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Abstract. Since record polymorphism is one of essential factors for object-oriented languages,
various approaches to incorporate record polymorphism into type systems have been made to
lay the foundation for object-oriented languages. Recursive types, which are essentially types
of lists or trees, are major programming tools. In object-oriented languages, a pseudo variable
“self“ has a recursive type, which requires that type systems be able to treat recursive types.
The purpose of this paper is to provide a type system and its inference system which can
handle both subtype polymorphism and recursive types without any kind of type declaration
or unnatural restrictions. Our system integrates subtyping and parametric polymorphism into
Damas and Milner’s type system and preserves several properties such as existence of principle
types and syntactic completeness of type checking algorithm. It can be also considered as
[Cardelli,1984] added let. We give the type inference algorithm and prove its correctness. The
basic idea is that we consider a type as a regular tree. Though our target language in this
paper is a functional language, we show the way to extend it to imperative languages, too.

1. Introduction
Our aim is a largely practical one, that is to construct a sufficiently powerful type system and its feasible
inference system for object-oriented languages. Since there are many discussions about what the definition of
object-oriented languages is, we will not enter such a discussion. We only take account of existence of record
types and polymorphic method selection. There are two sources of polymorphism–inheritance(subclassing)-
based polymorphism and subtyping-based polymorphism. Although they seem to be the same thing, they are
distinct as discussed in [Cook et a1.,1990]. This is mainly caused by a difficulty of subtyping function space.
Inheritance-based polymorphism is already implemented in many languages such as Smalltalk, $C++$ , CLOS,
Eiffel, etc. Subtyping-based polymorphism is proposed in [Cardelli,1984], which has simple and clear semantics
and can avoid inheritance anomaly described in [Cook et a1.,1990]. But the type checking algorithm seemed
complicated so that it has not been implemented in practical languages. Recently, an attempt to incorporate
subtyping-based polymorphism into $C++is$ made by [Baumgartner et al.,1992] although their mechanism is
incomplete and fails to accept many subtypes since it judges a subtype relation only at one level of type
constructors for efficiency.

The notion of recursive types appears naturally in many programming languages. A pair of recursive data
structures and recursive functions over them is one of common programming techniques. A subtype relation
over recursive types was defined by [Amadio et $a1.,1991$]. Recursive types arise necessarily in object-oriented
languages since a pseudo variable such as this or self which belongs to all records implicitly has a recursive
type inevitably.

We have obtained a result that a complete inference system with product(record type) and sum(variant)
in the presence of subtyping-based polymorphism, recursive types and parametric polymorphism is possible
without any kind of type declaration (such as datatype in ML) or unnatural restrictions. Our system, so
to speak, finds bounded quantification[Cardelli et al.,1985] by inference. We can construct this system by
means of extending the notion of [Amadio et a1.,1991] that considers a type as a regular tree. Our system is an
extension of Damas and Milner’s type system [Damas, 1985] and preserves several properties such as existence of
principle types. Soundness and completeness of our inference system are proved. From the point of our result,
subtyping-based polymorphism is considered to be more natural than inheritance-based polymorphism. In
our type system, the notion of safe operation coincides with polymorphism entirely so that it provides simple
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semantics and full reusability of function. F-bounded polymorphism is proposed in [Canning et a1.,1989].
Although they thought that F-bounded polymorphism was more than subtype relation, if types are defined in
our way, they turn out to be equivalent to each other (see the end of \S 4.2).

There are already several type systems that handle subtyping or recursive types. The type systems of
[Cardelli et a1.,1985] and [Canning et a1.,1989] have both of them, but it follows that they are strongly typed
languages so that a type of a variable is declared by the programmer. The system of [Wand,1987] has record
subtyping without recursive $tyks$ . The system of [Stansifer,1988] does not treat recursive types. But we can
see a notion of lub and glb and it provides an algorithm that finds a principle type. Although [Kaes,1992]
can handle recursive types, his system is too general for our purpose and gives no consideration to practical
languages.

The rest of this paper is organized as follows. Section 2 defines regular types. The target language of our
system is a simple $\lambda$-like language described in Section 3. Section 4 is the main part, which describes our type
inference system and proves its soundness and completeness. An extension to imperative languages is also
discussed in this section. Section 5 gives an example. The relationship between subtyping and subclassing is
discussed in Section 6. Section 7 summarizes our study and indicates directions for future investigation.

2. Types
2.1. Regular Types. $N$ denotes a set of all natural numbers including $0$ . Let $T_{P}$ be a finite set of all
primitive types such as Bool, Int, Str, . . ., $T_{V}$ be a set of all type variables(ranged over $\alpha,$

$\beta,$
$\gamma$

) ), $T_{C}$ be a
set of type constructors, which consist of $arrowsarrow 2$ , products $\{\}_{n}$ , and sums $[]_{n}$ where subscripts are their
arities for $n\in N$ , and finally $T_{L}$ be a set of labels. We often use a type $constructorarrow as$ a right associative
infix operator. $T_{P},$ $T_{V},$ $T_{C}$ and $T_{L}$ are disjoint. We shall denote by $R(T)$ the set of regular trees over $T$ where
$T=(Tp, T\gamma, T_{C}, T_{L})$ . We use a rational expression to represent a regular tree. $RE(T)$ is a set of all rational
expressions over $T$ , which is the least set defined as follows:

$T_{P}\subseteq RE(T)$

$T_{V}\subseteq RE(T)$

$\alpha,$ $\beta\in RE(T)$ $\Rightarrow\alphaarrow\beta\in RE(T)$

$\alpha_{1}$ , –, $\alpha_{n}\in RE(T)$ $\Rightarrow$ $\{l_{1} : \alpha_{1}, \cdots , l_{n} : \alpha_{n}\}\in RE(T)$ where $l_{1}\in T_{L}$ for $n\in N$

$\alpha_{1}$ , – , $\alpha_{n}\in RE(T)$ $\Rightarrow$ $[l_{1} : \alpha_{1}, \cdots l_{n} : \alpha_{n}]\in RE(T)$ where $l_{i}\in T_{L}$ for $n\in N$

$\tau\in T_{V},$ $\alpha\in RE(T)$ $\Rightarrow\mu\tau.\alpha\in RE(T)$

A type expression is defined as the following rules.
$\tau=\sigma|^{\forall}\alpha;.\tau$ $\sigma\in RE(T)$ and $\alpha:\in T_{V}$

This is similar to ML’s definition of types except that $\sigma$ is a general rational expression. $\mu\tau.\alpha$ denotes a unique
regular tree in $R(T)$ such that $\mu\tau.\alpha=\alpha[\mu\tau.\alpha/\tau]$ where $[]$ is a substitution. The existence and uniqueness is
explained in [Courcelle,1983]. A type is called closed if it has no free type variables and called ground if it
has no type variables. A ground type is closed. We have two different ways to bind type variables–universal
quantification and $\mu$-recursion. Free type variables and type variables of a type expression are defined by the
following functions FTV and TV, respectively.

