
88

Linear Types and Calculi with Explicit Sharing

Yasuhiko Minamide
Research Institute for Mathematical Sciences,

Kyoto University

July 21, 1993

Abstract

We study the relation between Wadler’s steadfast linear type system and calculi with explicit
sharing. The calculi studied in this paper can be considered as an operational semantics of call-
by-value functional programming languages. The soundness of the type system is proved and
ensures that destructive operations in a well-typed program are performed safely.

1 Introduction
Many attempts have been made to introduce destructive operations into functional programming
languages. One approach is introducing a data type like references of Standard ML on which
destructive update can be performed. This approach is useful but violates referential transparency
of programs. In another approach, the destructive operations are permitted only when they do not
violate referential transparency. In order to restrict destructive operations some type systems have
been proposed where only safe destructive operations are typable [GH90].

Inspired by Girard’s linear logic [Gir87], Wadler proposed steadfast linear types [Wad90, Wad91]
where destructive operations are permitted only for linear types. However, no formal proofs of the
steadfast linear type system were given in [Wad90] and thus the relation between the type system
and the semantics is not obvious.

In [FF89, FH92], state in untyped functional languages has been studied based on reduction
semantics. In those studies, sharing in expressions is expressed by labels or variables and evaluation
of expressions is defined by contextual rewriting systems.

In this paper, based on reduction semantics we prove soundness of the type system for call-by-
value calculi and clarify the relation between the type system and the semantics of the calculi.

One of the most important properties of type systems is type soundness. It ensures that if a
program has a type then the result of the program has the same type and establishes the relation
between type systems and semantics. For pure functional programming languages soundness of
type systems have been proved based on denotational semantics [Mi178]. However, for programming
languages with imperative features the approach makes proofs of type soundness complicated.

On the other hand, reduction semantics clarify relation between semantics and type systems of
functional programming languages extended by imperative features [WF91]. In this approach, the
soundness of type systems is proved by subject reduction which says reduction preserves typing.

We apply the approach based on reduction semantics to the steadfast linear type system. Sharing
is expressed by variables as [FH92, WF91] and soundness of the type system is proved. Type
soundness of the system ensures that destructive operations in well-typed programs are safe.

A notion of read-only access was introduced in [Wad90] to use moredestructive operations. In
this paper, more general type system that can treat more types as read-only is proposed. Although
the first calculus presented in this paper expresses sharing naturally, it does not fit the type system
extended by read-only access. Therefore we define the second calculus for the type system and then
prove type soundness of the type system.

数理解析研究所講究録
第 851巻 1993年 88-101

89

2 Untyped calculus with explicit sharing
In order to study sharing and destructive operations we use the following extended λ_{v} -calculus
[Plo75] as [FH92, WF91]. For simplicity, shared values are restricted to only one data type which is
like references of Standard ML but cannot be destructively updated.

(Expressions) e $::=v|e_{1}e_{2}|(e_{1)}e_{2})|\rho\langle x, v\rangle.e|$ if e_{1} then e_{2} else e_{3}

(Values) v $::=c|x|\lambda x.e|(v_{1)}v_{2})|$ ref $|$ acc $|$ acc !

In the expression $\rho\{x,$ $v\rangle$ $.e,$ $\rho(x,$ $v\rangle$ represents a reference cell with value v and is referred by variable
x . We use the following notation.

$\theta::=\{\{x, v\}\}^{*}$

$\rho\{x_{1},$ $v_{1}\rangle$ $\ldots\{x_{n}, v_{n}\}$. $=\rho\{x_{1},$ $v_{1}\rangle$ $\ldots.\rho\{x_{n}, v_{n}\}$.
The operational semantics of the calculus is defined by using two relations, $arrow and$. The

relation $earrow e’$ means that e is a redex reducing to $e’$ and $e e’$ means that program e can be
reduced to $e’$. The reduction $relationarrow is$ defined as below. We should notice that β-reduction is
performed only for values.

(β_{V}) $(\lambda x.e)v$ $[v/x]e$

(ref) refv $\rho\langle x,$ v) $.x$

(deref) $\rho(x,$ $v\rangle$ $.\rho\theta.R[accx]$ $\rho\langle x, v\rangle.\rho\theta.R[v]$

(dere$f!$) $\rho\langle x, v\rangle.\rho\theta.R[acc ! x]$ $p\theta.R[v]$

(ρ_{lift}) $R[\rho\theta.e]$ $arrow$ $\rho\theta.R[e]$ if $R\neq$ $[]$

(if) if true then e_{2} else e_{3} $arrow$ e_{2}

(if) if false then e_{2} else e_{3} $arrow$ e_{3}

In rules (ref), (deref), and (ρ_{lift}) we use reference contexts defined as below.

$R::=$ $[]$ $|Re|vR|(R, e)|(v, R)|$ if R then e_{2} else e_{3}

ref v makes a reference cell,$\rho\{x,$ $v\rangle$, with value v referred by x . There are two way of extracting the
value of a reference cell: a functional one and a destructive one. Since destructive access discards the
reference cell, in order to perform acc ! safely it is necessary that the variable referring the reference
cell has exactly one reference. Reduction (p_{ltft}) extends the scope of $\rho-$-bound x over context R.
Since context R does not contain other ρ , lifted $\rho.\langle x, v\rangle$ is not lifted over other ps.

Evaluation of an expression, is defined by using the evaluation context E below. An ex-
pression is evaluated from left to right.

