大阪教育大学(数理科学) 鈴木 寛 (Hiroshi SUZUKI)

Abstract

A geodetically closed induced subgraph Δ of a graph Γ is defined to be strongly closed if $\Gamma_i(\alpha) \cap \Gamma_1(\beta)$ stays in Δ for every *i* and $\alpha, \beta \in \Delta$ with $\partial(\alpha, \beta) = i$. We study the existence conditions of strongly closed subgraphs in highly regular graphs such as distance-regular graphs or distance-biregular graphs.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges. Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a graph. For a subset $\Delta \subset V(\Gamma)$, we identify Δ with the induced subgraph on Δ . In particular, $\Gamma = V(\Gamma)$.

For two vertices α , β in Γ , let $\partial_{\Gamma}(\alpha, \beta)$ denote the distance between α and β in Γ , i.e., the length of a shortest path connecting α and β in Γ . We also write $\partial(\alpha, \beta)$, when no confusion occurs. Let

$$\Gamma_i(\alpha) = \{\beta \in \Gamma | \partial(\alpha, \beta) = i\} \text{ and } \Gamma(\alpha) = \Gamma_1(\alpha).$$

For vertices α , β in Γ with $\partial(\alpha, \beta) = i$, let

$$C(\alpha,\beta) = C_i(\alpha,\beta) = \Gamma_{i-1}(\alpha) \cap \Gamma(\beta),$$

$$A(\alpha,\beta) = A_i(\alpha,\beta) = \Gamma_i(\alpha) \cap \Gamma(\beta),$$

$$B(\alpha,\beta) = B_i(\alpha,\beta) = \Gamma_{i+1}(\alpha) \cap \Gamma(\beta), \text{ and}$$

$$G(\alpha,\beta) = \bigcup_{j=0}^{i} \Gamma_j(\alpha) \cap \Gamma_{i-j}(\beta)$$

$$= \{\gamma \in \Gamma | \partial(\alpha,\gamma) + \partial(\gamma,\beta) = \partial(\alpha,\beta) \}$$

 $G(\alpha, \beta)$ is the set of vertices which lie on a geodesic between α and β . For the cardinalities, we use lower case letters, i.e.,

$$c_i(\alpha,\beta) = |C_i(\alpha,\beta)|, a_i(\alpha,\beta) = |A_i(\alpha,\beta)|, \text{ and } b_i(\alpha,\beta) = |B_i(\alpha,\beta)|.$$

We also write $c_i(\alpha)$ [resp. $a_i(\alpha)$, $b_i(\alpha)$] if the number $c_i(\alpha, \beta)$ [resp. $a_i(\alpha, \beta)$, $b_i(\alpha, \beta)$] does not depend on the choice of β under the condition $\partial(\alpha, \beta) = i$, and c_i [resp. a_i, b_i] if the number $c_i(\alpha, \beta)$ [resp. $a_i(\alpha, \beta)$, $b_i(\alpha, \beta)$] does not depend on the choices of α and β A connected graph Γ is said to be distance-regular if c_i , a_i , b_i exist for all i.

A connected bipartite graph Γ with a bipartition $P \cup L$ is said to be *distance-biregular* if $c_i(\alpha)$, $b_i(\alpha)$ exist for all *i* and these numbers depend only on the part α belongs to.

For convienience, if $\Gamma = P \cup L$ is a bipartite graph, we also use notations like c_i^P , b_i^P , c_i^L , b_i^L , when the corresponding numbers depend only on the part the base point belongs to.

A subset Δ of a graph Γ is said to be C_i -closed [resp. A_i -closed] if $C_i(\alpha, \beta) \subset \Delta$ [resp. $A_i(\alpha, \beta) \subset \Delta$] for every pair of vertices α , β in Δ with $\partial_{\Gamma}(\alpha, \beta) = i$.

A subset Δ of Γ is said to be *geodetically closed* if $C(\alpha, \beta) \subset \Delta$ for every pair of vertices α , β in Δ , i.e., Δ is C_i -closed for every *i*. In this case, we have $\partial_{\Gamma}(\alpha, \beta) = \partial_{\Delta}(\alpha, \beta)$ for all α , $\beta \in \Delta$. It is clear that Δ is geodetically closed if and only if $G(\alpha, \beta) \subset \Delta$ for every pair of vertices α , β in Δ .

A subset Δ of Γ is said to be *strongly closed* if $C(\alpha, \beta) \subset \Delta$ and $A(\alpha, \beta) \subset \Delta$ for every pair of vertices α , β in Δ , i.e., Δ is both C_i -closed and A_i -closed for every *i*.

We call the induced subgraph on Δ a geodetically [resp. strongly] closed subgraph when Δ is a geodetically [resp. strongly] closed subset.

By definition, every strongly closed subgraph is geodetically closed, in particular connected if Γ is connected. When Γ is bipartite, every geodetically closed subgraph is strongly closed and we do not need to distinguish these notions.

In most known distance-regular graphs, there are many nontrivial geodetically closed subgraphs and in many cases they are even strongly closed. In some cases we can guarantee the existence of strongly [or geodetically] closed subgraphs if we know a part of the parameters c_i , a_i . See [6, 18, 19, 21, 24], and [5, Section 4.3]. We believe that the investigation of strongly [or geodetically] closed subgraphs is a key in the study of distance-regular graphs.

The first question is the following:

Is a strongly closed subgraph Δ of a distance-regular graph Γ always distance-regular?

By definition, the answer is 'yes' if Δ is regular. On the contrary, we can find counter examples easily. For example, if the girth of Γ is large, we can construct a strongly closed subgraph isomorphic to a tree.

Are there any other types of non-regular strongly closed subgraphs of distance-regular graphs? Theorem 1.1 gives a solution to this problem.

We need a few more definitions to state the theorem.

Let $l(c, a, b) = |\{i|(c_i, a_i, b_i) = (c, a, b)\}|$ and $r(\Gamma) = l(c_1, a_1, b_1)$. Let $d(\Gamma) = \max\{\partial(\alpha, \beta)|\alpha, \beta \in \Gamma\}$, and $k(\alpha) = |\Gamma(\alpha)| = b_0(\alpha, \alpha)$. Let K_{k+1} denote the complete graph of valency k, and M_k denote a Moore graph of valency k, which is known to be of diameter 2 and $k \in \{2, 3, 7, 57\}$.

For a graph Γ , ${}^{t}\Gamma$ denotes a subdivision graph obtained by replacing each edge by a path of length t.

Figure 1.

Theorem 1.1 Let Δ be a strongly closed subgraph of a distance-regular graph Γ . Then one of the following holds.

- (i) Δ is a distance-regular graph,
- (ii) $2 \leq d(\Delta) \leq r(\Gamma)$,
- (iii) Δ is a distance-biregular graph with $c_{2i-1} = c_{2i}$ for all i with $2i \leq d(\Delta)$. In particular, $r(\Gamma) \equiv d(\Delta) \equiv 0 \pmod{2}$; or
- (iv) Δ is a subdivision graph of a complete graph or a Moore graph obtained by replacing each edge by a path of length three, i.e., $\Delta \simeq {}^{3}K_{l+1}$ or ${}^{3}M_{l}$. In particular, $d(\Delta) = r(\Gamma) + 2 = 5$ or 8, and $a_{1} = 0$, $c_{r+1} = c_{r+2} = a_{r+1} = a_{r+2} = 1$, where $r = r(\Gamma)$.

In particular, $(c_{m-1}, a_{m-1}, b_{m-1}) = (c_m, a_m, b_m)$ with $d(\Delta) = m$, except the case (i).

For the corresponding result when Γ is a distance-biregular graph, see the following section.

It follows easily from Theorem 1.1 that if $c_2 \neq 1$, then every strongly closed subgraph in a distance-regular graph is distance-regular. Using this fact, one can prove the following theorem without difficulty, and it is useful when one wants to characterize a distanceregular graph Γ by the structure of its antipode $\Gamma_d(\alpha)$.

Theorem 1.2 ([28]) Let Γ be a distance-regular graph of diameter $d = d(\Gamma)$. If $\Gamma_d(\alpha)$ is strongly closed for some $\alpha \in \Gamma$, then $\Gamma_d(\beta)$ is a clique for every vertex $\beta \in \Gamma$.

The second question is the following:

Can we find parametrical conditions for distance-regular graphs to have strongly closed subgraphs?

In this paper, we shall discuss this problem for the cases (iii) and (iv). Note that if $2 \leq m \leq r(\Gamma)$, then we can find a strongly closed subgraph Δ in Γ of diameter m which is, roughly speaking, isomorphic to a graph obtained by replacing each edge of a tree by a clique.

Case (iii) is treated in Sections 3 and 4. In this case we have $a_i = 0$ for $i \leq d(\Delta)$. Though we discuss in full generality, it seems more natural to state the results on bipartite graphs. The first result in this case is an improvement of a result of Ray-Chaudhuri and Sprague on pseudo-projective incidence systems.

Let $q = p^e$ be a prime power and V be a d-dimensional vector space over GF(q) when $q \neq 1$, and a *d*-element set when q = 1. Let $\begin{bmatrix} V \\ i \end{bmatrix}_{q}$ denote the collection of *i*-dimensional subspaces of V when $q \neq 1$, and the collection of *i*-subsets when q = 1.

Let $J_q(d, s, s - 1)$ denote a bipartite graph with a bipartition

]	$\begin{bmatrix} V \end{bmatrix}$	
$\left\lfloor s-1 \right\rfloor$	q U	s	, q

where $x \in \begin{bmatrix} V \\ s-1 \end{bmatrix}_q$, $l \in \begin{bmatrix} V \\ s \end{bmatrix}_q$ is adjacent if and only if $x \subset l$. $J_q(d, s, s-1)$ is a distance-biregular graph and is called an (s, q, d)-projective incidence structure in [24].