$TV(\alpha)=\emptyset$ $FTV(\alpha)=0$ if $\alpha\in T_{P}$

$TV(\alpha)=\{\alpha\}$ $FTV(\alpha)=\{\alpha\}$ if $\alpha\in T_{V}$

$TV(\alphaarrow\beta)=TV(\alpha)\cup TV(\beta)$ $FTV(\alphaarrow\beta)=FTV(\alpha)\cup FTV(\beta)$

$TV((\alpha_{1}, \cdots , \alpha_{n}))=TV(\alpha_{1})\cup\cdots\cup TV(\alpha_{n})$ $FTV(\{\alpha_{1}, \cdots\alpha_{n}\})=FTV(\alpha_{1})\cup\cdots\cup FTV(a_{n})$

$TV([\alpha_{1}, \cdots\alpha_{n}])=TV(\alpha_{1})\cup\cdots\cup TV(\alpha_{n})$ $FTV([\alpha_{1}, \cdots\alpha_{n}])=FTV(\alpha_{1})\cup\cdots\cup FTV(\alpha_{n})$

$TV(\mu\tau.\alpha)=TV(\alpha)$ $FTV(\mu\tau.\alpha)=FTV(\alpha)-\{r\}$

$TV(\forall\alpha.\tau)=\{\alpha\}\cup TV(\tau)$ $FTV(\forall\alpha.\tau)=FTV(\tau)-\{\alpha\}$

Example 1. $TV(\forall\alpha.\mu\tau.(\alphaarrow Int)arrow(\betaarrow r))=\{\alpha, \beta\}$ . $FTV(\forall\alpha.\mu r.(\alphaarrow Int)arrow(\betaarrow r))=\{\beta\}$ .
The rule to determine which $\mu$-operator binds the type variable is as the same as usual $\lambda$-calculus. We call the
variable $\mu$-variable.

2.2. Product of Types. We will use various operations over types. The most fundamental one is a product
of types. Note that product of types is not a product(record) type. Suppose $\alpha$ and $\beta$ be types. Let $S_{\alpha}=$

$[x_{1}=u_{1,}x_{n}=u_{n}]$ and $S\rho=[y_{1}=v_{1}, \cdots , y_{m}=v_{m}]$ be regular systems which denote regular types
represented by $\alpha$ and $\beta$ respectively where $x;,$ $y_{j}\in T_{V}$ and $u;,$ $v_{j}\in RE(T)$ for all $i$ and $j$ . A straightforward
translation algorithm of a regular system to a rational expression is to make all $x$ : to be $\mu$-variables and
substitute all subexpressions except $u_{1}$ . For instance, $S_{\alpha}$ can be translated to $[\mu x_{n}.u_{n}/x_{n}]\cdots[\mu x_{2}.u_{2}/x_{2}]\mu x_{1}.u_{1}$
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automatically. In this case, a capture of $x_{1}$ , – , $x_{n-1}$ is used on purpose. Therefore, we call $x_{1},$ $\cdots x_{n}\mu-$

variables of a regular system as a natural extension of terminology. We consider the first component of a
regular system, say $x_{1}$ in $S_{\alpha}$ , as the regular type represented by the system. The product of $\alpha$ and $\beta$ is a new
regular type whose components are ordered pairs $(x, y)$ where $x,$ $y$ are primitive types or type variables and
generated by the following algorithm. An infix operator $x$ denotes product operation.

1. Start with $x_{1}xy_{1}$ .
2. $\alpha x\beta=(\alpha, \beta)$ if $\alpha$ and $\beta$ are primitive types or free type variables.
3. If $\alpha$ or $\beta$ is a $\mu$-variable in $\alpha x\beta$ and the pair is not compared yet, then we make two new $\mu-$

variables, say $x’$ and $\psi$ , and add the new equation ($x’,$ $j\rangle$ $=\alpha x\beta$ to the new regular system. Then
expand the $\mu$-variable and continue the computation.
4. If one of the arguments is a $\mu$-variable and the pair is already compared, then the result is the pair
($x’,$ $y’$ } which is generated in the last time.
5. $(\alpha_{1}arrow\alpha_{2})x(\beta_{1}arrow\beta_{2})=(\alpha_{1}x\beta_{1})arrow(\alpha_{2}x\beta_{2})$ .
6. $\{l: : \alpha;, m_{j} : \alpha_{j}’\}x\{l; : \beta_{1}, n_{k} : \beta_{k}’\}=\{l_{i} : \alpha;x\beta:, m_{j} : \alpha_{j}’x0, n_{k} : 0x\beta_{k}’\}$. $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

7. $[l_{i} : \alpha:, m_{j} : \alpha_{j}’]x[\iota_{:} : \beta_{i}, n_{k} : \beta_{k}’]=[l. : \alpha:X\beta_{i}, m_{j} : \alpha_{j}’x0, n_{k} : 0x\beta_{k}’]$. $t^{\forall}j^{\forall}k.m_{j}\neq n_{k}$ )

where $0$ is a special constant which compensates the absence of the other element. multiplication by $0$ is defined
as follows:

1. $0x\alpha=\langle 0,$ $\alpha$ ), $\alpha x0=\langle\alpha,$ $0$ ) if $\alpha$ is a primitive type or a free type variable.
2. $(\alpha_{1}arrow\alpha_{2})x0=(\alpha_{1}x0)arrow(\alpha_{2}x0),$ $0x(\alpha_{1}arrow\alpha_{2})=(0x\alpha_{1})arrow(0x\alpha_{2})$.
3. $\{l, : \alpha_{i}\}x0=\{l_{i} : \alpha;x0\},$ $0x\{l$; : $\alpha_{i}\}=\{l_{i} : 0x\alpha_{1}\cdot\}$ .
4. $[l_{i} : \alpha_{i}]x0=[l_{i} : \alpha_{i}x0],$ $0x[l_{i} : \alpha;]=[l, : 0x\alpha;]$ .

Product of two types is almost as the same as unification operation over regular systems except that variables
and constants are not unified. A comparison between different type constructors fails or the result is considered
to $be\perp$ .
Example 2. Suppose $\alpha=\mu\tau.Intarrow\tau$ and $\beta=\mu\sigma.Natarrow Intarrow\sigma$. A regular system $S_{\alpha}=[x_{1}=Intarrow x_{1}]$

denotes $\alpha$ and $S\rho=[y_{1}=Natarrow y_{2}, y_{2}=Intarrow y_{1}]$ denotes $\beta$ . Then,

$S_{\alpha}xS\rho=[(x_{1}, y_{1})=x_{1}xy_{1}]$

$=[(x_{1}, y_{1})=(Intarrow x_{1})x(Natarrow y_{2})]$

$=$ [ $\{x_{1},$ $y_{1}\rangle=$ {Int, $Nat\ranglearrow(x_{1}xy_{2})$ ]
$=$ [( $x_{1},$ $y_{1}\rangle=$ (Int, $Nat\ranglearrow\{x_{1},$ $y_{2}$ ), $\langle x_{1},$ $y_{2})=(Intarrow x_{1})x(Intarrow y_{1})$ ]
$=[(x_{1}, y_{1}\rangle=\langle Int, Nat\ranglearrow(x_{1}, y_{2}\rangle, (x_{1}, y_{2}\}=\langle Int, Int\ranglearrow\langle x_{1}, y_{1}\rangle]$

As well known in [Courcelle,1983], a regular system, a regular tree and a rational expression can be considered
as equivalent each other. For instance, the above regular system is represented by a rational expression
$\mu r.(Int, Nat)arrow\langle Int, Int\ranglearrow\tau$ . Therefore we shall identify them from now. The first projection $\pi_{1}$ and the
second projection $\pi_{2}$ are defined naturally such that $\pi_{1}(\tau)x\pi_{2}(\tau)=r$ for any type $\tau$ .

2.3. Subtype Relation over Infinite Types. In order to define a subtype relation over infinite types, we
introduce an auxiliary notion, subproduct. A subproduct of types is very similar to a product of types except
that the following rules are replaced with. We denote subproduct $by*$ .

5‘. $(\alpha_{1}arrow\alpha_{2})*(\beta_{1}arrow\beta_{2})=(\beta_{1}*\alpha_{1})arrow(\alpha_{2}*\beta_{2})$.
6’. $\{l_{i} : \alpha_{i}, m_{j} : \alpha_{j}’\}*\{l$; : $\beta_{i}\}=\{l; : \alpha;*\beta_{i}\}$ .
$7’$ . $[l; : \alpha:]*[l; : \beta:, n_{k} : \beta_{k}’]=[l_{i} : \alpha;*\beta_{i}]$ .