$E::=$ $[]$ $|Ee|vE|\rho\theta.E|(E, e)|(v, E)|$ if E then e_{2} else e_{3}

$E[e]\mapsto E[e’]$ if $earrow e’$

In this calculus, ordinary values are not shared, but it is sufficient because there are destructive opera-
tions only for references. The answers returned by evaluation are in form $a=p\langle x_{1)}v_{1}$) $\ldots\rho\{x_{n}, v_{n}\}.v$.
For example, in the reduction sequence below one reference is made and then the value of the ref-
erence is destructively accessed. The destructive access is safe because there is only one y in the
expression.

(λx .acc ! x)(ref 1)
(Ax.acc ! x) $p\langle y, 1\rangle.y$ by (ref)

$\rho(y,$ $1\rangle$ $.(\lambda x.acc ! x)y$ by (ρ_{lift})

$\rho\{y,$ $1\rangle$

$.$ (acc ! y) by (β_{V})

1 by (deref !)

In this calculus, we cannot perform real destructive updates. We can only perform operations that
reuse storage as below.

$(\lambda y.refv)$ (acc ! x)

Although acc ! x discards x and a new reference cell is created, it is considered that it uses storage.
In [GH90], a destructive update that violates referential transparency is not typable. Instead we
have to reject destructive operations that cause error.

90

Structural Rules
(Contraction) $\frac{\Gamma,x:!T,x:!T\vdash e:U}{\Gamma,x:!T\vdash e:U}$

(Weakening) $\frac{\Gamma\vdash e:U}{\Gamma,y:!T\vdash e:U}$

Logical Rules

(var)
x : $T\vdash x$: T

(abs) $\frac{\Gamma,x:T\vdash e:Ux\not\in\Gamma}{\Gamma\vdash\lambda x.e:T-\circ U}$

(app) $\frac{\Gamma_{1}\vdash e_{1}:T-\circ U\Gamma_{2}\vdash e_{2}:T}{\Gamma_{1},\Gamma_{2}\vdash e_{1}e_{2}:U}$

(\otimes) $\frac{\Gamma_{1}\vdash e_{1}:U\Gamma_{2}\vdash e_{2}:V}{\Gamma_{1},\Gamma_{2}\vdash(e_{1},e_{2}):(U\otimes V)}$

(if) $\frac{\Gamma_{1}\vdash e_{1}:\Gamma_{2}\vdash e_{2}:\tau\Gamma_{2}\vdash e_{3}:\tau}{\Gamma_{1},\Gamma_{2}\vdash ife_{1}thene_{2}e1see_{3}:\tau}$

Figure 1: Type Inference Rules

$(!abs)$ $\frac{!\Gamma,x:T\vdash e:Ux\not\in\Gamma}{!\Gamma\vdash\lambda x.e:!(T-\circ U)}$

$(!app)$ $\frac{\Gamma_{1}\vdash e_{1}:!(T-\circ U)\Gamma_{2}\vdash e_{2}:T}{\Gamma_{1},\Gamma_{2}\vdash e_{1}e_{2}:U}$

$(!\otimes)$ $\frac{\Gamma_{1}\vdash e_{1}:!U\Gamma_{2}\vdash e_{2}:!V}{\Gamma_{1},\Gamma_{2}\vdash(e_{1},e_{2}):!(!U\otimes!V)}$

Figure 2: Type Inference Rules for nonlinear types

3 Steadfast linear types
In this section we present a fragment of Wadler’s steadfast linear types [Wad90, Wad91] and extend
it for the calculus. The types of the steadfast linear type system are defined as below.

T $::=B|Tarrow T|T\otimes T|!T$

where B is a base type like int. The type inference rules of the linear fragment of the type system
are shown in Figure 1. Girard’s linear logic have rules (!-R) and (Dereliction) below for the means
to exchange linear and nonlinear types.

$(]_{-}R)$ $\frac{\Gamma\vdash A}{\Gamma\vdash!A}!$

(Dereliction) $\frac{\Gamma,A\vdash B}{\Gamma,!A\vdash B}$

But in the presence of (!-R) and (Dereliction) it cannot be considered that values of linear types are
used exactly once because by (Dereliction) linear types can be obtained from nonlinear types whose
values may be referred more than once.

Since in Wadler’s steadfast linear types there are no (!-R) and (Dereliction), type A and !A are
considered as completely distinct types. Instead of (-R) and (Dereliction), to introduce nonlinear
types there are rules shown in Figure 2.

For example, by using the rules the following four types are inferred for K .

$K=\lambda x.\lambda y.x:!(!T-\circ!(!U-\circ!T))$

$K=\lambda x.\lambda y.x$: $(!T-\circ!(!U-\circ!T))$

$K=\lambda x.\lambda y.x$:! $(T-\circ(!Uarrow T))$

$K=\lambda x.\lambda y.x$: $(T-\circ(!U-\circ T))$

91

(ref) $\overline{\vdash ref}$: $Tarrow Iref$

$(!ref)$
$\overline{\vdash ref:!Tarrow!(!T}$ref)

(ρ) $\frac{\Gamma_{1}\vdash v:T\Gamma_{2},x:Tref\vdash e:U}{\Gamma_{1},\Gamma_{2}\vdash\rho\langle x,v\rangle.e:U}$

(p) $\frac{\Gamma_{1}\vdash v:!T\Gamma_{2},x:!(!T.ref)\vdash e:U}{\Gamma_{1},\Gamma_{2}\vdash\rho\langle x,v)e:U}$

(acc)
$\vdash acc:!$ (T ref) $-\circ T$

$(acc!)$
$\overline{\vdash acc}$!: $(Tref)-\circ T$

Figure 3: Type inference rules for references

Since we have ρ-expressions in the calculus, we need types and rules for them. The types are
extended as below and the type inference rules are shown in Figure 3.