Throughout this paper, we make a convention that $(q^m - 1)/(q - 1) = m$, when q = 1.

Theorem 1.3 Let Γ be a connected bipartite graph of diameter at least five with a bipartition $P \cup L$. Suppose $c_2(x) = 1, c_3(x) = c_4(x) = q + 1$ for every $x \in P$, where q is a fixed positive integer. Then Γ is a biregular graph of valencies $k^P = k(x)$, and $k^L = k(l)$, where $x \in P$, $l \in L$. If $c_5(x)$ exists for every $x \in P$ and does not depend on the choice of $x \in P$, then one of the following holds.

(i)
$$\Gamma \simeq J_q(d, s, s-1)$$
, where $k^L = (q^s - 1)/(q-1)$, $k^P = (q^{d-s+1} - 1)/(q-1)$, or

(ii)
$$d(\Gamma) \leq 7, q \neq 1, k^P, k^L \leq 3q - 1.$$

In particular, q is a power of a prime if $k^P \geq 3q$ or $k^L \geq 3q$.

In [20] Koolen conjectured that under the hypothesis slightly stronger than that of Theorem 1.3, (i) or $d(\Gamma) \leq 4$ holds. Hence Theorem 1.3 gives an affirmative (but not complete) solution to the conjecture. For the detailed information on the case (ii), see Section 3.

Ray-Chaudhuri and Sprague obtained only the case (i) under an additional hypothesis $q^2 + q + 1 \leq k^L$. So in this paper we shall treat the case when the valency is not so large compared with c_3^P , using a result of Terwilliger in [30]. In any case, as we can guess from the conclusion, one of the keys is to show that every pair of vertices of distance four determines a geodetically closed (hence, strongly closed but not regular) subgraph of diameter four assuming that the valency k^L is not so small. See Section 3.

Let Γ be a distance-biregular graph with a bipartition $P \cup L$. Assume r is even and

$$c_r^P = 1 < c_{r+1}^P = c_{r+2}^P.$$

This is one of the typical cases corresponding to Theorem 1.1.(iii). By Theorem 1.3, if r = 2 and $d(\Gamma) \ge 8$, then Γ contains a strongly closed subgraph, which is distancebiregular of diameter four. It seems unlikely to have r > 4 and r = 4 is rare. We do not have a proof, but we can prove that $r \le 4$ if Γ contains a strongly closed subgraph of diameter r + 2. See Section 3. In Section 4, we treat the case $c_{r+1}^P = 2$ with r = 4 and prove the following.

Theorem 1.4 Let Γ be a connected bipartite graph with a bipartition $P \cup L$. Suppose $c_2(x) = c_3(x) = c_4(x) = 1$, $c_5(x) = c_6(x) = 2$ for every $x \in P$. Then Γ is a biregular graph of valencies k^P and k^L . If α , β be vertices in Γ with $\partial(\alpha, \beta) = 5$, then there is a strongly closed subgraph Δ containing α and β isomorphic to ${}^2M_{k^P}$. In particular, $k^P \in \{2, 3, 7, 57\}$, if $d(\Gamma) \geq 5$.

We can show under the hypothesis in Theorem 1.4 that c_i^L exists for i = 1, 2, 3, 4, 5, 6, $c_1^L = \cdots c_4^L = 1$ and $c_5^L = c_6^L = 2$. Hence Theorem 1.4 implies that $k^L \in \{2, 3, 7, 57\}$ as well. When $k^P = 2$ or $k^L = 2$, Γ itself is a subdivision graph of a Moore graph isomorphic to 2M_k for some k. When $k^P = k^L = 3$, Foster graph is an example. We do not know any other examples. It may be possible to classify Γ satisfying the condition of Theorem 1.4.

Case(iv) in Theorem 1.1 is treated in Section 5, under an additional condition $c_{r+3} = 1$.

Theorem 1.5 Let Γ be a distance-regular graph of valency k > 2 satisfying the following.

$$(c_r, a_r, b_r) = (1, 0, k - 1),$$

 $(c_{r+1}, a_{r+1}, b_{r+1}) = (c_{r+2}, a_{r+2}, b_{r+2}) = (1, 1, k - 2),$

 $r \geq 1$ and $c_{r+3} = 1$. Then $r \equiv 0 \pmod{3}$, and the following holds.

(1) If r = 3, then for every α , $\beta \in \Gamma$ with $\partial(\alpha, \beta) = 3$, there is a strongly closed subgraph Δ containing α , β isomorphic to ${}^{3}K_{k+1}$.

(2) If r = 6, then for every α , $\beta \in \Gamma$ with $\partial(\alpha, \beta) = 6$, there is a strongly closed subgraph Δ containing α , β isomorphic to ${}^{3}M_{k}$. In particular $k \in \{3, 7, 57\}$.

The first part $r \equiv 0 \pmod{3}$ is due to Boshier-Nomura [4]. It is known that if $l(1,0,k-1) = r \ge 1$, then $l(1,1,k-2) \le 3$ and if l(1,1,k-2) = 3, then $c_{r+4} > 1$ [4, 13].

It is worth mentioning that both results Theorem 1.4 and 1.5 are related to circuit chasing technique. See [26] for a result related to Theorem 1.4.

We use intersection diagrams as our tools. We refer those who are not familiar with them to [4, 13, 14, 16, 23, 25, 26] and [5, Section 5.10] for example.

For subsets A, B of Γ let e(A, B) denote the number of edges between A and B, and $e(x, A) = e(\{x\}, A)$.

 $\Gamma^{(i)}$ will denote the distance-*i*-graph on Γ , i.e., the graph defined on the vertex set $V(\Gamma)$ of Γ such that α and β are adjacent if and only if $\partial_{\Gamma}(\alpha, \beta) = i$.

We write $\alpha \sim \beta$ when $\alpha \in \Gamma(\beta)$.

2 Strongly Closed Subgraphs

We shall prove Theorem 1.1 and related results in this section. The key of the proof is the determination of graphs such that c_i 's and a_i 's exist. Problems in similar settings are discussed in [12, 30, 20].

Proposition 2.1 Let Γ be a connected bipartite graph with a bipartition $P \cup L$. Suppose c_i^P exists for i = 1, ..., m with $m \leq d(\Gamma)$. If $c_1^P = \cdots = c_r^P = 1 < c_{r+1}^P$, with $r+1 \leq m$, then the following hold.

- (1) If $c_i^P = c_{i-1}^L$ for some $i \le m$, then c_i^L exists and $c_{i-1}^P = c_i^L$. In particular, c_1^L, \ldots, c_r^L exist and $c_1^L = \cdots = c_r^L = 1$.
- (2) If c_1^L, \ldots, c_{2i}^L exist and $2i + 1 \le m$, then c_{2i+1}^L exists and $c_{2j}^P c_{2j+1}^P = c_{2j}^L c_{2j+1}^L$ for all $j \le i$.
- (3) If r is even, then Γ is biregular of valencies b_0^P and b_0^L . Moreover c_{r+1}^L exists and $c_{r+1}^P = c_{r+1}^L$.
- (4) If r is odd, and c_{r+1}^L exists, then Γ is biregular of valencies b_0^P and b_0^L . Moreover,

$$(c_{r+1}^P - 1)(b_0^L - 1) = (c_{r+1}^L - 1)(b_0^P - 1).$$

(5) Suppose Γ is biregular of valencies $k^P = b_0^P$ and $k^L = b_0^L$. Then $|P|k^P = |L|k^L$. Moreover, if c_1^L, \ldots, c_{2i}^L exist with $2i \leq m$, then b_s^P , b_i^L exist for $s \leq m$, $t \leq 2i$ and $b_{2i-1}^P b_{2i}^P = b_{2i-1}^L b_{2i}^L$, for all $j \leq i$.

We can obtain the following theorem as a direct corollary by applying Proposition 2.1 to Δ .

Theorem 2.2 Let Γ be a connected bipartite graph with a bipartition $P \cup L$. Suppose c_i^P , c_i^L exist for i = 1, ..., m. Let $c_1^P = \cdots = c_r^P = 1 < c_{r+1}^P$ with $r+1 \leq m$. If Δ is a geodetically closed subgraph of Γ of diameter m, then Δ is a distance-biregular graph.

Remark. For a diatance-biregular graph $\Gamma = P \cup L$, let $d^P = \max\{\partial(x, \alpha) | \alpha \in \Gamma\}$, where $x \in P$, and $d^L = \max\{\partial(l, \alpha) | \alpha \in \Gamma\}$, where $l \in L$. In Theorem 2.2, if $d^{P \cap \Delta} \ge d^{L \cap \Delta}$, then $k^{P \cap \Delta} = c_m^P$. But we cannot determine the other valency when $d^{P \cap \Delta} > d^{L \cap \Delta}$.

Proposition 2.3 Let Γ be a connected graph. Suppose c_i exists for $i = 1, \ldots, m$ with $m \leq d(\Gamma)$. Suppose $c_1 = \cdots = c_r = 1, a_1, \ldots, a_r$ exist and $a_1 = \cdots = a_r$ and either $c_{r+1} > 1$ or $c_{r+1} = 1$ and a_{r+1} exists with $a_{r+1} \neq a_1$, where $2 \leq r+1 \leq m$. Then one of the following holds.