In the rule 1, $\alpha_{1}$ and $\beta_{1}$ change their places unlike product since function is contravariant for its domain. A
comparison between inadequate products or sums fails (for instance, $\{l_{1}$ : $Int\}*\{l_{1}$ : Int, $l_{2}$ : Str}). It is
denoted $by\perp as$ the case of product of types. We $define\perp to$ be idempotent, i.e,, $\perp*\alpha=\alpha*\perp=\perp$ .
Example 3. Suppose $\alpha=Intarrow$ {$foo$ ; Int, bar: Bool} and $\beta=Natarrow$ {$foo$ ; Int},

$\alpha*\beta=$ ($Intarrow$ {foo: Int, bar: $Bool\}$ ) $*$ ( $Natarrow\{foo$ : Int})
$=\langle Nat, Int\ranglearrow$ ( $\{foo$ ; Int, bar: $Boo1\}*\{foo$ : Int})
$=$ (Nat, $Int\rangle$ $arrow$ {$foo$ ; (Int, $Int\rangle$ }

$*is$ neither commutative nor associative.
A subtype relation over a domain of infinite types was defined by [Amadio et al.,1991] in case of function

space, and they also gave an algorithm to determine a subtype relation for any two ground types and demon-
strated its soundness and completeness. We can explain it in terms of a ranked subproduct and extend it
to involve product(record type) and sum(variant). $*_{n}$ denotes the subproduct of n-th rank. Assume that a
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subtype relation over primitive types is given. We shall denote a subtype relation by $\leq$ . The ranked subproduct
$*_{n}$ is a Boolean binary function similar to the subproduct operation except that:

1. $\alpha*0\beta$ is always true.
2. If both $\alpha$ and $\beta$ are primitive types, then ( $\alpha,$

$\beta\rangle$ is true iff $\alpha\leq\beta$ . Otherwise false.
3. $(\alpha_{1}arrow\alpha_{2})*n(\beta_{1}arrow\beta_{2})=(\beta_{1^{*}n-1}\alpha_{1})arrow(\alpha_{2^{*}n-1}\beta 2)$ .
4. $\{l_{i} : \alpha_{i}, m_{j} : \alpha_{i}’\}*n\{l; : \beta_{i}\}=\{l_{i} : \alpha_{1^{*}n-1}\beta_{i}\}$ .
5. $[l_{i} : a_{i}]*n[l; : \beta_{i}, n_{k} : \beta_{k}’]=[l_{i} : \alpha_{i^{*}n-1}\beta_{1}]$ .

This function cuts a type at a depth of $n$ and the rests are considered to satisfy the subtype condition.
[Amadio et al.,1991] defines a subtype relation as follows:

$\forall_{k}\in N.\alpha*k\beta$ is true $\Rightarrow\alpha\leq\beta$

This relation induces partial order on the set of all ground types. If both $\alpha$ and $\beta$ are regular types, then there
is a finite $n$ such that $\alpha*n\beta\Leftrightarrow\forall_{k}\in N.\alpha*k\beta$. We see this fact by giving an algorithm that must terminate
to judge the subtype relation. To prove $\alpha\leq\beta$ , compute $\alpha*\beta$ first. The number of all components is finite as
noted above. If all components $\langle\alpha;, \beta_{j}\rangle$ are true, then we conclude $\alpha\leq\beta$ . This algorithm completely agrees
with the above definition, obviously. The complexity is less than or equal to that of unification of regular
trees. Therefore, in many cases, subtype relation can be judged in quasi-linear order for the lengths of type
expresslons.

Example 4. Suppose Nat $\leq$ Int and $\alpha=Intarrow$ { $foo$ : Int, bar : Bool} and $\beta=Natarrow$ { $foo$ : Int} are
given. $\alpha*\beta=$ \langle Nat, Int) $arrow$ {foo. (Int, $Int\rangle$ }. For (Nat, Int) and \langle Int, $Int\rangle$ , Nat $\leq Int$ and Int $\leq Int$ hold.
Thus, $\alpha\leq\beta$ .

2.4. LUB Type and GLB Type. The notion of LUB(the Least Upper Bound) types and GLB(the Greatest
Lower Bound) types can be already seen in [Cardelli, 1984] and [Stansifer, 1988]. Lub and glb of types are used
to solve a set of subtype constraints. An upper bound of an unknown type is given by the greatest lower bound
of its upper bound types. [Cardelli,1984] treated only ground types and an algorithm to judge a subtype
relation between recursive types was obscure. Later, it became clear in [Amadio et $a1.,1991$]. [Stansifer,1988]
has no recursive types. Our definition is an extension of Cardelli’s to regular types with quantified variables.
Cardelli referred to them as join and meet types, respectively. According to his notation, we denote the lub
type of $\alpha$ and $\beta$ by $\alpha\uparrow\beta$ and the glb type by $\alpha\downarrow\beta$ . To give their definition, we need some preliminary
remarks.

A function is contravariant for its domain since $\alphaarrow\beta\leq\alpha’arrow\beta’$ implies $\alpha’\leq\alpha$ and $\beta\leq\beta’$ . This
contravariance has caused a lot of nuisances on constructing type systems and type inference systems with
subtyping. A distinction between subtyping and subclassing is due to this fact. We introduce normalization of
rational expressions to eliminate some problem related to contravariance. We say $\alpha$ is in a negative position
if $\alpha$ is judged in a contravariant-way. Conversely, we say $\alpha$ is in a positive position if $\alpha$ is judged in a
covariant(ordinary) way. In a rational expression that represents a regular type, the same primitive type or
type variable may be referred to more than once. We say $\alpha$ is in an overlapping position if $\alpha$ is in both a
positive position and a negative position.

Example 5. In a function type $Intarrow Nat$ , Int is in a negative position and Nat is in a positive position.
As for $\mu\tau.\tauarrow Int$ , Int is in an overlapping position.

An overlapping position causes some difficulty to compute lub and glb. Hence, we first eliminate those positions
and transform types into an equivalent representation. We say a type is normal if its rational expression has
no overlapping positions. It is done by the following algorithm. We denote a covariant type constructor by $arrow+$

and a contravariant constructor by $arrow-$ . Let $\{q_{i}\}$ be a set of all positions. For instance, $\alphaarrow\beta$ is denoted by
$\alphaarrow-q_{0}arrow+\beta$. First, we make new positions $(q:, +)$ and $(q;, -)$ for all $q;$ . If there is a covariant constructor such
that $q;arrow+q_{j}$ , then connect positions to be $(q;, +)arrow+(q_{j}, +)$ and $(q_{i}, -)arrow+(q_{j}, -)$ . If there is a contravariant
constructor such that $q;arrow-q_{j}$ , then connect positions to be $(q_{1}\cdot, +)arrow-(q_{j}, -)$ and $(q;, -)arrow-(q_{j}, +)$ . The
resulting rational expression has no overlapping positions obviously and is as the same as the original one.

Exanple 6. $\mu\tau.\tauarrow Int$ is transformed into $\mu r.(\tauarrow Int)arrow Int$ . The first Int is in a negative position and
the second Int is in a positive position.