$T::=B|T-\triangleleft T|T\otimes T|!T|T$ ref

As type assumption of ordinary variables, (Weakening) and (Contraction) of type assumption of
p-bound variables are restricted to nonlinear cases. Therefore

$p\{x,$ $1\rangle$ $.(x, x):!(!intref)\otimes!$ ($!int$ ref)

but not
$\rho(x,$ 1 } $.(x, x)$: $(!intref)\otimes$ ($!int$ ref)

However, a reference of a linear type can be referred from more than one places as below.

$\rho\langle x, 1\rangle$. if b then x else x : (int ref)

In rule !ref, the content of a nonlinear reference is restricted to nonlinear types. It is because if the
reference is used more than once, its content may also be used more than once.

Primitive acc has type $T-\triangleleft!(Tref)$ but does not have $T-arrow$ (Tref). It is because acc leaves
$\rho\langle x, v\rangle$ even if there are no x in the expression. In rule (acc!) operation acc ! can be applied only
to a linear reference.

3.1 Soundness
In this section we clarify the relation between the calculus and the type system and prove type
soundness of the system. Type soundness of the system ensures that destructive access in a well-
typed expression is safe. The main theorem is the following.

Theorem 1 (Syntactic Soundness) $If\vdash e:T$ then $e\Uparrow ore^{*}$ a $and\vdash a:T$.

$e\Uparrow means$ that for all $e’$ such that $e*e’$ there exists $e”$ and $e’ e”$. This theorem is proved
by using Subject Reduction Lemma below.

Lemma 2 (Subject Reduction) If $earrow e’$ and $\Gamma\vdash e:T$ then $\Gamma\vdash e’$: T .

Before considering the details, we shall consider some examples. If a redex in λ is reduced as
below, the Subject Reduction Lemma does not hold.

\vdash (λx .ref 1) $:!$ ($T-\circ$ (int ref))

92

$(\lambda x.ref1)$

$(\lambda x.\rho\langle y, 1\}.y)$

$\rho\langle y, 1\rangle.(\lambda x.y)$

The expression $\rho\{y,$ $1\rangle$ $.(\lambda x.y)$ has type ($Tarrow(int$ ref)) but does not have $!$ ($Tarrow(int$ ref)). Moreover
β-reduction of an expression that is not a value also may cause error.

$\vdash(\lambda x.(x, x))$ (acc ! (ref 1)) $:!int\otimes!int$

$(\lambda x.(x, x))$ (acc ! (ref 1))
$\rho(y)1\rangle.(\lambda x.(x, x))$ (acc ! y)
$\rho\langle y, 1\rangle.$ (acc ! y , acc ! y)
(1, acc ! y)
Error

This problem occurs because (acc ! y) has a nonlinear type that is inferred from a type assumption
which contains linear types as below.

$y:(!intref)\vdash$ (acc ! y) $:!int$

However, for values nonlinear types are inferred only from nonlinear type assumptions.

Lemma 3 If $\Gamma\vdash v:!T$ then Γ is nonlinear.

Proof. By induction on the structure of v . \square

In order to prove Substitution Lemma and Subject Reduction Lemma, we first have to prove
some basic properties of the type inference. The following relation characterizes (Contraction) and
(Weakening). Intuitively, $\Gamma\underline{\triangleright}\Gamma’$ means that $\Gamma’$ can be obtained from Γ by (Contraction) and
(Weakening).

Definition 4 $\Gamma\underline{\triangleright}\Gamma’$. For linear type $T,x:T\in\Gamma$ iff x : $T\in\Gamma’$.. For nonlinear type $!T$, if $x:!T\in\Gamma’$ then $x:!T\in\Gamma$.

For $\Gamma\underline{\triangleright}\Gamma’$, by using (Contraction) and (Weakening) we can obtain $\Gamma\vdash e:T$.

Lemma 5 If $\Gamma\underline{\triangleright}\Gamma$
‘ and $\Gamma’\vdash e:T$ then $\Gamma\vdash e:T$.

By the following lemma, we can assume the existence of the type inference whose last rule is neither
(Contraction) nor (Weakening).

Lemma 6 If $\Gamma\vdash e$: T then there exists $\Gamma’$ such that $\Gamma\underline{\triangleright}\Gamma$
‘ and $\Gamma’\vdash e$: T whose last rule is not

structural.

Then Substitution Lemma is proved by induction on the structure of the expression and the
proof is presented in the appendix.

Lemma 7 (Substitution) If $\Gamma_{1},$ $x:U\vdash e:T$ and $\Gamma_{2}\vdash v:U$ then $\Gamma_{1},$ $\Gamma_{2}\vdash[v/x]e:T$.

This lemma is used in the proof of Subject Reduction Lemma for β-reduction.
There remains the proof of Subject Reduction and we shall present essential part of the proof.

Proof of Subject Reduction Lemma.
By Lemma 5 and 6 we can assume that the last rule of type inference is not structural.

Case 1. (β_{V}) $(\lambda x.e)v$ $arrow$ $[v/x]e$

$\frac{\Gamma_{1}\vdash\lambda x.e:!(U-\circ T)\Gamma_{2}\vdash v:U}{\Gamma_{1},\Gamma_{2}\vdash(\lambda x.e)v:T}$

93

From the definition and Lemma 6, there exists $\Gamma_{1}’$ such that $\Gamma_{1}\underline{\triangleright}\Gamma_{1}’$ and

$\Gamma_{1}’$; x : $U\vdash e$: T

By Substitution Lemma,
$\Gamma_{1}’,$ $\Gamma_{2}\vdash[v/x]e$: T

Then by Lemma 5
$\Gamma_{1},$ $\Gamma_{2}\vdash[v/x]e$: T

Case 2. (deref) $\rho\langle x.v$ } $.\rho\theta.R[accx]$ $arrow$ $\rho\{x.v\}.\rho\theta.R[v]$

$x:!(!Uref)\vdash accx:!U$

$\frac{\Gamma_{1}\vdash v:!U\overline{\Gamma_{2},x:!(!Uref)\vdash\rho\theta.R[accx]}:}{\Gamma_{1},\Gamma_{2}\vdash\rho\{x,v\}.\rho\theta.R[accx]:T}$: T

By Lemma $3,\Gamma_{1}$ is nonlinear. Then we get the following inference.