- (i) Γ is regular.
- (ii) Γ is a bipartite biregular graph such that $r \equiv 0 \pmod{2}$ and $c_{2i-1} = c_{2i}$ for all i with $2i \leq m$.
- (iii) $\Gamma \simeq {}^{3}K_{k+1}$ or ${}^{3}M_{k}$, where k is the largest valency of a vertex in Γ . In particular, r = 3 or 6.

Lemma 2.4 Let Γ be a connected graph of diameter $d = d(\Gamma)$. Suppose c_d , c_{d-1} , a_d , a_{d-1} exist. Then Γ is regular of valency $c_d + a_d$ if and only if $(c_{d-1}, a_{d-1}) \neq (c_d, a_d)$.

Lemma 2.5 Let Γ be a distance-regular graph of diameter $d = d(\Gamma)$ and m < d. Suppose Γ has a strongly closed subgraph of diameter m containing α and β for every pair of vertices α , β with $\partial(\alpha, \beta) = m$. Then for all γ , $\delta \in \Gamma$ with $\partial(\gamma, \delta) \leq m + 1$, $C(\gamma, \delta)$ is a coclique.

Now we prove Theorem 1.1 under weaker conditions.

Theorem 2.6 Let Γ be a connected graph of diameter $d = d(\Gamma)$. Suppose c_i 's and a_i 's exist for all i = 1, ..., m, where $m \leq d$. Let

 $r = r(\Gamma) = \max\{i | (c_1, a_1) = (c_2, a_2) = \dots = (c_i, a_i)\}.$

If Γ contains a strongly closed subgraph Δ of diameter m, then one of the following holds.

- (i) Δ is a distance-regular graph,
- (ii) $2 \le m \le r$,
- (iii) Δ is a distance-biregular graph and that $r \equiv m \equiv 0 \pmod{2}$ and $c_{2i-1} = c_{2i}$ for all *i* with $2i \leq m$, or
- (iv) $\Delta \simeq {}^{3}K_{l+1}$ or ${}^{3}M_{l}$ and m = r+2 = 5 or 8, $a_{1} = \cdots = a_{r} = 0$, $c_{1} = \cdots = c_{r+2} = a_{r+1} = a_{r+2} = 1$.

Proof. Since Δ is a strongly closed subgraph of Γ , we can apply Proposition 2.3 to the subgraph Δ . If $r \geq m$, then (i) or (ii) holds.

Assume $r + 1 \leq m$. Then Δ is one of the types in Proposition 2.3. If Δ is regular, then Δ is distance-regular as c_i 's and a_i 's exist for $i \leq d(\Delta) = m$. Suppose Δ is not regular. Since Δ is strongly closed, $k(\alpha) = k(\beta)$ if $\alpha, \beta \in \Delta$ and $\partial(\alpha, \beta) = m$. So if Δ is a bipartite biregular graph, Δ is distance-biregular and $m \equiv 0 \pmod{2}$. Hence we have (iii). Suppose $\Delta \simeq {}^{3}K_{l+1}$ or ${}^{3}M_{l}$. Then r = 3 or 6 and m = r + 2, $c_1 = \cdots = c_m = 1$, $a_1 = \cdots = a_r = 0$, $a_{r+1} = a_{r+2} = 1$ easily follow from the structure of Δ .

Lemma 2.7 Let Γ be a distance-biregular graph with a bipartition $P \cup L$. Suppose k^P , $k^L \geq 2$. Let $d = d(\Gamma)$,

$$d^{P} = \max\{\partial(x,\alpha) | x \in P, \ \alpha \in \Gamma\}, \quad d^{L} = \max\{\partial(l,\alpha) | l \in L, \ \alpha \in \Gamma\},$$

and $r(\Gamma) = \max\{i|c_i^P = 1\}$. Then $r(\Gamma) = \max\{i|c_i^L = 1\}$ and the following are equivalent.

(i) $r(\Gamma) + 2 = d^P + 1 = d^L = d$.

(ii) $d = d^{L} = r(\Gamma) + 2$, $c_{d-1}^{L} = c_{d}^{L}$ with d even.

In this case Γ is a Moore geometry and d = 4 or 6. If d = 4, Γ is nothing but a nonsymmetric 2-($|P|, k^L, 1$) design. If d = 6, then the incidence graph on P is a strongly regular graph with parameters $(v, k, \lambda, \mu) = (|P|, k^P(k^L - 1), k^L - 2, 1)$.

For the diameter bound of Moore geometries, see [8, 7, 10, 11] and [5, Section 6.8]

Remark. In the case Theorem 2.6.(iii), the smallest possible value for m is r + 2 if the minimum valency is at least 2. By the previous lemma, we have r = 2 or 4. We treat these cases in the following sections. But it may be possible to give a bound of $r = r(\Gamma)$ of distance-regular graphs satisfying $a_1 = 0$, $c_{r+1} = c_{r+2}$ with r even, by showing the existence of geodetically closed subgraphs of diameter r + 2, i.e., graphs discussed in the previous lemma.

3 A Refinement of a Theorem of Ray-Chaudhuri and Sprague

In [24], Ray-Chaudhuri and Sprague proved the following theorem in the context of incidence systems.

Theorem 3.1 Let Γ be a connected bipartite graph with a bipartition $P \cup L$. For some positive integer q, suppose $c_2(x) = 1$, $c_3(x) = c_4(x) = q + 1$ for every $x \in P$. Then Γ is

biregular of valencies k^P and k^L . If $k^P > q+1$ and $k^L \ge q^2 + q + 1$, then $\Gamma \simeq J_q(d, s, s-1)$, where s and d are real numbers defined by

$$k^{L} = (q^{s} - 1)/(q - 1), \quad k^{P} = (q^{d-s+1} - 1)/(q - 1).$$

In particular, q is a power of a prime number and both s and d are integers.

The first part of this section is the following: By reviewing the proof of Ray-Chaudhuri and Sprague, we show that we can conclude either $d(\Gamma) \leq 4$ or $\Gamma \simeq J_q(d, s, s - 1)$ if we can construct a geodetically closed subgraph of diameter 4 having vertices of valency q+1and that such a subgraph exists if one of the valencies k^P or k^L is at least 3q. Roughly speaking, we want to decrease the lower bound of the condition on the valencies in the hypothesis from $q^2 + q + 1$ to 3q.

Before we start, we prepare a proposition.

Proposition 3.2 Let Γ be a connected regular graph of valency k and diameter d. Suppose the distance-2-graph $\Delta = \Gamma^{(2)}$ is distance-regular of diameter \tilde{d} . If each pair of vertices α , β at distance three in Γ is contained in a shortest circuit of odd length 2m + 1, then $\tilde{d} = m$ and a connected component of $\Delta_{\tilde{d}}(\alpha)$ is a clique of size k. Moreover, $\Delta_{\tilde{d}}(\alpha)$ is connected if and only if $d = \tilde{d}$ and Γ is a generalized Odd graph, i.e., a distance-regular graph such that $a_i = 0$, $i = 1, \ldots, d-1$ and $a_d \neq 0$.

Proof. Firstly, we have $a_1 = \cdots = a_{m-1} = 0$, $m \ge 3$. And we have the following.

$$\Delta_1(\alpha) = \Gamma_2(\alpha), \ \Delta_{m-1}(\alpha) \supset \Gamma_3(\alpha), \ \Delta_m(\alpha) \supset \Gamma_1(\alpha).$$

Let $\beta \in \Gamma_1(\alpha)$. Then $\Delta_{m+1}(\alpha) \cap \Delta_1(\beta) = \emptyset$, $\tilde{d} = m$. Moreover,

$$\Gamma_1(\alpha) \setminus \{\beta\} \subset \Delta_1(\beta) \cap \Delta_{\tilde{d}}(\alpha) \subset \Gamma_1(\alpha) \setminus \{\beta\}.$$

Hence $\tilde{a}_{\tilde{d}} = k - 1$ and a connected component of $\Delta_{\tilde{d}}(\alpha)$ containing β is a clique of size k.

If $\Delta_{\tilde{d}}(\alpha)$ is connected, as Δ is distance-regular, $\Delta_{\tilde{d}}(\gamma) = \Gamma_1(\gamma)$ is a clique of size k in Δ for every $\gamma \in \Gamma$. Hence Γ is a generalized Odd graph. See [1], [2, Section III.4], and [5, Section 4.2].

In the following we also treat the case when Γ is a k-regular with the same conditions on c_i 's as those in Theorem 3.1.

Let q be a positive integer and r a positive even integer. A connected graph Γ is said to be a P(r,q)-graph if c_i , a_j exist for $1 \leq i \leq r+2$, $1 \leq j \leq r+1$ and they satisfy

 $c_1 = \cdots = c_r = 1, \ a_1 = \cdots = a_{r+1} = 0, \ c_{r+1} = c_{r+2} = q+1.$

Lemma 3.3 Let q be a positive integer and r an even positive integer. The following hold.

- (1) Let Γ be a connected bipartite graph of diameter at least r+1 with a bipartition P∪L. If c_i^P exists for 1 ≤ i ≤ r + 2, and c₁^P = ··· c_r^P = 1, c_{r+1}^P = c_{r+2}^P = q + 1, then Γ is a P(r,q)-graph.
- (2) Let Γ be a P(r,q)-graph. Then one of the following holds.
 - (i) Γ is a bipartite biregular (possibly regular) graph; or
 - (ii) Γ is a nonbipartite regular graph, i.e., a regular graph containing a circuit of odd length.

Proof. (1) This follows from Proposition 2.1.(1), (2).(2) This follows from Proposition 2.3.