A lub type of two regular types is computed as the following algorithm. We assume that lubs and glbs of
primitive types are defined. After eliminating all overlapping positions,

1. If either is a free type variable in $\alpha\uparrow\beta$ , the result is a pair ( $\alpha,$
$\beta\rangle$

$\dagger$ .
2. $(\alpha_{1}arrow\alpha_{2})\uparrow(\beta_{1}arrow\beta_{2})=(\alpha_{1}\downarrow\beta_{1})arrow(\alpha_{2}\uparrow\beta_{2})$ .
3. $\{l_{i} : \alpha_{i}, m_{j} : \alpha_{j}’\}\uparrow\{l_{i} : \beta_{i}, n_{k}. \beta_{k}’\}=\{l_{i} : \alpha;\uparrow\beta_{i}\}$ . $(^{\forall_{j}\forall_{k.m_{j}}}\neq n_{k})$
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4. $[\iota_{:} : \alpha;, m_{j} : \alpha_{j}’]\uparrow[l_{1} : \beta_{i}, n_{k} : \beta_{k}’]=[l_{i} : \alpha_{i}\uparrow\beta_{1}, m_{j}\cdot\alpha_{i}’, n_{k} : \beta_{k}’]$ . $(^{\forall_{j}\forall}k.m_{j}\neq n_{k})$

Rules about $\mu$-variables are similar to ones of product of types. Comparison between different type constructors
fails. We denote it $by\perp as$ the same as the case of product.

Example 7. Suppose that Nat $<Int,$ $\alpha=\mu r.Intarrow\tau$ and $\beta=\mu\sigma.Natarrow Intarrow\sigma$ . Then,

$\alpha\uparrow\beta=(\mu\tau.Intarrow\tau)\uparrow(\mu\sigma.Natarrow Intarrow\sigma)$

$=\mu\langle r, \sigma\rangle.(Int\downarrow Nat)arrow(\tau\uparrow(Intarrow\sigma))$

$=\mu\langle\tau,$ $\sigma$) $.Natarrow((Intarrow\tau)\uparrow(Intarrow\sigma))$

$=\mu\langle\tau, \sigma\rangle.Natarrow((Int\downarrow Int)arrow(\tau\uparrow\sigma))$

$=\mu\langle\tau,$ $\sigma$ ) $.Natarrow(Intarrow\langle\tau, \sigma))$

The case of glb is simply defined as this contravariance.
1’. If either is a free type variable in $\alpha\downarrow\beta$ , the result is a pair $(\alpha,$ $\beta\rangle^{\downarrow}$ .
2’. $(\alpha_{1}arrow\alpha_{2})\downarrow(\beta_{1}arrow\beta_{2})=(\alpha_{1}\uparrow\beta_{1})arrow(\alpha_{2}\downarrow\beta_{2})$ .
3’. $\{l; : \alpha_{i}, m_{j} : \alpha_{i}’\}\downarrow\{l; : \beta_{i}, n_{k} : \beta_{k}’\}=\{l; : \alpha;\downarrow\beta_{i)}m_{j} : \alpha_{j}’, n_{k} : \beta_{k}’\}$ . $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

4’. $[l_{i} : \alpha;, m_{j} : \alpha_{j}’]\downarrow[l_{i} : \beta_{1)}n_{k} : \beta_{k}’]=[l_{1} : \alpha;\downarrow\beta_{i}]$. $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

The problem caused by overlapping positions is that lub and glb operation may be reversed when a $\mu-$

variable is unfolded. We give an example.

Example 8. Suppose that Nat $<Int,$ $\alpha=\mu r.rarrow Nat$ and $\beta=\mu\sigma.\sigmaarrow Int$ . Nat and Int are in overlapping
positions. Then,

$\alpha\uparrow\beta=$ ( $\mu\tau.rarrow$ Nat) $\uparrow(\mu\sigma.\sigmaarrow Int)$

$=\mu\{\tau,$ $\sigma\rangle$ $.(\tau\downarrow\sigma)arrow$ ( $Nat\uparrow$ Int)
$=\mu(r,$ $\sigma\rangle$ $.\langle r, \sigma\ranglearrow Int$

Although $\alpha’=\mu r.(\tauarrow Nat)arrow Nat$ and $\beta’=\mu\sigma.(\sigmaarrow Int)arrow Int$ are equivalent representation of $\alpha$ and $\beta$ ,
respectively, their lub is derived as follows:

$\alpha’\uparrow\beta’=(\mu\tau.(\tauarrow Nat)arrow Nat)\uparrow(\mu\sigma.(\sigmaarrow Int)arrow Int)$

$=\mu(\tau, \sigma).((rarrow Nat)\downarrow(\sigmaarrow Int))arrow(Nat\uparrow Int)$

$=\mu\langle\tau,$ $\sigma$ ) $.((\tau\uparrow\sigma)arrow(Nat\downarrow Int))arrow Int$

$=\mu\langle r, \sigma\rangle((\tau, \sigma\ranglearrow Nat)arrow Int$

If there is no overlapping positions, no such phenomenon occurs obviously.
More generally, lub type and glb type can be defined over infinite ground types. For that, we need finite

approximation of lub and glb and limit operation. We introduce a new type $0$ into primitive types. A ranked
$1ub\uparrow k(k\in N)$ is defined as follows:

1. $\alpha\uparrow_{0}\beta=\alpha\downarrow 0\beta=0$ for any types $\alpha,$
$\beta$ .

2. $(\alpha_{1}arrow\alpha_{2})\uparrow_{k}(\beta_{1}arrow\beta_{2})=(\alpha_{1}\downarrow_{k-1}\beta_{1})arrow(\alpha_{2}\uparrow_{k-1}\beta_{2})$ .
3. $\{l. : \alpha;, m; : \alpha_{j}’\}\uparrow k\{l: : \beta:, n_{k} : \beta_{k}’\}=\{l_{i} : \alpha;\uparrow_{k-1}\beta_{i}\}$ . $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

4. $[l_{i} : \alpha_{i)}m_{j} : \alpha_{j}’]\uparrow k[l_{i} : \beta_{i}, n_{k} : \beta_{k}’]=[l_{i} : \alpha:\uparrow_{k-1}\beta_{i}, m_{j} : \alpha_{i)}’n_{k} : \beta_{k}’]$ . $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

$\downarrow k$ is defined similarly.

Definition 1 (lub on infinite ground types). Let $\alpha,$
$\beta$ be infinite ground types.

$\alpha\uparrow\beta=\lim_{k\sim\infty}\alpha\uparrow k\beta$

A sequence of ranked lubs converges or a limit exists if $\alpha\uparrow k\beta$ exists for all $k\in$ N. The domain of infinite
ground types with subtyping order has several properties. It looks like a carved lattice. There are some pairs
of elements which have no lub or glb elements. But if either exists, another must exist.

Proposition 1. $\alpha\uparrow\beta\neq\perp if$ and only if $\alpha\downarrow\beta\neq\perp$ .

Proof. We have assumed that primitive types have this property. A necessary and sufficient condition of
existence of lubs and glbs is to match kinds of type constructors for every position in two types. Hence, if
either exists, it implies all type constructors match in view of a kind(that is, function, product or sum). 1
The next theorem tells a uniqueness of lub and glb. This proposition is used to bundle several subtype
constraints into one.

Proposition 2 (Uniqueness of lub and glb). $(i)$ . $\uparrow is$ commutative. (ii). $\uparrow is$ associative.
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Proof. (i). Obvious. (ii). To exclude trivial cases, we assume that the lub and glb of every pair of types under
consideration is $not\perp$ .
Fact 1. Let $\alpha,$ $\beta$ and 7 be infinite ground types. $(\alpha\uparrow k\beta)\uparrow k\gamma=\alpha\uparrow k(\beta\uparrow k\gamma)$ for all $k\in N$ .

Proof. We show associativity of each rule. The proof is by induction.
Base case. We assume $that\uparrow k$ and $\downarrow k$ are associative for primitive types.
Case of arrows.