$\Gamma_{1}\vdash v:!U$

$\frac{\Gamma_{1}\vdash v:!U\overline{\Gamma_{1},\Gamma_{2)}x:!(!.Ure.f)\vdash\rho\theta.R[v]:T}:}{\frac{\Gamma_{1},\Gamma_{1},\Gamma_{2}\vdash\rho(x,v\rangle.\rho\theta R[v]:T}{\Gamma_{1},\Gamma_{2}\vdash\rho\{x,v\}\rho\theta.R[v]:T}}$

It is formally proved by induction on the structure of R .

Case 3. (deref !) $\rho\{x.v\}.\rho\theta.R[acc ! x]$ $arrow$ $\rho\theta.R[v]$

$x:Uref\vdash acc$! $x:U$

$\frac{\Gamma_{1}\vdash v:U\overline{\Gamma_{2},x:U.ref\vdash\rho\theta.R[acc!x]}:}{\Gamma_{1},\Gamma_{2}\vdash\rho\langle x,v\rangle\rho\theta.R[acc!x]\cdot.T}$: T

Since R context is not a form of if e_{1} then $R’$ else e_{3} nor if e_{1} then e_{2} else $R’,$ Γ_{1} does not have
to be duplicated. Then we get the following inference.

$\Gamma_{1}\vdash v$: U

$\overline{\Gamma_{1},\Gamma_{2}\vdash\rho^{:}\theta.R[v]:T}$

\square

4 Read-Only access
In the steadfast linear type system there is only one reference to the value of a linear type. It is rather
restrictive for using destructive operations. In order to perform destructive operations safely, it is
sufficient that there is only once reference when they are performed. Many read-only accesses to the
value are safe and the types of read-only accesses correspond to nonlinear types because destructive
operations are not performed on values of nonlinear types. In order that read-only accesses can be
used in expressions, a new form of expressions was introduced in [Wad90].

94

let ! $(x)y=e_{1}$ in e_{2}

As ordinary let, after the expression e_{1} is evaluated and y is bound to the value, e_{2} is evaluated.
However the variable x is read-only in the expression e_{1} . Therefore, within e_{1} variable x is nonlinear
and within e_{2} it is linear. Moreover any part of the value of x must not be carried out outside e_{1} .
The rule for let ! is formally presented as below.

$\frac{\Gamma_{1},x:!T\vdash e_{1}:U\Gamma_{2},x:T,y:U\vdash e_{2}:V}{\Gamma_{1},\Gamma_{2},x:T\vdash 1et!(x)y=e_{1}ine_{2}:V}$

To ensure that the value of x is not carried out outside e_{1} , the following two conditions must hold.. Any linear subtypes of T do not occur in U .. The type U does not-o, otherwise a value whose type does not occur in U is used in the value
ofe_{1} .. The type T does not contain $-\triangleleft$, otherwise x cannot be used many times.

For example the following expression is well-typed.

$x:Tref\vdash 1et$! $(x)y=accx$ in (acc ! $x,$ y) : $T\otimes T$

Although in the rule of let ! above, only one variale, x , is treated as read-only, we can use more
general let ! for read-only access by treating some linear assumptions as read-only in e_{1} . For
example the following expression is also well-typed by using the generalized rule.

let ! $y=accx$ in (acc ! $x,$ y)

However if the subtype of T occur in U accidentally, this rule cannot be applied. In the following
example, since the types of x and ref (acc x) are the same type, x cannot be treated as read-only
access.

let ! $y=ref$ (acc x) in acc ! x

$x:!(!intref)\vdash ref$ (acc x) $:!$ ($!int$ ref)

Odersky [Ode92] proposed using the new modality of types, observer, for the purpose. However, we
apply Baker’s method [Bak90] of subscripted types to this rule: using subscripted $!_{a}$ instead of !.
Then we can distinguish the $!s$ introduced by this rule from other $!s$.

let ! $y=ref$ (acc x) in acc ! $x;|_{b}int$

$x:!_{a}(]_{b}intref)\vdash ref$ (acc x) $:!_{b}$ ($!_{b}int$ ref)

The correctness of the typing rule is intuitively clear because there are no rules that remove !.
However, it is difficult to prove the correctness of read-only access using the calculus presented
before. Let us consider the following reduction.

$p\langle x, v\rangle.1et$! $y=R[accx]$ in $earrow p\{x,$ $v\rangle$ $.1et$! $y=R[v]$ in e

The type of the expression is inferred by using read-only access as below.

$x:!_{a}(!_{a}Uref)\vdash accx:!_{a}U$

$\frac{\Gamma_{1}\vdash v:U\frac{\overline{\Gamma_{2)}x:!_{a}(!_{a}Ure1^{:})..\vdash R[accx]:V}\Gamma_{3},x:Uref,y:V\vdash e}{\Gamma_{2},\Gamma_{3},x.Uref\vdash 1et!y=R[accx]ine:T}}{\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash\rho\{x,v\rangle 1et!y=R[accx]ine:T}$

: T

In order to infer $\Gamma_{1},$ Γ_{2} , F3 $\vdash\rho\langle x,$ v).let ! $y=R[v]$ in e : T , we have to duplicate Γ_{1} because both
v in $\rho\langle x,$ v } and v in $R[v]$ need Γ_{1} for typing. However, since the type U may be linear, the type
assumption Γ_{1} may contain linear types.