Let Γ be a P(r, q)-graph of diameter at least r + 1. According to the previous lemma, there are two possibilities.

- (i) Γ is a bipartite graph with a bipartition $P \cup L$ and biregular of valencies k^P and k^L .
- (ii) Γ is a nonbipartite graph and regular of valency k. In this case, let $\Gamma = P = L$.

We give a list of known P(r,q)-graphs, which is not a polygon. r = 2 for the first three examples and r = 4 for the rest.

1. $J_q(d, s, s - 1)$.

- 2. O_k , the Odd graph of valency k, (nonbipartite).
- 3. $2M_7$, the doubled Hoffman-Singleton graph, (d = 5, q = 5).
- 4. ${}^{2}M_{k}, k = 3, 7, (d = 6, q = 1).$
- 5. Foster graph, that is the three fold cover of the incidence graph of GQ(2,2), the generalized quadrangle of order (2,2), (d=8, q=1).

In this section we study P(2,q)-graphs. Let Γ be a P(2,q)-graph of diameter at least five.

For α , $\beta \in \Gamma$ with $\partial(\alpha, \beta) = 2$ and $\gamma \in C(\alpha, \beta)$, let

$$T(\alpha,\beta)=\Gamma_2(\alpha)\cap\Gamma_2(\beta)\cap\Gamma_3(\gamma).$$

We say Γ satisfies the condition $\#^{L}$ [resp. $\#^{P}$], if δ , $\eta \in T(\alpha, \beta)$ implies $\partial(\delta, \eta) \leq 2$ for all $\alpha, \beta \in L$ [resp. P] with $\partial(\alpha, \beta) = 2$.

The condition above is called 'Pasch's axiom' in [24].

Lemma 3.4 (1) If $k^L \ge 3q$ or q = 1, then Γ satisfies the condition $\#^L$.

(2) If $k^P \ge 3q$ or q = 1, then Γ satisfies the condition $\#^P$.

Proof. By symmetry it suffices to prove (1). Let $m_1, m_2 \in L$ with $\partial(m_1, m_2) = 2$ and $\{x\} = C(m_1, m_2)$. Let $T = T(m_1, m_2)$. If $l \in T$, then $C(m_2, l) \subset \Gamma_3(m_1)$. Hence

$$|T| = |T(m_1, m_2)| = b_2^L(c_3^L - 1) = (k^L - 1)q.$$

Suppose the condition $\#^L$ fails. Then there exist $l, l' \in T$ with $\partial(l, l') = 4$. Let $\{x_i\} = C(l, m_i), \{x'_i\} = C(l', m_i), i = 1, 2$. Since $c_3 = c_4 = q + 1$, for i, j = 1, 2,

$$x'_1 \in C(l, l') = C(x_j, l'), \text{ or } \partial(x'_i, x_j) = 2.$$

So we have that

$$x'_1 \in C(x_2, m_1) \setminus \{x, x_1\}, \ x'_2 \in C(x_1, m_2) \setminus \{x, x_2\}.$$

Hence $|T \cap \Gamma_4(l)| \leq (q-1)^2$. Similarly, $|T \cap \Gamma_4(l')| \leq (q-1)^2$. In particular, $q \neq 1$. Thus

$$\begin{aligned} (q+1)^2 &= |\Gamma_2(l) \cap \Gamma_2(l')| \\ &\geq |T \cap \Gamma_2(l) \cap \Gamma_2(l')| + |\{m_1, m_2\}| \\ &\geq |T| + |\{m_1, m_2\}| - |T \cap \Gamma_4(l)| - |T \cap \Gamma_4(l')| \\ &\geq (k^L - 1)q + 2 - 2(q - 1)^2. \end{aligned}$$

So $3q^2 - 2q + 1 \ge (k^L - 1)q$ or $k^L \le 3q - 1 + \frac{1}{q}$. Since $q \ne 1, k^L \le 3q - 1$, as desired.

For m_1 , $m_2 \in \Gamma_2(l)$ with $m_1 \neq m_2$, we write $m_1 \approx m_2$ if $\partial(m_1, m_2) = 2$ and $C(m_1, m_2) \subset \Gamma_3(l)$, or equivalently if $m_2 \in T(l, m_1)$. Since the relation \approx is symmetric, it defines a graph on $\Gamma_2(l)$.

Let $L_1(l,m)$ be a connected component in $\Gamma_2(l)$ containing m with respect to \approx . Let

$$L(l,m) = \{l\} \cup L_1(l,m), \ P(l,m) = \bigcup_{n \in L(l,m)} \Gamma(n), \ \Delta(l,m) = P(l,m) \cup L(l,m)$$

Lemma 3.5 Suppose Γ satisfies the condition $\#^L$. Then for $l, m \in L$ with $\partial(l, m) = 2$, $\Delta = \Delta(l, m)$ is a geodetically closed subgraph of Γ of diameter 4.

Proof. Since Γ satisfies the condition $\#^L$, we have $\partial(m_1, m_2) \leq 2$, if $m_1, m_2 \in T(l, m)$. Hence we can prove the assertion without difficulty.

Let $D = \{\Delta(l,m) | \partial(l,m) = 2, l, m \in L\}.$

Corollary 3.6 If Γ satisfies the condition $\#^L$, then the following hold.

(1) L(l,m) is a maximal clique in $\Gamma^{(2)}$.

- (2) If $l, m \in \Delta_1 \cap \Delta_2 \cap L$, then $\Delta_1 = \Delta_2$ or l = m.
- (3) Δ is a bipartite biregular graph of valencies q + 1 on P(l, m) and k^L on L(l, m).
- (4) $|L(l,m)| = qk^L + 1.$
- (5) $|\{\Delta \in D | l \in \Delta\}| = (k^P 1)/q$ for every $l \in L$.

Let Π be a bipartite graph on $L \cup D$ with adjacency defined as follows: For $l \in L$, $\Delta \in D$, $l \in \Delta$ and the valency of l in Δ is k^{L} . Note that $k^{L} > q + 1$ as $d(\Gamma) \geq 5$.

Lemma 3.7 If Γ satisfies the condition $\#^L$, then Π is a P(2,q)-graph of valencies $(k^P - 1)/q$ on L and $qk^L + 1$ on D.

Proposition 3.8 Let Γ be a P(2, q)-graph of diameter at least five satisfying the condition $\#^{L}$. Then one of the following holds.

- (i) $\Gamma \simeq J_q(d, s, s-1)$, where $k^L = (q^s 1)/(q-1)$, $k^P = (q^{d-s+1} 1)/(q-1)$, or
- (ii) Γ is a regular nonbipartite graph of valency k and Γ⁽²⁾ is isomorphic to a connected component of the distance-2-graph of J_q(2s 3, s 2, s 3), where k = (q^{s-1} 1)/(q 1). Moreover, if each pair of vertices of Γ at distance three is contained in a shortest circuit of odd length, then q = 1 and Γ is isomorphic to an Odd graph.

Proof. Firstly, note that $J_q(d, s, s-1) \simeq J_q(d, d-s+1, d-s)$, if we take the dual interchanging P and L.

Suppose Γ is bipartite. Since $d(\Gamma) \ge 5$, k^P , $k^L > q + 1$. By Theorem 3.1, (i) holds if $k^P \ge q^2 + q + 1$, using the first remark above.

Assume $k^P < q^2 + q + 1$. Since Γ satisfies the condition $\#^L$, Π is a P(2,q)-graph of valencies $(k^P - 1)/q$ on L. Since $(k^P - 1)/q < q + 1$, $\partial_{\Pi}(l,m) \leq 2$ for all $l, m \in L$. Hence $\partial_{\Gamma}(l,m) \leq 2$ for all $l, m \in L$, which is not the case.

Suppose Γ is not bipartite. By the previous lemma, Π is a bipartite P(2, q)-graph of valencies (k-1)/q on L and qk+1 on D.

Suppose $(k-1)/q \le q+1$. Since $d(\Gamma) \ge 5$, there are vertices l_0, l_1, l_2, l_3 such that

$$\partial(l_0, l_1) = \partial(l_1, l_2) = \partial(l_2, l_3) = 2, \quad \partial(l_0, l_2) = 4.$$

Since $|\Pi_3(l_0) \cap \Pi(l_2)| = q + 1$, (k-1)/q = q + 1 and $\Delta(l_2, l_3) \in \Pi_3(l_0) \cap \Pi(l_2)$. So there is a vertex $l \in \Delta(l_2, l_3)$ such that $\partial(l, l_3) = \partial(l_0, l) = 2$. Hence $\partial(l_3, l_0) \leq 4$. In particular $d(\Gamma) = 5$, a_5 exists and $a_5 = 0$. Since Γ is not bipartite, we may assume that $\partial(l_0, l_3) = 3$. Then $|\Gamma_2(l_3) \cap \Gamma_2(l_0)| = 0$. This is a contradiction.

Thus (k-1)/q > q+1, $qk+1 > q^2+q+1$. Hence by Theorem 3.1, $\Pi \simeq J_q(d, s, s-1)$, where $qk+1 = (q^s-1)/(q-1)$, $(k-1)/q = (q^{d-s+1}-1)/(q-1)$. Therefore $k = (q^{s-1} - 1)/(q - 1)$ and d = 2s - 3. Since $\partial_{\Gamma}(l, m) = 2$ if and only if $\partial_{\Pi}(l, m) = 2$, $\Gamma^{(2)}$ is isomorphic to a connected component of the distance-2-graph of Π on L.