$((\alpha_{1}arrow\alpha_{2})\uparrow k(\beta_{1}arrow\beta_{2}))\uparrow k(\gamma_{1}arrow\gamma_{2})$

$=((\alpha_{1}\downarrow_{k-1}\beta_{1})arrow(\alpha_{2}\uparrow_{k-1}\beta_{2}))\uparrow k(\gamma_{1}arrow\gamma_{2})$

$=((\alpha_{1}\downarrow_{k-1}\beta_{1})\downarrow_{k-1}\gamma_{1})arrow((\alpha_{2}\uparrow_{k-1}\beta_{2})\uparrow_{k-1}\gamma_{2})$

$=(\alpha_{1}\downarrow k-1(\beta_{1}\downarrow_{k-1}\gamma_{1}))arrow(\alpha_{2}\uparrow k-1(\beta_{2}\uparrow k-1\gamma_{2}))$ (by IH)
$=(\alpha_{1}arrow\alpha_{2})\uparrow k((\beta_{1}\downarrow_{k-1}\gamma_{1})arrow(\beta_{2}\uparrow_{k-1}\gamma_{2}))$

$=(\alpha_{1}arrow\alpha_{2})\uparrow k((\beta_{1}arrow\beta_{2})\uparrow k(\gamma_{1}arrow\gamma_{2}))$

Case of product. Intersection is associative.

$(\{l; : \alpha_{i}, m_{j} : \alpha_{j}’\}\uparrow k\{l_{i} : \beta_{i}, n_{k} : \beta_{k}’\})\uparrow k\{l_{i} : \gamma_{i}, 0_{p} . \gamma_{p}’\}$ $(^{\forall_{j}\forall_{k}\forall_{p.m_{j}}}\neq n_{k}\neq 0_{p})$

$=\{l; : \alpha;\uparrow_{k-1}\beta_{i}\}\uparrow k\{l_{i} : \gamma_{i}, 0_{p} : \gamma_{p}’\}$

$=\{l_{i} : (\alpha_{i}\uparrow_{k-1}\beta:)\uparrow_{k-1}\gamma.\}$

while,

$\{l; : \alpha_{i)}m_{j} : \alpha_{j}’\}\uparrow k$ $(\{1_{i} : \beta_{i}, n_{k} : \beta_{k}’\}\uparrow k\{l; : \gamma_{i}, 0_{p} : \gamma_{p}’\})$ $(^{\forall_{j)}\forall_{k}\forall}p.m_{j}\neq n_{k}\neq 0_{p})$

$=\{t_{i} : \alpha;, m_{j} : \alpha_{j}’\}\uparrow k\{l_{1}. : \beta_{i}\uparrow k-1\gamma_{i}\}$

$=\{\iota_{:} : \alpha$. $\uparrow_{k-1}(\beta_{i}\uparrow_{k-1}\gamma_{i})\}$

By induction hypothesis, $\{l_{i} : (\alpha;\uparrow k-\iota\beta;)\uparrow k-1\gamma_{i}\}=\{1_{i} : \alpha_{i}\uparrow k-1(\beta_{i}\uparrow_{k-1}\gamma.)\}$ .
Case of sum. omitted.

1
By definition, $( \alpha\uparrow\beta)\uparrow\gamma=\lim_{karrow\infty}(\alpha\uparrow k\beta)\uparrow k\gamma=\lim_{karrow\infty}\alpha\uparrow k(\beta\uparrow k\gamma)=\alpha\uparrow(\beta\uparrow\gamma)$. We have defined
$\perp\uparrow\alpha=\alpha\uparrow\perp=\perp for$ any type $\alpha$ so that $\alpha\uparrow(\beta\uparrow\gamma)=(\alpha\uparrow\beta)\uparrow\gamma$ for any types $\alpha,$

$\beta$ and $\gamma$ . I
The next proposition is necessary to prove the completeness of our inference system.

Proposition 3 (Completeness of lub and glb). Let $\alpha$ and $\beta$ be ground types. $\gamma\leq\alpha$ and $\gamma\leq\beta$ iff $\gamma\leq$

$\alpha\downarrow\beta$ and $\alpha\leq\gamma$ and $\beta\leq\gamma$ iff $\alpha\uparrow\beta\leq\gamma$ for any type $\gamma$ .

Proof. As above, we assume that lubs and glbs are $not\perp and$ primitive types have this property.
$(\Leftarrow)$ We show $\alpha\downarrow\beta\leq\alpha$ and $\alpha\leq\alpha\uparrow\beta$ for any types $\alpha$ and $\beta$ by confirming that $(\alpha\downarrow\beta)*k\alpha$ and
$\alpha*k(\alpha\uparrow\beta)$ are true for each type constructor.

Case of arrows.

$((\alpha_{1}arrow\alpha_{2})\downarrow(\beta_{1}arrow\beta_{2}))*k(\alpha_{1}arrow\alpha_{2})=((\alpha_{1}\uparrow\beta_{1})arrow(\alpha_{2}\downarrow\beta_{2}))*k$ (a $1arrow\alpha_{2}$ )
$=(\alpha_{1^{*}k-1}(\alpha_{1}\uparrow\beta_{1}))arrow((\alpha_{2}\downarrow\beta_{2)*k-1}\alpha_{2})$

Case of product.

$(\{l; : \alpha;, m_{j} : \alpha_{j}’\}\downarrow\{l_{i} : \beta_{i}, n_{k} : \beta_{k}’\})*k\{l_{i} : \alpha;, m_{j} : \alpha_{j}’\}$ $(^{\forall}j^{\forall}k.m_{j}\neq n_{k})$

$=\{l_{i} : \alpha_{i}\downarrow\beta;, m_{j} : \alpha_{j}’, n_{k} : \beta_{k}’\}*k\{l_{i} : \alpha_{i}, m_{j} : \alpha_{j}’\}$

$=\{l; : (\alpha;\downarrow\beta_{i})*\alpha m_{j} : \alpha_{i}’\downarrow\alpha_{j}’\}$

$=\{\iota_{::(\alpha_{i}}\downarrow\beta_{:})*\alpha, m_{j} : \alpha_{i}’\}$

Case of sum.

$([l_{i} : \alpha;, m_{j} : \alpha_{j}’]\downarrow[l_{i} : \beta_{i}, n_{k} : \beta_{k}’])*k[l; : \alpha;, m_{j} : \alpha_{i}’]$ $(^{\forall_{j}\forall}k.m_{j}\neq n_{k})$

$=[l; : \alpha;\downarrow\beta_{i}]*k[l_{i} : \alpha;, m; : \alpha_{j}’]$

$=[l; : (\alpha_{i}\downarrow\beta_{i})*k-1\alpha.]$
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By simultaneous induction, we have $\alpha\downarrow\beta\leq\alpha$ and $\alpha\leq\alpha\uparrow\beta$ so that $\gamma\leq\alpha\downarrow\beta\leq\alpha$ and $\alpha\leq\alpha\uparrow\beta\leq\gamma$.
$(\Rightarrow)$ Consider $\gamma*(\alpha x\beta)$ . Without loss of generality, let { $\gamma;,$ ( $\alpha.,$

$\beta;\rangle\rangle$ be components of $\gamma*(\alpha x\beta)$ in
the positive positions, and ( $(\alpha;, \beta_{i}\rangle, \gamma_{i})$ be components in the negative positions. We define new operations $\uparrow’$

and $\downarrow’$ such that if $\alpha_{i}\neq 0$ and $\beta_{i}\neq 0$ , then $\uparrow’(\alpha_{i},$ $\beta_{1}\rangle$ $=\alpha_{i}\uparrow\beta_{i}$ , otherwise $\uparrow’(\alpha,$ $0\rangle$ $=\uparrow’(0, \alpha)=\alpha$ and $1’$ is
defined similarly. For all components ($\gamma_{i},$

$(\alpha;, \beta:)\rangle$ , we construct a set of constraints $\gamma_{i}\leq\downarrow’(\alpha;, \beta_{i})$ and for all
components $((\alpha_{j}, \beta:),$ $\gamma;\rangle$ , we make $\uparrow’(\alpha.,$ $\beta_{i}\rangle$ $\leq\gamma;$ . Obviously, the set of constraints is equivalent to $\gamma\leq\alpha\downarrow\beta$.
Equality $\gamma;\leq 1’\langle\alpha_{i},$ $\beta_{i}$ ) $\Leftrightarrow\gamma_{i}\leq\alpha_{i}$ and $\gamma;\leq\beta_{1}$ implies it is also equivalent to $\gamma\leq\alpha$ and $\gamma\leq\beta$ .
Therefore, $\gamma\leq\alpha$ and $\gamma\leq\beta$ implies $\gamma\leq\alpha\downarrow\beta$ and vice versa. 1
Note that the upper bound of a type is the $glb$ of a set of the upper bound types.