95

4.1 Another calculus with explicit sharing
Now we define another calculus that expresses sharing a little unnaturally, however it fits the type
system with read-only access better. The expressions of the calculus are defined as below. For
simplicity, we omit pairs and if in this section though they can be treated as before.

(Expressions) $e::=v|e_{1}e_{2}$ px.e
(Values) v $::=c|x|\langle x, v\rangle|\lambda x.e|$ ref $|$ acc $|$ acc !

$p\theta=\rho x_{1}\ldots\rho x_{n}$

Though in the calculus before ρ occurs with a variable and a value, in this calculus it occurs only
with a variable. Instead, we consider that all occurrences of $\{x, v_{i}\}$ in an expression are shared. For
example the expression equivalent to $p\langle x,$ v } $.(x, x)$ in the calculus before is the following.

$\rho x.(\langle x, v\}, \{x, v\rangle)$

Therefore all v_{i} of { $x,$ v_{i}) should be the same.
The $reductionarrow is$ defined as below. The reduction of acc and acc ! can be performed only

when the variable is bound by p .

(β_{V}) $(\lambda x.e)v$ $arrow$ $[v/x]e$

(let) let ! $x=v$ in e $arrow$ $[v/x]e$

(ref) refv $arrow$ $\rho x.\langle x,$ v }
(deref) $\rho x.p\theta.R[acc\{x.v\rangle]$ $arrow$ $px.p\theta.R[v]$

(deref !) $\rho x.p\theta.R[acc ! \langle x.v\}]$ $arrow$ $\rho\theta.R[v]$

(p_{lift}) $R[\rho x.e]$ $arrow$ $px.R[e]$ if $R\neq[]$

Definitions of $R,E,$ are the same except for let ! and p .

$R::=[]|Re|vR|$ let ! $x=R$ in e

$E::=$ $[]$ $|Ee|vE|\rho x.E|$ let ! $x=E$ in e

In this language, the value to be shared is not actually shared, instead ρ-bound variables denote
sharing. In the following example, we consider that two $\{y, 1\}$ are shared.

$(\lambda x.(accx, x))(ref1)$

$(\lambda x.(accx, x))\rho y.\{y,$ $1\rangle$ by (ref)

$py.(\lambda x.(accx, x))\{y,$ $1\rangle$ by (ρ_{lift})

$\rho y.(acc\{y, 1),$ { $y,$ 1)) by (β_{V})

\mapsto $py.(1, \langle y, 1\})$ by (deref)

4.2 Steadfast linear types with read-only access
Now we present a type system for the calculus defined in the last section. In type expressions, a
family of modality $!_{a},$ $!_{b},$

\ldots is used instead of unique !.

$T::=B|T-\infty T|!_{a}T|T$ ref
If a of $!_{a}$ does not matter, ! is used for simplicity. Except for the rules for sharing primitives, the
type inference rules are the same as in Figure 1 and 2. The type constant \mathcal{A} is used for typing
of references and intuitively x : \mathcal{A} means x is an address. Then type inference rules for sharing
primitives are defined below.

(ρ) $\frac{\Gamma,x:A\vdash e:U}{\Gamma\vdash px.e:U}$

$(!\rho)$ $\frac{\Gamma,x:!_{a}A\vdash e:U}{\Gamma\vdash px.e:U}$

96

(addr) $\frac{\Gamma\vdash v:T}{\Gamma,x:A\vdash\langle x)v\rangle:(Tref)}$

$(!addr)$ $\frac{\Gamma\vdash v:!T}{\Gamma,x:!_{a}\mathcal{A}\vdash\langle x,v\}:!_{a}(!Trej)}$

In order to introduce let ! with read-only access formally, first-order types and nonlinearization
are defined below.

Definition 8 A type is first-order iff it does not $containarrow.$ A type assumption Γ is first-order iff
for all $x,\Gamma(x)$ is first-order.
Definition 9 Nonlinearization R_{a} by $!_{a}$.

$R_{a}(!T)=T$

$R_{a}(int)=\downarrow_{a}int$

$R_{a}(\mathcal{A})=!_{a}A$

$R_{a}(U\otimes V)=!_{a}(R_{a}(U)\otimes R_{a}(V))$

R_{a} (T ref) $=!_{a}$ ($R_{a}(T)$ ref)

For every type $T,R_{a}(T)$ is nonlinear and treated as read-only.
Then the type inference rule for let ! with read-only access is defined as below.

(let) $\frac{R_{a}(\Gamma_{1}),\Gamma_{2}\vdash e_{1}:U\Gamma_{I},\Gamma_{3},x:U\vdash e_{2}:V!_{a}\not\in U}{\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash 1et!x=e_{1}ine_{2}:V}$

where Γ_{1} and U are first-order.
The type assumption Γ_{1} are nonlinear in the expression e_{1} and linear in e_{2} . For example, the

type of the example before is inferred as the following.

$\frac{x:R_{a}(!intref)=!_{a}(!intref)\vdash accx:!intx:!intref,y:!int\vdash(acc!x,y):!int\otimes!int}{x:!intref\vdash 1et!y=accxin(acc!x,y):!int\otimes!int}$

It is essential that Γ_{1} and U are restricted to a first-order type assumption and a first-order type.
If U is not first-order, the result of e_{1} may contain values of types that are not subtypes of U .