If Γ satisfies the additional condition in (ii), we can apply Proposition 2.2. If $q \neq 1$, then $\Gamma^{(2)}$ is a Grassman graph, which is also called a *q*-analogue of Johnson graph. But in this case it is easy to check that the antipode is connected, while it is not a clique. Hence q = 1 and $\Gamma^{(2)} \simeq J(2s - 3, s - 2)$. Thus Γ is an Odd graph.

In the following, we investigate the case when Γ does not satisfy $\#^L$. By symmetry proved in Lemma 3.3, we may assume that Γ does not satisfy $\#^P$ either. Hence by Lemma 3.4, we need only to consider the case k^P , $k^L \leq 3q - 1$.

The key to analize this case is the following proposition proved by Terwilliger. We kept the notations in [30], where M_i is no longer a Moore graph.

Proposition 3.9 ([30]) Let integers c, p and s all be at least 2. Suppose the vertices of some graph Γ can be partitioned into s + 1 disjoint sets $V\Gamma = \bigcup_{i=0}^{s} M_i$, where for any $u, v \in V\Gamma, u \in M_i, v \in M_j$ and $(u, v) \in E\Gamma$ implies $|i - j| \leq 1$. For i = 1 or s, let l_i and L_i denote the minimum and maximum number of vertices in M_{i-1} any vertex in M_i is adjacent to, and for i = 0 or s - 1, let r_i and R_i denote the minimum and maximum number of vertices in M_{i+1} any vertex in M_i is adjacent to. Also assume

- (i) $\partial(u, v) = s$ for some $u \in M_0$ and $v \in M_s$,
- (ii) for integers $0 \le i$, $j \le s$ and for any $u \in M_i$ and $v \in M_j$, there are either c or 0 paths of length s connecting them if |j i| = s, and either 0 or 1 paths of length |j i| connecting them if $1 \le |j i| \le s 1$, and
- (iii) for any $u, v \in V\Gamma$ with $u \in M_1$, $v \in M_{s-1}$, and $\partial(u, v) > s 2$, there are at most p paths $\{u = v_0, v_1, \ldots, v_{s-1}, v_s = v\}$, where either $v_1 \in M_0$ or $v_{s-1} \in M_s$.

Then

$$\frac{p}{c-1} \ge \frac{r_{s-1}}{R_0 - 1} + \frac{l_1}{L_s - 1}.$$

Proposition 3.10 Let Γ be a P(2,q)-graph of diameter at least five. If c_5^P exists, then c_5 exists, i.e., c_5^L exists and $c_5^P = c_5^L$, $c_5 > q + 1$ and the following hold.

- (1) If $d(\Gamma) \ge 7$, then $c_5 \ge 2q + 1$.
- (2) If α , β , $\gamma \in \Gamma$ with $\partial(\alpha, \beta) = 8$, $\partial(\alpha, \gamma) = 3$, $\partial(\gamma, \beta) = 5$, then $k(\gamma) \ge 3q + 2$.
- (3) For $\alpha \in \Gamma$ let $j = k(\alpha) c_5$. If $a_4 = 0$, then

$$k(\alpha) \ge \frac{2q+j+3+\sqrt{4jq^2+(j-1)^2}}{2}.$$

In particular, if $j \ge 4$, then $k(\alpha) \ge 3q + 4$.

Proof. It follows from Proposition 2.1.(2) that c_5 exists. (1) Let $\alpha, \beta \in \Gamma$ with $\partial(\alpha, \beta) = 7$. Let

$$M_i = \Gamma_{2+i}(\alpha) \cap \Gamma_{5-i}(\beta), \ i = 0, \ 1, \ 2, \ 3.$$

Apply Proposition 3.9.

(2) Since $d \ge 8$, we can apply (1). We have

$$k(\gamma) \ge c_3(\alpha, \gamma) + c_5(\beta, \gamma) \ge 3q + 2.$$

(3) Let $\alpha \in \Gamma$ and $M_i = \Gamma_{i+2}(\alpha)$, i = 0, 1, 2, 3. Apply Proposition 3.8.

We now summarize our results in this section, from which we have Theorem 1.3 as a corollary.

Theorem 3.11 Let Γ be a P(2,q)-graph of diameter at least five. Suppose c_5 exists. Then Γ is a bipartite biregular graph of valencies k^P and k^L , or a regular graph of valency $k = k^P = k^L$ and one of the following holds.

- (i) $\Gamma \simeq J_q(d, s, s-1)$, where $k^L = (q^s 1)/(q-1)$, $k^P = (q^{d-s+1} 1)/(q-1)$,
- (ii) Γ is a regular nonbipartite graph of valency k and the distance-2-graph $\Gamma^{(2)}$ is isomorphic to a connected component of the distance-2-graph of $J_q(2s-3, s-2, s-3)$, where $k = (q^{s-1}-1)/(q-1)$. Moreover, if each pair of vertices of Γ at distance three is contained in a shortest circuit of odd length, then q = 1 and Γ is isomorphic to an Odd graph; or
- (iii) $d(\Gamma) \leq 7$ and k^P , $k^L \leq 3q 1$, $q \neq 1$. Moreover if $a_4 = 0$, then Γ is bipartite and $k^P c_5$, $k^L c_5 \leq 3$. In particular, if Γ is not bipartite and a_4 exists, then $d(\Gamma) \leq 6$.

Corollary 3.12 Let Γ be a distance-regular graph of valency k. Suppose $c_2 = 1$, $c_3 = c_4 = q + 1$ and $a_1 = a_2 = a_3 = 0$ for some positive integer q. Then one of the following holds.

- (i) $\Gamma \simeq J_q(2s-1, s-2, s-3)$, where $k = (q^s 1)/(q-1)$.
- (ii) $\Gamma \simeq O_k$, an Odd graph of valency k; or

(iii) $d(\Gamma) \leq 7$, and the equality holds only if Γ is bipartite.

Koolen [20] conjectured the following:

If Γ is a distance-biregular graph of diameter at least 5 such that c_i exists for all *i*, and $c_2 = 1$, $c_3 = c_4 > 2$, then $\Gamma \simeq J_q(d, s, s - 1)$.

Our results asserts that $d(\Gamma) \leq 7$ and the parameters are restricted very much. It is known that if $d(\Gamma) = 5$ or 7, then Γ is distance-regular, under the assumption of the conjecture above. See [9, 20].

We also note that for $d(\Gamma) = 5$, the doubled Moore graph satisfy the hypothesis with $c_5 = q+2$. Moreover if it's valency is not 3, say 7, then it does not come from $J_q(d, s, s-1)$. So this gives a counter example to the conjecture above.

4 P(r, 1)-graphs

According to the remark following Lemma 3.3, a P(r, 1)-graph is a connected graph Γ , which is either a bipartite biregular graph with a bipartition $P \cup L$ or a nonbipartite regular graph such that

$$c_1 = \cdots = c_r = 1, \ a_1 = \cdots = a_{r+1} = 0, \ c_{r+1} = c_{r+2} = 2,$$

where r is an even positive integer. In this section we study P(r, 1)-graphs and we show the following when r = 4. We do not know any P(r, 1)-graphs with r > 4.

Theorem 4.1 Let Γ be a P(4,1)-graph of diameter at least four and α , $\gamma \in \Gamma$ with $\partial(\alpha,\gamma) = 4$. Then there is a geodetically closed subgraph Δ containing α , γ isomorphic to ${}^{2}M_{k(\alpha)}$. Here $k(\alpha)$ denotes the valency of α in Γ . In particular, $k(\alpha) \in \{2,3,7,57\}$.

Let Γ be a P(r, 1)-graph with $r \geq 4$.

Fix a vertex $\alpha \in \Gamma$. For γ , $\delta \in \Gamma_r(\alpha)$, we write $\gamma \approx \delta$ if $\partial(\gamma, \delta) = 2$ and $C(\gamma, \delta) \subset \Gamma_{r+1}(\alpha)$. For $\gamma \in \Gamma_r(\alpha)$, let $C = C_{\gamma}$ be the connected component in $\Gamma_r(\alpha)$ containing γ with respect to the relation \approx . Let $\Pi = \Pi_{\gamma}$ be a graph on C_{γ} defined by the relation \approx . For γ , $\delta \in \Gamma$ with $\partial(\gamma, \delta) = r$, and $0 \leq i \leq r$, let

$$\{g_i(\gamma,\delta)\} = \Gamma_{r-i}(\gamma) \cap \Gamma_i(\delta).$$

For $\delta \in \Gamma_r(\alpha)$, let

$$\alpha(\delta) = g_1(\delta, \alpha), \ \beta(\delta) = g_2(\delta, \alpha), \ \text{and} \ \gamma(\delta) = g_4(\delta, \alpha).$$

Firstly we note that the intersection diagram with respect to x, l with $\partial(x, l) = 1$ has the following shape, where $D_j^i = \Gamma_i(x) \cap \Gamma_j(l)$. See the properties (a) \sim (e) below.

Figure 2.

- (a) $D_i^i = \emptyset$, for $1 \le i \le r+1$.
- (b) For $y \in D_i^{i+1}$, $z \in D_{i+1}^i$, $e(y, D_{i-1}^i) = e(z, D_i^{i-1}) = 1, 1 \le i \le r$.
- (c) For $y \in D_{r+1}^{r+2}$, $z \in D_{r+2}^{r+1}$, $e(y, D_r^{r+1}) = e(z, D_{r+1}^r) = 2$.
- (d) For $y \in D_r^{r+1}$, $z \in D_{r+1}^r$, $e(y, D_{r+1}^r) = e(z, D_r^{r+1}) = 1$.
- (e) $e(D_i^{i+1}, D_{i+1}^i) = 0, 1 \le i \le r-1 \text{ and } i = r+1.$

The following two lemmas are related to circuit chasing technique. See [4, 13, 14] and [5, Section 5.10].