3. Semantics of the Target Language
The target language is a simple ML-like functional language with product and sum to concentrate our attention
to type inference algorithms. This is the language in [Cardelli,1984] added let. It has no restrictions such as
type declarations or any kind of annotation for type inference. Its extension to imperative languages will be
discussed in a later section. The syntax is as follows:

$e$ $::=$ $0|x|1etx=e$ in $e|fixf(x)=\lambda x.e$ in $e|ife$ then $e$ else $e|e+e$
fn $x\Rightarrow e|ee|\{l:e, \cdots , l:e\}|e.l|le|casee$ of $lx\Rightarrow e|\cdots|lx\Rightarrow e$

where $x$ is a variable and $l$ is a label. The semantics of this language is described in figure I. The semantic
function is $\mathcal{E}[]$ : $Exparrow Envarrow V$ where $Exp$ are syntactic expressions, Env are environments, and V
are values. $F$ denotes the domain of continuous functions $Varrow V$ . We may use new constants or primitive
functions that do not appear in this table if necessary. The domains of product and sum are coalesced so that

core.

$\mathcal{E}[0Q\rho=0$ (constant)
$\mathcal{E}[xJ\rho=\rho x$ (variable)
$\epsilon \mathbb{I}letx=e_{1}$ in $e_{2}J\rho=if\mathcal{E}Ie_{1}\mathfrak{g}_{\beta}\neq\perp then$ $\mathcal{E}\ovalbox{\tt\small REJECT} e_{2}J\rho\{\mathcal{E}\beta e_{1}J\rho/x\}else\perp$ (let)
$\mathcal{E}[fixf(x)=\lambda x.e_{1}$ in $e_{2}J\rho=\mathcal{E}Ie_{2}J\rho\{Y(\lambda v.\mathcal{E}\beta\lambda x.e_{1}\mathbb{I}\rho\{v/f\})/f\}$ (fix)
$\mathcal{E}[ife$ then $e_{1}$ else $e_{2}J\rho=if$ $\mathcal{E}$ [$eI\rho=true$ then $\mathcal{E}\beta e_{1}$ ] $\rho$ else if $\mathcal{E}QeJ\rho=false$ then $\mathcal{E}[e_{2}J\rho else\perp$ (if)
$\mathcal{E}Qe_{1}+e_{2}J\rho=if\mathcal{E}\beta e_{1}J\rho\in Int$ and $\mathcal{E}\beta e_{2}J\rho\in Int$ then $\mathcal{E}[e_{1}\#\rho+\mathcal{E}\beta e_{2}J\rho else\perp$ (a primitive function)

function.

$\mathcal{E}[fnx\Rightarrow eJ\rho=(\lambda v.\mathcal{E}\beta eJ\rho\{v/x\})$ (abstraction)
$\mathcal{E}[e_{1}e_{2}J\rho=if\mathcal{E}Ie_{1}J\rho\neq\perp and$ $\mathcal{E}[e_{2}I\rho\neq\perp then$ $(\mathcal{E}Ie_{1}J\rho|F)(\mathcal{E}Ie_{2}J\rho)else\perp$ (application)

product.

$\mathcal{E}\beta\{l_{1} : e_{1}, \cdots , l_{n} : e_{n}\}J\rho=\{l_{1} : \epsilon Ie_{1}J\rho, \cdots)l_{n} : \mathcal{E}[e_{n}J\rho\}$ (record construction)
$\mathcal{E}[e.lJ\rho=if\mathcal{E}\# eJ\rho$ has a field $l$ then $(\mathcal{E}\beta eJ\rho).lelse\perp$ (field selection)

sum.

$\mathcal{E}InilJ\rho=[nil:\perp]$ (single constructor)
$\mathcal{E}Qle]\rho=[l:\mathcal{E}\beta eJ\rho]$ (carrier constructor)
$\mathcal{E}[casee$ of $l_{1}x_{1}\Rightarrow e_{1}|\cdots|l_{n}x_{n}\Rightarrow e_{n}J\rho$

$=if\mathcal{E}Ie]\rho$ matches $[l$; : $e’]$ then $\mathcal{E}\beta e;J\rho\{\mathcal{E}[e]\rho/x_{i}\}else\perp$ (pattern match)

Figure I. Semantics of the Target Language

if at least one element $is\perp$ , then the whole value is $also\perp$ . $|F$ means a restriction to function space. $Y$ is the
fixed-point operator. We assume that identical labels do not appear in a record or a case-statement more than
once. The semantics of function application is considered as the applicative order evaluation.

4. Inference Algorithm
In this section, we explain our type inference algorithm and give the proofs of its soundness and completeness.
It turns out to be possible to combine subtype analysis and parametric polymorphism naturally. An overview
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of the whole algorithm is as follows. First, the constraint graph is generated from a given program. Then, we
compute all lower bounds and upper bounds for all free type variables in the graph. Finally, we examine if
contradiction exists or not and provide a type assignment for each expression in the program or report errors.

CONST $A\vdash e$ : $\alpha$ if $e$ : $\alpha\in A$

VAR $A\vdash x$ : $\alpha[\beta_{i}/\alpha;]$ $x$ : $\alpha\in A,$ $\alpha$ ; are the quantified variables of a and $\beta$. are new variables

LET $\frac{A\vdash e_{1}:\beta A+\{x:\forall\vec{\alpha}.\beta\}\vdash e_{2}:\gamma}{A\vdash 1etx=e_{1}ine_{2}:\gamma}$

FIX $\ovalbox{\tt\small REJECT} A+\{x:\beta, f:\beta_{A\vdash fixf(x)=\lambda xein}arrow\gamma\}\vdash e_{1}:\gamma A.+_{1}\{f:_{e_{2}^{\forall}}\tilde{\alpha_{:\delta}}\betaarrow\gamma)\}\vdash e_{2}:\delta$

IF $\ovalbox{\tt\small REJECT} A\vdash e_{1}:\alpha\alpha\leq Boo1A\vdash e_{2}:\beta A\vdash e_{3}:\gamma\delta=1ub(\beta, \gamma)A\vdash ife_{1}thene_{2}e1see_{3}:\delta$

PLUS $\frac{A\vdash e_{1}:\alpha A\vdash e_{2}:\beta\alpha\leq Num\beta\leq Num\gamma=1ub(\alpha,\beta)}{A\vdash e_{1}+e_{2}:\gamma}$

ABS $\frac{A+\{x:\alpha\}\vdash e:\beta}{A\vdash fnx=>e:\alphaarrow\beta}$

APP $\frac{A\vdash e_{1}:\alphaarrow\beta A\vdash e_{2}:\alpha’\alpha’\leq\alpha}{A\vdash(e_{1}e_{2}).\cdot\beta}$