Now we shall prove the lemmas that characterize values of first-order types.

Lemma 10 Let T be first order and $!_{a}\not\in T$.
If $\Gamma\vdash v$: T then there exists a first-order type assumption $\Gamma’$ such that $\Gamma’\subseteq\Gamma$ and $!_{a}\not\in\Gamma’$ and
$\Gamma’\vdash v$: T .
Proof. By induction on the structure of T. \square

Lemma 11 Let T be first order.
If $\Gamma\vdash v:T$ then $R_{a}(\Gamma)\vdash v:R_{a}(T)$

This lemma does not hold for function types. The following expression has a linear type $T-\circ int$

but not !($Tarrow$ int).
$y:\mathcal{A}\vdash$ $(\lambda x.acc ! \{y, 1\rangle)$: $Tarrow int$

Proof. By induction on the structure of T .

Case 1. $T=$ (U ref)

(addr) $\frac{\Gamma\vdash v:U}{\Gamma,x:\mathcal{A}\vdash\{x,v):(Uref)}$

By induction hypothesis,
$R_{a}(\Gamma)\vdash v$: $R_{a}(U)$

Then
$R_{a}(\Gamma),$ $x:R_{a}(\mathcal{A})\vdash(x, v$ } $:!_{a}(R_{a}(U) ref)=R_{a}(T)$

97

\square

Now we shall prove that the reductions preserve types. The case for let ! is proved by using
Lemma 10 and the other cases are much simpler than before.

Lemma 12 (Subject Reduction) If $earrow e’$ and $\Gamma\vdash e:T$ then $\Gamma\vdash e’$: T .

Proof. We present only the key cases.
Case 1.

(let) let ! $x=v$ in e_{2} $arrow$ $[x/v]e_{2}$

and
$\frac{R_{a}(\Gamma_{1}),\Gamma_{2}\vdash v:U\Gamma_{1},\Gamma_{3},x:U\vdash e_{2}:T!_{a}\not\in U}{\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash 1et!x=vine_{2}:T}$

Let $\Gamma_{1}=\Gamma_{1}’,$ $\Gamma_{1}’’$ and $\Gamma_{1}’$ is linear and $\Gamma_{1}’’$ is nonlinear. By Lemma 10.

$\frac{\Gamma_{1}’’,\Gamma_{2}\vdash v:U\Gamma_{1},\Gamma_{3},x:U\vdash e_{2}:T}{\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash 1et!x=vine_{2}:T}$

By Substitution Lemma,
$\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}\vdash[v/x]e_{2}$: T

Case 2.

(deref) $\rho x.\rho\theta.R$[acc $(x.v\rangle$] $arrow$ $\rho x.\rho\theta.R[v]$

We consider the following case.

$\frac{\frac{\Gamma’\vdash v:!U}{\Gamma’,x:!_{a}A\vdash\langle x,v\}:!_{a}(!Uref)}}{\Gamma’,x:!_{a}A\vdash acc\{x,v):!U}$

$\overline{\frac{\Gamma,x:A\vdash\rho\theta.R[acc\{x.v)]:T:}{\Gamma\vdash px.\rho\theta.R[acc\{x.v\rangle]:T}}$

Then we get the following inference.

$\frac{\Gamma’\vdash v:!U}{\Gamma’,x:!_{a}\mathcal{A}\vdash v:!U}$

$\overline{\frac{\Gamma,x:\mathcal{A}\vdash\rho\theta.R[acc\langle x.v\}]:T:}{\Gamma\vdash px.p\theta.R[acc\langle x.v\rangle]:T}}$

\square

It remains to prove Substitution Lemma. The only new case is let ! and proved by using Lemma
11.

Lemma 13 (Substitution) If $\Gamma_{1},$ x : $U\vdash e$: T and $\Gamma_{2}\vdash v$: U then $\Gamma_{1},$ $\Gamma_{2}\vdash[v/x]e$: T .

Proof. By induction on the structure of e . Here we sketch the case of $e=$ let ! $y=e_{1}$ in e_{2} and
the formal proof is presented in the appendix.

$\frac{x:R_{a}(U),R_{a}(\Gamma_{1}),\Gamma_{2}\vdash e_{1}:Vx:U,\Gamma_{1},\Gamma_{3},y:V\vdash e_{2}:T!_{a}\not\in V}{x:U,\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash 1et!y=e_{1}ine_{2}:T}$

98

and
$\Gamma_{4}\vdash v$: U

By Lemma 11
$R_{a}(\Gamma_{4})\vdash v$: $R_{a}(U)$

Then by induction hypothesis,
$R_{a}(\Gamma_{4}),$ $R_{a}(\Gamma_{1}),$ $\Gamma_{2}\vdash e_{1}$: V

And also
$\Gamma_{4},$ Γ_{I} , F3, $y:U\vdash e_{2}$: T

Then
$\Gamma_{4},$ $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}\vdash let$! $y=e_{1}$ in e_{2} : T

\square

5 Explicit and implicit garbage collection
We have considered that linear types are the types thas have one reference. Thus it is natural to
consider that type T is a subtype of $!T$ and then the following rule that accepts acc with a linear
argument is natural.

(acc)
$\overline{\vdash acc:(Tref)arrow T}$

However it violates Subject Reduction Lemma as below. The following expression is well-typed
and reduces to $\rho\{x, 1\}.p\langle y,$ x } $.acc$! x .