Lemma 4.2 Let $x_0 \sim x_1 \sim \cdots \sim x_{2r+2t} = x_0$ be a circuit of length 2r + 2t. i.e., a closed path and $x_{i-1} \neq x_{i+1}$, $i = 1, \ldots, 2r + 2t - 1$ and $x_{2r+2t-1} \neq x_1$. Suppose

 $x_r, x_{r+2}, \ldots, x_{r+2t} \in \Gamma_r(x_0), x_{r+1}, x_{r+3}, \ldots, x_{r+2t-1} \in \Gamma_{r+1}(x_0).$

Set $D_i^i = \Gamma_i(x_0) \cap \Gamma_j(x_1)$. Then the following hold.

- (1) $t \geq 1$ and $x_r \in D_{r-1}^r$, $x_{r+1} \in D_r^{r+1}$, $x_{r+2} \in D_{r+1}^r$.
- (2) If $t \ge 2$, then $x_{r+3} \in D_{r+2}^{r+1}$ and $x_{r+4} \in D_{r+1}^{r}$.
- (3) If t = 2, then the mutual distance of the vertices in the circuit is uniquely determined. In particular,

$$\partial(x_2, x_{r+2}) = \partial(x_2, x_{r+4}) = r, \ \partial(x_2, x_{r+5}) = r+1.$$

(4) If t = 3, then $x_{r+5} \in D_{r+2}^{r+1}$, $x_{r+6} \in D_{r+1}^{r}$ and

$$\partial(x_2, x_{r+4}) = \partial(x_2, x_{r+6}) = \partial(x_4, x_{r+6}) = r, \ \partial(x_4, x_{r+5}) = \partial(x_4, x_{r+7}) = r+1.$$

Proof. In the following, we use (a) \sim (e) to determine the locations of x_j 's in the diagram with respect to an edge $x_{i-1} \sim x_i$, using the information on the distances from x_{i-1} .

(1) Since $x_{i-1} \neq x_{i+1}$, for all *i*, and $c_1 = \cdots = c_r = 1$, $t \ge 1$. It is clear that $x_r \in D_{r-1}^r$. Since $x_{r+1} \in \Gamma_{r+1}(x_0) \cap \Gamma(x_r)$, $x_{r+1} \in D_r^{r+1}$. $x_r \neq x_{r+2} \in \Gamma_r(x_0) \cap \Gamma(x_{r+1})$ implies that $x_{r+2} \in D_{r+1}^r$.

(2) Since $x_{r+2} \in D_{r+1}^r$ and $e(x_{r+2}, D_r^{r+1}) = 1$ with $x_{r+1} \in D_r^{r+1} \cap \Gamma(x_{r+2}), x_{r+3} \in D_{r+2}^{r+1}, x_{r+4} \in D_{r+1}^r$.

(3) It is easy to determine the mutual distances as follows.

	x_{r}	x_{r+1}	x_{r+2}	x_{r+3}	x_{r+4}	x_{r+5}
x_0	r	r+1	r	r+1	r	r-1
x_1	r-1	r	r+1	r+2	r+1	r
x_2	r-2	r-1	r	r+1	r	r+1

116

Now the distance pattern with respect to x_2 is the same as that with respect to x_0 , the mutual distance of the vertices in the circuit is uniquely determined and the assertion follows.

(4) We do the same as in (3).

 x_r $x_{r+2} \quad x_{r+3}$ x_{r+4} x_{r+5} x_{r+1} x_{r+6} x_{r+7} x_{r+8} x_{r+9} r+1r+1r-1 r-2 r-3r+1r r r x_0 r+1 r+2 r+1 r+2 r+1r-1rr r-1 r-2 x_1 r+1r+1r-1r-2 r-1r r r r+1 x_2 r r-3 r-2 r-1 rr+1 r+2 r+1 r+2 r+1r x_3 r - 4 r - 3 r - 2 r - 1r r+1r+1r r r+1 $x_{\mathbf{A}}$

Note that since $x_{r+7} \in D_r^{r-1}$, x_{r+5} cannot be in D_r^{r+1} .

Lemma 4.3 Let $y_0 \sim y_1 \sim y_2 \sim y_3 \sim y_4$ be a path of length four such that $y_{i-1} \neq y_{i+1}$, i = 1, ..., 3. Suppose $y_0, y_4 \in \Gamma_r(\alpha)$. Then one of the following holds.

(i) $y_2 \in \Gamma_{r-2}(\alpha)$,

(ii) $y_1 \in \Gamma_{r-1}(\alpha)$ or $y_3 \in \Gamma_{r-1}(\alpha)$ and $\alpha(y_0) \neq \alpha(y_4)$,

(iii) $y_1, y_3 \in \Gamma_{r+1}(\alpha), y_2 \in \Gamma_r(\alpha) \text{ and } \alpha(y_0) \neq \alpha(y_4),$

- (iv) $y_2 \in \Gamma_{r+2}(\alpha)$ and $\alpha(y_0) = \alpha(y_4)$, while $\beta(y_0) \neq \beta(y_4)$, or
- (v) $y_2 \in \Gamma_{r+2}(\alpha)$ and $\alpha(y_0) \neq \alpha(y_4)$, $\partial(\beta(y_0), y_4) = r+2$.

By Lemma 4.2 and 4.3, we can prove the following concerning the connected component in $\Gamma_r(\alpha)$ with respect to \approx .

Lemma 4.4 Let $\{\alpha_1, \ldots, \alpha_{k(\alpha)}\} = \Gamma(\alpha), \ \gamma \in \Gamma_r(\alpha), \ C = C_{\gamma}$. Let $S_i = \{\delta \in C | \alpha(\delta) = \alpha_i\}$. Then the following hold.

- (1) For $\delta \in S_i$, $|\Pi(\delta) \cap S_j| = 1 \delta_{i,j}$ and $S_i \subset \Gamma_{r-2}(\beta(\delta))$. In particular, Π is a $k(\alpha)$ -partite $(k(\alpha) 1)$ -regular graph.
- (2) Let $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ be a path in Π . If $\alpha(\delta_0) \neq \alpha(\delta_3)$, then there exists $\delta_4 \in \Pi(\delta_3)$, $\delta_5 \in \Pi(\delta_4)$ such that $\gamma(\delta_0) = \gamma(\delta_5)$.

If r = 4, $\gamma(\delta) = \delta$ for every $\delta \in \Pi$. So by Lemma 4.4, we have the following.

Lemma 4.5 If r = 4, then the following holds.

(1) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ and $\alpha(\delta_0) \neq \alpha(\delta_3)$, then there exists δ_4 such that $\delta_0 \approx \delta_4 \approx \delta_3$.

- (2) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ and $\alpha(\delta_0) = \alpha(\delta_3)$, then $\beta(\delta_0) = \beta(\delta_3)$.
- (3) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3 \approx \delta_4$ with $\alpha(\delta_0) = \alpha(\delta_3)$, $\alpha(\delta_1) = \alpha(\delta_4)$, then there exists δ_5 such that $\delta_0 \approx \delta_5 \approx \delta_4$.
- (4) $d(\Pi) \leq 3$ and if $\partial_{\Pi}(\delta, \delta') = 3$, then $\beta(\delta) = \beta(\delta')$.

Proof. (1) Since $\gamma(\delta) = \delta$ for every $\delta \in \Pi$, (1) is a direct consequence of Lemma 4.4.(2).

(2) This follows from Lemma 4.4.(1).

(3) By (2), $\beta(\delta_0) = \beta(\delta_3) \neq \beta(\delta_1) = \beta(\delta_4)$. Now δ_3 , $\beta(\delta_1) \in \Gamma_4(\delta_0)$, and there is a path of length 4,

$$y_0 = \delta_3 \sim y_1 \sim y_2 = \delta_4 \sim y_3 \sim y_4 = \beta(\delta_1),$$

where $y_1 \in C(\delta_3, \delta_4), y_3 = g_1(\alpha, \delta_4).$

It is easy to check that $y_1, y_3 \in \Gamma_5(\delta_0)$ and that $g_1(\delta_3, \delta_0) \neq g_1(\beta(\delta_1), \delta_0)$. Hence by Lemma 4.3.(iii) or (v) occurs.

If (v) occurs, $\partial(\beta(\delta_0), \delta_4) = 6$, which is not the case. Hence $\partial(\delta_0, \delta_4) = 4$.

Let $\delta_0 = z_0 \sim z_1 \sim z_2 \sim z_3 \sim z_4 = \delta_4$ be a path connecting δ_0 and δ_4 . Then by Lemma 4.3, we have (iii) as $\partial(\beta(\delta_0), \delta_4) = 4$. Hence we can set $z_2 = \delta_5$.

(4) This follows from (1), (2) and (3).

Proof of Theorem 4.1. Let r = 4 and

$$L(\alpha, \gamma) = \{\alpha\} \cup \bigcup_{\delta \in C_{\gamma}} (\Gamma_{2}(\alpha) \cap \Gamma_{2}(\delta)) \cup C_{\gamma},$$

$$P(\alpha, \gamma) = \bigcup_{\delta \in L(\alpha, \gamma)} \Gamma_{1}(\delta),$$

$$\Delta = \Delta(\alpha, \gamma) = P(\alpha, \gamma) \cup L(\alpha, \gamma)$$

In this definition we also write $P(\Delta) = P(\alpha, \gamma)$, and $L(\Delta) = L(\alpha, \gamma)$.