RECORD $\frac{A\vdash.e_{1}.:\alpha_{1}\ldots A\vdash e_{n}:.\alpha_{n}}{A\vdash\{l_{1}:e_{1},\cdot,l_{n}:e_{n}\}:\{l_{1}:\alpha_{1,)}l_{n}.\alpha_{n}\}}$

DOT $\frac{A\vdash e:\beta\beta\leq\{l:\alpha\}}{A\vdash e.l:\alpha}$

INJECT $\frac{A\vdash e:\alpha}{A\vdash le:[l:\alpha]}$

MATCH $\frac{A\vdash e:\alpha A+\{x_{1}:\beta_{i}\}\vdash e_{i}:\gamma_{i}(1\leq\forall i\leq n)\alpha\leq.[l_{1}:\beta_{1},\cdots,l_{n}.\beta_{n}]\delta=1ub(\gamma_{1},\cdots,\gamma_{n})}{A\vdash caseeofl_{1}x_{1}=>e_{1}|..|l_{n}x_{n}=>e_{n}:\delta}$

Figure II. Rules for Type Inference

4.1. Generating Subtype Constraint Graph. We infer exact types and generate subtype constraints
simultaneously. An exact inference part is similar to ML’s system except that product and sum type are
handled. The rules are listed in figure II. Concerning the rule LET and FIX, $\forall_{\vec{\alpha}.\beta}$ means that all free
variables in $\beta$ except contained in the assumption $A$ are universally quantified.

Several rules can be also looked up at inference rules of partial types, which is proposed in [Thatte,1988].
Partial types aimed to incorporate heterogeneous objects into a ML-like type system and to eliminate run-time
type errors. Their heterogeneous objects are in our terminology different type constructors with $\Omega$ and safety
analysis means subtype inference. This is the reason similar rules appear.

During inference, circular subtype constraint may appear. Instances of circular constraints are $\alpha\leq$

. . . $\leq\alpha$ or $\alpha\leq\cdots\leq C(\alpha)$ for type variable $\alpha$ and some type constructor $C$ . F-bounded quantification
[Canning et a1.,1989] is a circular constraint having a form of one inequality. If a set of subtype constraints
has no circular constraints, the meaning is clear. But it can not cope with recursive data structures and
recursive functions such as [Stansifer,1988]. Therefore, we solve circular constraints and transform them into
equivalent non-circular constramts. It turns out providing the semantics of F-bounded polymorphism. It will
be discussed, however, in the following subsection. First, we obtain a set of constraints through inference rules
as follows:

1. A subtype relation between primitive types can be judged immediately.
2. If there is an inequality whose both sides have the same kind of type constructor, we can decompose
it into finer constraints.
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3. In case of a circular constraint like $\alpha\leq$ . . . $\leq\alpha$ , we consider inequal signs between them as
equalities and unify all variables.
4. In case of a circular constraint over a type constructor like $\alpha\leq\cdots\leq C(\cdots\alpha\cdots)$ , we exclude
circularity.

We can omit completion operations of a constraint graph such as described in [Kozen et al.,1992] since we
always have the finest constraints during inference.

After getting subtype constraints, we compute upper bounds and lower bounds for all type variables.
Resulting constraints are $\underline{\alpha}\leq\alpha\leq\overline{\alpha}$ where $\alpha$ is a type variable and $\underline{\alpha}$ , ZV are its lower bound and upper bound,
respectively. If an upper bound type or a lower bound type contain type variables, it means that dynamic type
checking is needed. For instance, consider application function app $=fnf\Rightarrow fnx\Rightarrow(fx)$ , whose type is
$\forall_{\alpha^{\forall}\beta^{\forall}\alpha’.(\alpha}arrow\beta)arrow\alpha’arrow\beta$ and constraint is $\alpha’\leq\alpha$ . We can not judge whether this constraint is satisfied
or not until all arguments are applied to this function. Of course, if the whole program is given, we can omit
dynamic type checking. If we find a variable $\alpha$ such that $\underline{\alpha}>\overline{\alpha}$ or fails to compute lubs or glbs, the solution
which satisfies the constraint graph does not exist.

A free type variable which is not under any subtype constraint is used for parametric polymorphism. A
type of a function id $=fnx\Rightarrow x$ is $\forall_{\alpha.\alpha}arrow\alpha$ and it has no subtype constraints. This function is completely
compatible in Damas and Milner’s type system, while constrained functions obey subtyping rules.

A subtype constraint $\leq$ is asymmetric. A lower bound means that the variable may be substituted by an
instance of the type while an upper bound means that if a value whose type is greater than the upper bound
comes, the corresponding operator fails to receive the value. A lower bound is a concrete value and an upper
bound is a constraint of some operation. Hence, we conclude that the type of an expression to be its lower
bound type. Consider the following example.

Example 9. (fn $x\Rightarrow x$ ) $3$

Suppose 3 is Int, then a type of this expression is $\alpha$ and the constraint is Int $\leq\alpha$ . We conclude that the type
of this expression is Int. But the identification of a type with its lower bound type is only for expressions of
types and the constraint Int $\leq\alpha$ still remains.

4.2. Solving a Circular Constraint. A basic idea for solving circular constraints was provided in [Kaes, 1992],
We have proved that it is sufficient. The meaning of F-bounded quantification becomes clear as a result.

Definition 2. A type constructor $C$ over a domain of infinite ground types is a covariant constructor if
$\alpha\leq\beta$ implies $C(\alpha)\leq C(\beta)$ and if $\alpha>\beta$ holds or $\alpha$ does not have a subtype relation with $\beta(we$ shall denote
it by $\alpha\neq\beta$ ), then $C(\alpha)\not\leq C(\beta)$ .

Note that $C(\alpha)\leq C(\beta)$ implies $\alpha\leq\beta$ since whenever $\alpha>\beta$ or $\alpha\neq\beta$ hold, then $C(\alpha)\not\leq C(\beta)$ . Both product
and sum are covariant constructors and function is a covariant constructor for its codomain.

Theorem 1. Let $C$ be a covanant constructor. A type constraint $\alpha\leq C(\alpha)$ is equivalent to $\alpha\leq\mu\tau.C(\tau)$ .

Proof. $(\Rightarrow)$ Suppose that $\alpha\leq C(\alpha)$ . Since $C$ is a covariant constructor, $C(\alpha)\leq C(C(\alpha))$ . Therefore, by
induction, $\alpha\leq C^{n}(\alpha)$ for each $n\in N$ . $C$ is a contracting mapping over infinite trees [Courcelle,1983] so that
$\lim_{narrow\infty}C^{n}(\alpha)$ exists uniquely and $\lim_{narrow\infty}C^{n}(\alpha)=\mu\tau.C(r)$ . By the definition of subtype relation, we have
$\alpha\leq\mu\tau.C(\tau)$ .
$(\Leftarrow)$ Suppose that $\alpha\leq\mu\tau.C(r)$ and $\alpha\not\leq C(\alpha)$ . Since $C$ is a covariant constructor, $\alpha\leq\mu\tau.C(\tau)$ $\Rightarrow$

$C(\alpha)\leq C(\mu r.C(\tau))$ $\Rightarrow$ $C(\alpha)\leq\mu r.C(r)$ . By induction, we have $C^{n}(\alpha)\leq\mu\tau.C(\tau)$ for all $n\in$ N. If we
assume that there is $n\in N$ for which $\alpha\leq C^{n}(\alpha)$ , then $\alpha\leq C^{n}(\alpha)\leq\mu\tau.C(r)$ . Therefore, there is no such $n$ .
However, $\alpha*k\mu\tau.C(\tau)$ is true for all $k\in N$ . We have a contradiction. 1
A contravariant constructor is defined similarly.