$\vdash\rho\langle x, 1\rangle.p\langle y, x\rangle.acc$! (acc y) : int

$\rho\langle x, 1\rangle.p$ \langle $y,$ $x\}.acc$! (acc $y)arrow\rho\{x,$ $1\rangle$ $.p\{y, x\}.acc$! x

However, the expression $p\langle x,$ 1 } $.p(y,$ x } $.acc$! x is not well-typed, because there are two x in the
expression. In order to introduce the (acc) rule above, we must consider the reduction rule that
corresponds to garbage collection as in [FH92].

(gc) $p\langle x,$ v } $.e$ $arrow_{gc}$ $e(x\not\in FV(e))$

Then removing redundant reference cells makes the expression above well-typed.

$p\langle x, 1\rangle.\rho\langle y, x\rangle.acc$! $xarrow_{gc}p\langle x, 1\rangle.acc$! x

and
$\vdash\rho\langle x, 1\rangle.acc$! x : int

Though we consider explicit garbage collection above, in the second calculus we can consider
implicit garbage collection for linear types as below. The following expression corresponds to the
example before.

$\vdash\rho x.\rho y.acc$! (acc { $y,$ $(x, 1\rangle\rangle)$: int
$px.\rho y$.acc ! (acc $\langle y,$ $\{x,$ $1\rangle\rangle$) $arrow px$.py.acc ! \langle $x,$ 1)

However, the resulting expression is also well-typed by changing the type assumption y : \mathcal{A} intro-
duced by py into $y:!\mathcal{A}$.

6 Conclusion
We have presented two calculi with explicit sharing which are considered as operational semantics
of call-by-value functional programming languages. Based on the first calculus, the relation of the
steadfast linear type system and the semantics has been clarified and the type soundness has been
proved. In order to treat read-only access we have considered the extension of steadfast linear type
system. However, to establish the soundness of the type system with read-only access we have
required the second calculus that is a little unnatural with respect to sharing.

99

References
[Bak90] Henry G. Baker. Unify and conquer (garbage, updatind, aliasing, ...) in functional lan-

guages. In Proc. ACM Conf. Lisp and Functional Programming, 1990.

[FF89] Matthias Felleisen and Daniel P. Friedman. A syntactic theory of sequential state. Theo-
retical Computer Science, Vol. 69,, 1989.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of se-
quential control and state. Theoretical Computer Science, Vol. 103,, 1992.

[GH90] Juan C. Guzm\’an and Paul Hudak. Single-threaded polymorhic lambda calculus. In IEEE
Symp. on Logic in Computer Science, 1990.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, Vol. 50, No. 1,, 1987.

[Mi178] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, Vol. 17,, 1978.

[Ode92] Martin Odersky. Observers for linear types. In ESOPS 92, LNCS 582, 1992.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, Vol. 1, No. 2,, December 1975.

[Wad90] Philip Wadler. Linear types can change the world! In Programming Concepts and Methods,
1990.

[Wad91] Philip Wadler. Is there a use for linear logic? In Partial Evaluation and Semantics Based
Program Manipulation, 1991.

[WF91] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Tech-
nical report, Department of Computer Science, Rice University, 1991. TR 91-160.

A Proof of Substitution Lemma
Before we sketch the proof of Substitution Lemma, we need to formalize the condition which we
have implicitly assumed so far.

Definition 14 Γ is regular.. if x : T $\in\Gamma$ and x : U $\in\Gamma$ then T $=U$.. if x:T $\in\Gamma$ and T is linear then x occurs once in F.

Hereafter we assume that every type environments are regular. $(x : U)^{+}$ means sequence x :
$U,$

$\ldots,$ $x:U$ which consists of more than one $x:U$. Then the following lemma is used to split a type
assumption.

Lemma 15 Let I”, $(x:U)^{+}=\Gamma_{1},$ Γ_{2} . Then one of the following three conditions hold.. $\Gamma_{1}=\Gamma_{1}’$, $(x : U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x:U)^{+}$ and U is nonlinear.. $\Gamma_{1}=\Gamma_{1}’,$ $(x:U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’$.. $\Gamma_{1}=\Gamma_{1}’$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x:U)^{+}$.

where $x:U\not\in\Gamma_{1}’$ and $x:U\not\in\Gamma_{2}’$.

For Substitution Lemma, we prove the following generalized lemma.

100

Lemma 16 (Substitution) Let $\Gamma,$
$\Gamma’$ is regluar. If $\Gamma,$ $(x : U)^{+}\vdash e$: T and $\Gamma’\vdash v$: U then

$\Gamma,$ $\Gamma’\vdash[v/x]e$: T .
Proof. By induction on the structure of e . By Lemma 6, there exists Γ_{0} such that Γ , $(x : U)^{+}\underline{\triangleright}\Gamma_{0}$

and $\Gamma_{0}\vdash e$: U whose last rule is not structural. If x : $T\not\in\Gamma_{0}$ then $[v/x]e=e$ and T is nonlinear.
Therefore

$\Gamma_{0},$ $\Gamma’\vdash e=[v/x]e$: T

Since $x:U\not\in\Gamma_{0}$ and $\Gamma,$ $(x:U)^{+}\underline{\triangleright}\Gamma_{0}$,
$\Gamma\underline{\triangleright}\Gamma_{0}$

Then by Lemma 5,
$\Gamma,$ $\Gamma’\vdash e=[v/x]e$: T

Ohterwise $\Gamma_{0}=\Gamma_{0}’$, $(x : U)^{+}$, hence we assume that the last rule is not structural. We present only
key cases here.

Case 1. $e=y$ and $y\neq x$. Then U must be nonlinear and then $\Gamma’$ is nonlinear Then

$\Gamma,$ $\Gamma’\vdash[v/x]y=y$: T

Case 2. $e=x$. Then Γ is nonlinear and $T=U$.