We shall show in the sequel that Δ is a geodetically closed subgraph isomorphic to ${}^{2}M_{k(\alpha)}$.

Let $\gamma = \gamma_1$ and $\{\gamma_2, \ldots, \gamma_{k(\alpha)}\} = \Pi(\gamma)$. Thanks to Lemma 4.4,

$$L(\Delta) = \{\alpha\} \cup \{\beta(\gamma_1), \ldots, \beta(\gamma_{k(\alpha)})\} \cup C_{\gamma}.$$

By Lemma 4.5, the distance-2-graph induced on $L(\Delta)$ is of diameter 2 and geodetically closed.

If $k(\alpha) = 2$, there is nothing to prove. Assume $k(\alpha) > 2$. $\partial(\beta(\gamma), \gamma_2) = 4$ and

$$\Pi(\gamma_2)\setminus\{\gamma_1\}=\{\delta_1,\ldots,\delta_{k(\alpha)-1}\}\subset\Gamma_4(\beta(\gamma)),$$

there is a vertex $\delta'_i \in \Pi(\delta_i) \cap \Gamma_2(\beta(\gamma))$ for each *i*. Since the girth of Γ is 10, we can conclude that the valency of $\beta(\gamma)$ in the distance-2-graph induced on $L(\Delta)$ equals $k(\alpha)$. By Lemma 4.5, this means that the valency of vertex in $P(\Delta)$ is 2.

Now we can conclude that Δ is geodetically closed subgraph of Γ isomotphic to ${}^{2}M_{k(\alpha)}$ easily.

This completes the proof of Theorem 4.1.

We remark that in the final step, we can also apply [5, Theorem 1.17.1] to determine the regularity of the distance-2-graph induced on $L(\Delta)$. See the proof of [5, Proposition 4.3.11].

5 Proof of Theorem 1.5

In this section, we give a proof of Theorem 1.5. We can follow the proof in the previous section step by step, replacing each path of length 2 by a path of length 3.

Let Γ be a graph satisfying the hypothesis in Theorem 1.5.

Fix a vertex $\alpha \in \Gamma$. For γ , $\delta \in \Gamma_r(\alpha)$, we write $\gamma \approx \delta$ if $\partial(\gamma, \delta) = 3$. Then $C(\gamma, \delta) \cup C(\delta, \gamma) \subset \Gamma_{r+1}(\alpha)$. For $\gamma \in \Gamma_r(\alpha)$, let $C = C_{\gamma}$ be the connected component in $\Gamma_r(\alpha)$ containing γ with respect to the relation \approx . Let $\Pi = \Pi_{\gamma}$ be a graph on C_{γ} defined by the relation \approx . Hence C is a connected component of the distance-3-graph of Γ induced on the set $\Gamma_r(\alpha)$.

For γ , $\delta \in \Gamma$ with $\partial(\gamma, \delta) = r$, and $0 \le i \le r$, let

$$\{g_i(\gamma,\delta)\} = \Gamma_{r-i}(\gamma) \cap \Gamma_i(\delta).$$

For $\delta \in \Gamma_r(\alpha)$, let

$$\alpha(\delta) = g_1(\delta, \alpha), \ \alpha'(\delta) = g_2(\delta, \alpha), \ \beta(\delta) = g_3(\delta, \alpha), \ \text{ and } \ \gamma(\delta) = g_6(\delta, \alpha).$$

Firstly we note that the intersection diagram with respect to x, y with $\partial(x, y) = 1$ has the following shape, where $D_j^i = \Gamma_i(x) \cap \Gamma_j(y)$. See the properties (a) \sim (g) below.

(a)
$$D_i^i = \emptyset$$
, for $1 \le i \le r$.
(b) For $y \in D_i^{i+1}$, $z \in D_{i+1}^i$, $e(y, D_{i-1}^i) = e(z, D_i^{i-1}) = 1, 1 \le i \le r+2$.

- (c) For $y \in D_i^{i+1}$, $z \in \dot{D}_{i+1}^i$, $e(y, D_i^{i+1}) = e(z, D_{i+1}^i) = 0, 1 \le i \le r$ and $e(y, D_i^{i+1}) = e(z, D_{i+1}^i) = 1, i = r+1, r+2$.
- (d) For $y \in D_{r+1}^{r+1}$, $e(y, D_r^{r+1}) = e(y, D_{r+1}^r) = 1$ and $e(y, D_{r+1}^{r+1}) = 0$.
- (e) For $y \in D_r^{r+1}$, $z \in D_{r+1}^r$, $e(y, D_{r+1}^{r+1}) = e(z, D_{r+1}^{r+1}) = 1$.
- (f) For $y \in D_{r+2}^{r+2}$, $e(y, D_{r+1}^{r+1}) = e(y, D_{r+2}^{r+2}) = 1$.
- (g) $e(D_i^{i+1}, D_{i+1}^i) = 0, 1 \le i \le r+2.$

We again apply circuit chasing technique.

Lemma 5.1 Let $x_0 \sim x_1 \sim \cdots \sim x_{2r+3t} = x_0$ be a circuit of length 2r + 3t. *i.e.*, a closed path and $x_{i-1} \neq x_{i+1}$, $i = 1, \ldots, 2r + 3t - 1$ and $x_{2r+3t-1} \neq x_1$. Suppose

- $x_r, x_{r+3}, \ldots, x_{r+3t} \in \Gamma_r(x_0), x_{r+1}, x_{r+2}, x_{r+4}, x_{r+5}, \ldots, x_{x+3t-2}, x_{r+3t-1} \in \Gamma_{r+1}(x_0).$
- Set $D_j^i = \Gamma_i(x_0) \cap \Gamma_j(x_1)$. Then the following hold.
- (1) $t \geq 1$ and $x_r \in D_{r-1}^r$, $x_{r+1} \in D_r^{r+1}$, $x_{r+2} \in D_{r+1}^{r+1}$ and $x_{r+3} \in D_{r+1}^r$.
- (2) If $t \ge 2$, then x_{r+4} , $x_{r+5} \in D_{r+2}^{r+1}$ and $x_{r+6} \in D_{r+1}^{r}$.
- (3) If t = 2, then the mutual distance of the vertices in the circuit is uniquely determined. In particular, $r \equiv 0 \pmod{3}$, and

$$\partial(x_3, x_{r+3}) = \partial(x_3, x_{r+6}) = r, \ \partial(x_3, x_{r+7}) = r+1.$$

(4) Suppose $r \ge 6$. If t = 3, then x_{r+7} , $x_{r+8} \in D_{r+2}^{r+1}$, $x_{r+9} \in D_{r+1}^{r}$ and

$$\partial(x_3, x_{r+6}) = \partial(x_3, x_{r+9}) = \partial(x_6, x_{r+9}) = r, \ \partial(x_6, x_{r+8}) = \partial(x_6, x_{r+10}) = r+1.$$

Lemma 5.2 Let $y_0 \sim y_1 \sim y_2 \sim y_3 \sim y_4 \sim y_5 \sim y_6$ be a path of length 6 such that $y_{i-1} \neq y_{i+1}, i = 1, ..., 5$. Suppose $y_0, y_6 \in \Gamma_r(\alpha)$. Then one of the following holds.

- (i) $y_3 \in \Gamma_{r-3}(\alpha)$,
- (ii) $y_1, y_2, y_4, y_5 \in \Gamma_{r+1}(\alpha), y_3 \in \Gamma_r(\alpha) \text{ and } \alpha(y_0) \neq \alpha(y_6),$
- (iii) $y_3 \in \Gamma_{r+2}(\alpha)$ and $y_5 \in \Gamma_{r+1}(\alpha) \cap \Gamma_{r+1}(\alpha(y_0))$, while $\partial(\beta(y_0), y_5) \ge r+1$.

Lemma 5.3 Let $\{\alpha_1, \ldots, \alpha_k\} = \Gamma(\alpha), \ \gamma \in \Gamma_r(\alpha), \ C = C_{\gamma}$. Let $S_i = \{\delta \in C | \alpha(\delta) = \alpha_i\}$. Then the following hold.

(1) For $\delta \in S_i$, $|\Pi(\delta) \cap S_j| = 1 - \delta_{i,j}$ and $S_i \subset \Gamma_{r-3}(\beta(\delta))$. In particular, Π is a k-partite (k-1)-regular graph.

120

(2) Let $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ be a path in Π . If $\alpha(\delta_0) \neq \alpha(\delta_3)$, then there exists $\delta_4 \in \Pi(\delta_3)$, $\delta_5 \in \Pi(\delta_4)$ such that $\gamma(\delta_0) = \gamma(\delta_5)$.

Lemma 5.4 If r = 6, then the following holds.

- (1) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ and $\alpha(\delta_0) \neq \alpha(\delta_3)$, then there exists δ_4 such that $\delta_0 \approx \delta_4 \approx \delta_3$.
- (2) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3$ and $\alpha(\delta_0) = \alpha(\delta_3)$, then $\beta(\delta_0) = \beta(\delta_3)$.
- (3) If $\delta_0 \approx \delta_1 \approx \delta_2 \approx \delta_3 \approx \delta_4$ with $\alpha(\delta_0) = \alpha(\delta_3)$, $\alpha(\delta_1) = \alpha(\delta_4)$, then there exists δ_5 such that $\delta_0 \approx \delta_5 \approx \delta_4$.
- (4) $d(\Pi) \leq 3$ and if $\partial_{\Pi}(\delta, \delta') = 3$, then $\beta(\delta) = \beta(\delta')$.

