closed.

3(B(7),12) = 6 and
I(y2) \ {1} = {61,..., 61} C Te(B(7)),
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there is a vertex & € II(§;) N I'3(B(v)) for each i. Since the girth of I' is 15, we can
conclude that the valenncy of 3(7) in the distance-3-graph induced on L(A) equals k. By
Lemma 5.4, this means that the valency of vertex in P(A) is 2.

Now we can conclude that A is geodetically closed easily.
This completes the proof of Theorem 1.5.

6 Concluding Remarks

It may be too optimistic to expect a classification of P(r,q)-graphs or the graphs

similar to those discussed in the previous section in the near future. But we believe that
the investigation of such graphs plays a key role to give an absolute bound of the girth of
distance-biregular graphs or distance-regular graphs.

We list several problems, which we want to see solved.

1. Study geodetically closed subgraphs of distance-regular graphs and prove results

corresponding to Proposition 2.3 and Theorem 2.6, especially when a; # 0. See
[20].

. Classify P(r,q)-graphs.

a) For r = 2, it may be possible to improve Lemma 3.4 to have 2¢ as the lower
bound. Then we have d < 5, by Proposition 3.10.

b) For ¢ = 1, the classification implies a classification of distance-biregular graphs
with vertices of valency three, [26]. Hence we can obtain an absolute diameter
bound of distance-regular graphs of order (s, 2), i.e., those with I'(z) ~ 3 - K.
See [17, 3, 15, 31].

. Let I’ be a bipartite biregular graph with a bipartition P U L, or a regular graph

with I' = P = L. For a positive integer ¢ and a positive odd integer r, we call T" a
P(r, q)-graph, if it is a connected graph such that

P_ .. ..—pP— — = -0 P = L _ P
g =-=0 =l,a1=-=04+1=0,¢, =q¢+1 and ¢/, =4,

Classify them. If ¢ = 1, then T' is a thin generalized polygon by a result in [26].

. Study a distance-regular graphs I" with r = r(T'), ¢,41 = ¢42 = 1, and clarify the

correspondence with P(r,q)-graphs. In particular, show r < 6 in Theorem 1.5.

. Let T be a connected graph of diameter d. For a subset I C {1,...,d}, let D
“denote the distance-I-graph, i.e., V(I'D) = V(T'), and a, 8 are adjacent in I'D if

and only if d(a, 8) € I. Study I such that at least one of the connected components
of I'D is distance-regular of diameter at least three. To start with, assume I'D
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is connected. It is not hard to determine parametrical conditions if I' itself is a
diatance-regular graph. In particular, classify distance-regular graphs I' such that
I'® is distance-regular of diameter d(T') # d(I'®) > 3. See Proposition 3.2 and
[27, 29].

6. Give a geometrical classification of Moore graphs. One of the reasons, we could not
obtain the results for P(r,1)-graphs with r > 6, is a lack of such classification. We
believe that this is one of the keys when we develope structure theories of distance-
regular graphs just as the group theoretical proof of Burnside’s p®q® theorem gave
a breakthrough to the classification of finite simple groups.
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