$\Gamma,$ $\Gamma’\vdash[v/x]x=v$: T

Case 3. $e=\lambda y.e_{1}$

Subcase 1. $x\neq y$. There are two cases and we preset the first case.

$\frac{\Gamma,(x:U)^{+},y:.T\vdash e:V}{\Gamma,(x:U)^{+}\vdash\lambda ye:(T-\circ V)}$

or
$\frac{!\Gamma,(x:!U)^{+},y:.T\vdash e:V}{!\Gamma,(x:!U)^{+}\vdash\lambda ye:!(Tarrow V)}$

By indution hypothesis,
$\Gamma,$ $(x : U)^{+},$ z : $T\vdash[z/y]e$: V

Since z is fresh, $\Gamma,$ z : $T,$ $\Gamma’$ is regular. Then by induction hypothesis,

$\Gamma,$ $\Gamma’,$ z ; $T\vdash[v/x][z/y]e$: V

Then
$\Gamma,$ $\Gamma’\vdash\lambda z.[v/x][z/y]e$: $Tarrow V$

Subcase 2. $x=y$ is not possible.

Case 4. $e=e_{1}e_{2}$. By Lemma 6,

$\frac{\Gamma_{1}\vdash e_{1}:V-\circ T\Gamma_{2}\vdash e_{2}:V}{\Gamma_{I},\Gamma_{2}\vdash e_{1}e_{2}:T}$

or
$\frac{\Gamma_{1}\vdash e_{1}:!(Varrow T)\Gamma_{2}\vdash e_{2}:V}{\Gamma_{1},\Gamma_{2}\vdash e_{1}e_{2}:T}$

We present only the cases for the above inference.

101

Subcase 1. $\Gamma_{1}=\Gamma_{1}’,$ $(x:U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x:U)^{+}$ and U is nonlinear. By induction hypothesis,

$\Gamma_{1}’,$ $\Gamma’\vdash[v/x]e_{1}$: $Varrow T$

and
$\Gamma_{2}’,$ $\Gamma’\vdash[v/x]e_{2}$: V

Sicne U is nonlinear, $\Gamma’$ is nonlinear.

F3, $\Gamma_{4},$ $\Gamma’\vdash[v/x](e_{1}e_{2})$: T

Subcase 2. $\Gamma_{1}=\Gamma_{1}’,$ $(x:U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’$. By induction hypothesis,

$\Gamma_{1}’,$ $\Gamma’\vdash[v/x]e_{1}$: $Varrow T$

Then
$\Gamma_{1}’,$ $\Gamma_{2},$ $\Gamma’\vdash[v/x](e_{1}e_{2})$: T

Subcase 3. $\Gamma_{1}=\Gamma_{1}’$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x:U)^{+}$. Similar to the above case.
口

Proof for the second calculus and the type system with read-only access.
Case 1. $e=\rho x.e$. Straighforward.

Case 2. $e=(x,$ $w\rangle$. We need care for this case.

$\frac{\Gamma\vdash w:!T}{\Gamma,y:!_{a}\mathcal{A}\vdash\langle y,w\}:!_{a}(!Tref)}$

or
$\frac{\Gamma\vdash w:T}{\Gamma,y:\mathcal{A}\vdash\langle y,w\}:(Tref)}$

If $x\neq y$, then we can prove this case by induction hypothesis.
Ohterwise we have to show value v is a variable. But it is clear because etheir $\Gamma’\vdash v$: A or
$\Gamma’\vdash v:!_{a}A$ holds.

Case 3. $e=1et$! $y=e_{1}$ in e_{2} .

$\frac{\Gamma_{1},R_{a}(\Gamma_{3}),\vdash e_{1}:V\Gamma_{2},\Gamma_{3},y:V\vdash e_{2}:T!_{a}\not\in V}{\Gamma_{1},\Gamma_{2},\Gamma_{3}\vdash 1et!y=e_{1}ine_{2}:T}$

Subcase 1. $\Gamma_{1}=\Gamma_{1}’$, $(x ; U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x : U)^{+}$ and U is nonlinear.
Subcase 2. $\Gamma_{1}=\Gamma_{1}’,$ $(x:U)^{+}$ and $\Gamma_{2}=\Gamma_{2}’$.
Subcase 3. $\Gamma_{1}=\Gamma_{1}’$ and $\Gamma_{2}=\Gamma_{2}’,$ $(x:U)^{+}$.
Subcase 4. U is linear $\Gamma_{3}=\Gamma_{3}’$, $x:U$.

From $\Gamma’\vdash v:U$, by Lemma 11
$R_{a}(\Gamma’)\vdash v$: $R_{a}(U)$

Then by induction hypothesis,

$\Gamma_{1},$ $R_{a}(\Gamma_{3}’),$ $R_{a}(\Gamma’)\vdash[v/x]e_{1}$: V

From $\Gamma_{2},$ $\Gamma_{3}’$, $x:U,$ $y:V\vdash e_{2}$: T

$\Gamma_{2},$ $\Gamma_{3}’,$ $x:U,$ $z:V\vdash[z/y]e_{2}$: T

Then by induction hypothesis
$\Gamma_{2},$ $\Gamma_{3}’,$ $z:V,$ $\Gamma’\vdash[v/x][z/y]e_{2}$: T

Then $[v/x]$ (let ! $y=e_{1}$ in e_{2}) $\equiv let$! $z=[v/x]e_{1}$ in $[v/x][z/y]e_{2}$

$\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}’,$ $\Gamma’\vdash[v/x]$(let ! $y=e_{1}$ in e_{2}) : T

口