Proof of Theorem 1.5. Suppose r = 3. Let

$$L(\alpha, \gamma) = \{\alpha\} \cup C_{\gamma},$$

$$P(\alpha, \gamma) = \bigcup_{\delta \in L(\alpha, \gamma)} \Gamma_{1}(\delta),$$

$$\Delta = \Delta(\alpha, \gamma) = P(\alpha, \gamma) \cup L(\alpha, \gamma)$$

In this definition we also write $P(\Delta) = P(\alpha, \gamma)$, and $L(\Delta) = L(\alpha, \gamma)$. Clearly $L(\Delta)$ is a maximal clique in the distance-3-graph of Γ , and the assertion follows easily from Lemma 5.3.

Let r = 6 and

$$L(\alpha, \gamma) = \{\alpha\} \cup \bigcup_{\delta \in C_{\gamma}} (\Gamma_{3}(\alpha) \cap \Gamma_{3}(\delta)) \cup C_{\gamma},$$
$$P(\alpha, \gamma) = \bigcup_{\delta \in L(\alpha, \gamma)} \Gamma_{1}(\delta),$$
$$\Delta = \Delta(\alpha, \gamma) = P(\alpha, \gamma) \cup L(\alpha, \gamma)$$

In this definition we also write $P(\Delta) = P(\alpha, \gamma)$, and $L(\Delta) = L(\alpha, \gamma)$.

We shall show in the sequel that Δ is a geodetically closed subgraph isomorphic to ${}^{3}M_{k(\alpha)}$.

Let $\gamma = \gamma_1$ and $\{\gamma_2, \ldots, \gamma_k\} = \Pi(\gamma)$. Thanks to Lemma 4.4,

$$L(\Delta) = \{\alpha\} \cup \{\beta(\gamma_1), \ldots, \beta(\gamma_k)\} \cup C_{\gamma}.$$

By Lemma 5.4, the distance-3-graph induced on $L(\Delta)$ is of diameter 2 and geodetically closed.

 $\partial(\beta(\gamma), \gamma_2) = 6$ and

$$\Pi(\gamma_2) \setminus \{\gamma_1\} = \{\delta_1, \ldots, \delta_{k-1}\} \subset \Gamma_6(\beta(\gamma)),$$

there is a vertex $\delta'_i \in \Pi(\delta_i) \cap \Gamma_3(\beta(\gamma))$ for each *i*. Since the girth of Γ is 15, we can conclude that the valenney of $\beta(\gamma)$ in the distance-3-graph induced on $L(\Delta)$ equals *k*. By Lemma 5.4, this means that the valency of vertex in $P(\Delta)$ is 2.

Now we can conclude that Δ is geodetically closed easily.

This completes the proof of Theorem 1.5.

6 Concluding Remarks

It may be too optimistic to expect a classification of P(r,q)-graphs or the graphs similar to those discussed in the previous section in the near future. But we believe that the investigation of such graphs plays a key role to give an absolute bound of the girth of distance-biregular graphs or distance-regular graphs.

We list several problems, which we want to see solved.

- 1. Study geodetically closed subgraphs of distance-regular graphs and prove results corresponding to Proposition 2.3 and Theorem 2.6, especially when $a_1 \neq 0$. See [20].
- 2. Classify P(r, q)-graphs.
 - a) For r = 2, it may be possible to improve Lemma 3.4 to have 2q as the lower bound. Then we have $d \le 5$, by Proposition 3.10.
 - b) For q = 1, the classification implies a classification of distance-biregular graphs with vertices of valency three, [26]. Hence we can obtain an absolute diameter bound of distance-regular graphs of order (s, 2), i.e., those with $\Gamma(x) \simeq 3 \cdot K_s$. See [17, 3, 15, 31].
- 3. Let Γ be a bipartite biregular graph with a bipartition $P \cup L$, or a regular graph with $\Gamma = P = L$. For a positive integer q and a positive odd integer r, we call Γ a P(r,q)-graph, if it is a connected graph such that

$$c_1^P = \cdots = c_r^P = 1$$
, $a_1 = \cdots = a_{r+1} = 0$, $c_{r+1}^P = q+1$ and $c_{r+1}^L = c_{r+2}^P$.

Classify them. If q = 1, then Γ is a thin generalized polygon by a result in [26].

- 4. Study a distance-regular graphs Γ with $r = r(\Gamma)$, $c_{r+1} = c_{r+2} = 1$, and clarify the correspondence with P(r, q)-graphs. In particular, show $r \leq 6$ in Theorem 1.5.
- 5. Let Γ be a connected graph of diameter d. For a subset $I \subset \{1, \ldots, d\}$, let $\Gamma^{(I)}$ denote the distance-*I*-graph, i.e., $V(\Gamma^{(I)}) = V(\Gamma)$, and α , β are adjacent in $\Gamma^{(I)}$ if and only if $\partial(\alpha, \beta) \in I$. Study Γ such that at least one of the connected components of $\Gamma^{(I)}$ is distance-regular of diameter at least three. To start with, assume $\Gamma^{(I)}$

is connected. It is not hard to determine parametrical conditions if Γ itself is a diatance-regular graph. In particular, classify distance-regular graphs Γ such that $\Gamma^{(2)}$ is distance-regular of diameter $d(\Gamma) \neq d(\Gamma^{(2)}) \geq 3$. See Proposition 3.2 and [27, 29].

6. Give a geometrical classification of Moore graphs. One of the reasons, we could not obtain the results for P(r, 1)-graphs with $r \ge 6$, is a lack of such classification. We believe that this is one of the keys when we develope structure theories of distance-regular graphs just as the group theoretical proof of Burnside's $p^a q^b$ theorem gave a breakthrough to the classification of finite simple groups.

参考文献

- [1] E. Bannai and E. Bannai, How many P-polynomial structures can an association scheme have?, Europ. J. Combin. 1 (1980), 289–298.
- [2] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
- [3] N. L. Biggs, A. G. Boshier, and J. Shawe-Taylor, Cubic distance-regular graphs, J. London Math. Soc. (2) 33 (1986), 385–394.
- [4] A. Boshier and K. Nomura, A remark on the intersection arrays of distance-regular graphs, J. Combin. Th. (B) 44 (1988), 147-153.
- [5] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer Verlag, Berlin, Heidelberg, 1989.
- [6] J. Chima, Near n-gons with thin lines, Ph.D. Dissertation, Kansas State University (1982).
- [7] R. M. Damerell, On Moore geometries, II, Math. Proc. Cambridge Phil. Soc. 90 (1981), 33-40.
- [8] R. M. Damerell and M. A. Georgiacodis, On Moore geometries, I, J. London Math. Soc. (2) 23 (1981), 1–9.
- [9] C. Delorme, Distance biregular bipartite graphs, preprint.
- [10] F. Fuglister, On finite Moore geometries, J. Combin. Th. (A) 23 (1977), 187–197.
- [11] F. Fuglister, The nonexistence of Moore geometries of diameter 4, Discrete Math. 45 (1983), 229-238.

- [12] Chr. D. Godsil and J. Shawe-Taylor, Distance-regularised graphs are distance-regular or distance-biregular, J. Combin. Th. (B) 43 (1987), 14–24.
- [13] A. Hiraki, An improvement of the Boshier-Nomura bound, to appear in J. Combin. Th. (B).
- [14] A. Hiraki, A circuit chasing technique in distance-regular graphs with triangles, to appear in Europ. J. Combin.
- [15] A. Hiraki, K. Nomura and H. Suzuki, Distance-regular graphs of valency 6 and $a_1 = 1$, preprint.
- [16] A. Hiraki and H. Suzuki, On distance-regular graphs with $b_1 = c_{d-1}$, Math. Japonica 37 (1992), 751–756.
- [17] T. Ito, Bipartite distance-regular graphs of valency 3, Linear Algebra Appl. 46 (1982), 195-213.
- [18] A. A. Ivanov, On 2-transitive graph of girth 5, Europ. J. Combin. 8 (1987), 393-420.
- [19] J. H. Koolen, On subgraphs in distance-regular graphs, preprint.
- [20] J. H. Koolen, On uniformly geodetic graphs, preprint.
- [21] J. H. Koolen, A new condition for distance-regular graphs, Europ. J. Combin 13 (1992), 63-64.
- [22] B. Mohar and J. Shawe-Taylor, Distance-biregular graphs with 2-valent vertices and distance-regular line graphs, J. Combin. Th. (B) 38 (1985), 193-203.
- [23] K. Nomura, Intersection diagrams of distance-biregular graphs, J. Combin. Th. (B) 50 (1990), 214-221.
- [24] D. K. Ray-Chaudhuri and A. P. Sprague, Characterization of projective incidence structures, Geom. Dedicata 5 (1976), 351-376.
- [25] H. Suzuki, Bounding the diameter of a distance-regular graph by a function of k_d , Graphs and Combin. 7 (1991), 363–375.
- [26] H. Suzuki, On distance-biregular graphs of girth divisible by four, preprint.
- [27] H. Suzuki, A note on association schemes with two P-polynomial structures of type III, preprint.
- [28] H. Suzuki, An invitation to antipodal characterization of distance-regular graphs, in preparation.

- [29] H. Suzuki, On distance-regual graphs of order (s, t), in preparation.
- [30] P. Terwilliger, Distance-regular graphs and (s, c, a, k)-graphs, J. Combin. Th. (B) 34 (1983), 151–164.
- [31] N. Yamazaki, Distance-regular graphs with $\Gamma(x) \simeq 3 \cdot K_{a+1}$, preprint.
- [32] H. Suzuki, On strongly closed subgraphs of highly regular graphs, preprint.