Definition 3. A type constructor $C$ over a domain of infinite ground types is a contravariant constructor
if $\alpha\leq\beta$ implies $C(\alpha)\geq C(\beta)$ and if $\alpha>\beta$ or $\alpha\neq\beta$ hold, then $C(\alpha)\not\geq C(\beta)$ .

A function is a contravariant constructor for its domain.

Theorem 2. Let $C$ be a contravariant constructor. A type constraint $\alpha\leq C(\alpha)$ is equivalent to $\alpha\leq\mu\tau.C(\tau)$ .

Proof. In this case, the proof is a little complicated. Consider both an ascending sequence and a descending
one for which:

1. $\alpha\leq C(C(\alpha))\leq C^{4}(\alpha)\leq\cdots$ ,
2. $C(\alpha)\geq C(C(C(\alpha)))\geq C^{5}(\alpha)\geq\cdots$ .
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Note that $C^{2n}(\alpha)\leq C^{2n+1}(\alpha)$ and $C^{2n+)}(\alpha)\geq C^{2n+2}(\alpha)$ hold so that both sequences are bounded. They
must converge because $C^{2}$ is contractive although they may not converge to the same limit. We denote by
$C^{2\infty}$ and $C^{2\infty+1}$ the limits of these two sequences, respectively. In this case, We claim that $\mu\tau.C(\tau)$ has the
universal property such that for any sequences, $C^{2\infty}\leq\mu r.C(r)$ and $\mu r.C(\tau)\leq C^{2\infty+1}$ because if we consider
only odd elements, the result of the previous theorem can be applied and so is even elements. I

Canning writes in [Canning et a1.,1989].

two types $t_{1}$ and $t_{2}$ may satisfy an F-bound ($t_{1}\subseteq P[t_{1}]$ and $t_{2}\subseteq F[t_{2}]$ ) but not be in a subtype
relation(neither $t_{1}\subseteq t_{2}$ or $t_{2}\subseteq t_{1}$ ). This means that a F-bounded function may be applied
to (or ”inherited” by) objects with incomparable types, demonstrating that the inheritance
hierarchy is distinct from the subtype hierarchy[Snyder,1986].

where $\subseteq$ means a subtype relation in their terminology. This assertion seems strange. They claim that there
are two types $t_{1}$ and $t_{2}$ which are not in a subtype relation but satisfy $t_{1}\leq C(t_{1})$ and $t_{2}\leq C(t_{2})$ for some type
constructor $C$ so that F-bounded quantification is not a subtype relation. But from our point of view, their
example seems similar to the following one. Consider two products { $l_{1}$ : Int, $l_{2}$ : Nat} and { $l_{1}$ : Int, 13 : Str}.
They are not in a subtype relation although both are subtypes of { $l_{1}$ : Int}. As we have proved, F-bounded
quantification is equivalent to a subtype constraint if types are restricted to regular types and type variables
are treated as Damas and Milner’s system.

4.3. Soundness and Completeness. In this subsection, we sketch proofs of soundness and completeness.
$P$ denotes a given program and $G$ denotes a constraint graph genereted from $P$ .

Theorem 3 (Soundness). Let $\tau$ be an inferred type(lower bound) of any expression $e$ in $P$ and $\sigma$ be its upper
bound type. If $\tau,$ $\sigma\neq\perp and$ $\tau\leq\sigma$ , then $e$ causes no type errors.

Proof. We assume that if all subtype constraints in every inference rule hold, the program causes no type
errors. For instance, in the rule RECORD, if $\beta\leq\{l\cdot\alpha\}$ , then the field selection must succeed. Obviously, our
inference algorithm preserves these constraints so that $r,$ $\sigma\neq\perp and\tau\leq\sigma$ implies that $e$ is one of solutions of
$G$ . Therefore, $e$ causes no type errors. I
Theorem 4 (Completeness). For any type constraint graph $A$ and any expression $e$ , if $A$ is consistent with
$P$ , then there is a type assignment $S$ such that $S\tau_{G}\leq\tau_{A}\leq\sigma_{A}\leq S\sigma_{G}$ where $\tau_{G)}\sigma_{G}$ are lower and upper bound
type of $e$ under $G$ respectively and $\tau_{A)}\sigma_{A}$ are under $A$ .

Proof From Proposition 3, if $\tau_{A},$ $\sigma_{A}<S\tau_{G}$ or $S\sigma_{G}<\tau_{A},$ $\sigma_{A}$ , it implies that $A$ is not consistent with P. 1
Proposition 4 (Uniqueness of principle type constraint). The resulting subtype constraint is unique.

Proof An immediate consequence of Proposition 2. 1
4.4. Discussions. We think object-oriented languages do not agree with functional properties because an
object is a thing that may have side-effects. We consider that one of natural extensions of our inference system
to imperative languages is as follows. Each occurrence of the same variable has different type variables. Let
$\alpha_{x}$ and $\beta_{x}$ be type variables of the same variable $x$ at different occurrences. If there is a data flow from $\alpha_{x}$ to
$\beta_{x})$ then a type constraint $\alpha_{x}\leq\beta_{x}$ is added to the system. Consider the following piece of a program \‘a la C.

if $(t==10)$
$x=3$ ;

$y=x$ ;

Suppose that the type variable of the first occurrence of $x$ is $\alpha_{x}$ and that of the second occurrence $\beta_{x}$ . A data
flow from $\alpha_{x}$ to $\beta_{x}$ may exist (if $t$ is equal to 10) so that $\alpha_{x}\leq\beta_{x}$ is added to the system.

We restrict types to regular types and general infinite types are not allowed. But all types that are generated
by our inference system are regular except the restriction of quantification. Types generated by inference rules
are a primitive type, generated by a type constructor or a solution of a subtype constraint. A primitive type is
obviously regular. A length of a program is finite so that type construction always terminates in finite steps.
Hence, if all components are regular, the result is also regular. Lub and glb operations generate regular types
from regular types. Consequently, all types are regular.

The restriction of quantification does not approve records having the following type:

$\mu r.\{l :\alpha.\alpha \forallarrow\alpha, m : r\}$

An instance of the type is:

$\{l:Intarrow h_{1}t, m:\{l=Natarrow Nat, m:\{l=Strarrow Str, \cdots\}\}\}$
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In order to cope with such a type, we need matching and unification of non-regular infinite trees as pointed
out in [Kaes, 1992].

5. Examples
Consider the following ML-like function which computes sum of numbers in a list:

fun SumList nil $=0$

SumList List(value, rest) $=value+SumList(rest)$

This function is translated into our language as follows:

fix SumList(x) $=\lambda x$ .case $x$ of nil $=>0|List(v, r)\Rightarrow v+SumList(r)$ in . . .

Its type is inferred as follows. In the first step, by the rule FIX,

$\frac{\{x:\alpha,SumList:\alphaarrow\beta\}\vdash casexofni1=>0:Int|List(v)r)=>v+SumList(r).:.\epsilon}{\{\}\vdash fixSumList(x)=\lambda x.casexofni1=>0|List(v,r)=>v+SumList(r)in}$ FIX

Next, the latter half of the case statement is inferred as follows:

$\frac{v:\gamma r:\delta\gamma\leq Num\beta\leq Num\delta\leq\alpha\epsilon=1ub(\gamma,\beta)}{\{x:\alpha,SumList:\alphaarrow\beta\}\vdash v+SumList(r):\epsilon}$ PLUS

The whole case statement is inferred by MATCH.

$\frac{\alpha\leq[ni1\perp,List:\gamma x\delta]\beta=1ub(Int,\epsilon)}{\{x:\alpha,SumList.\alphaarrow\beta\}\vdash casexofni1=>0|List(v,r)=>v+SumList(r):\epsilon}$ MATCH

Some trivial deductions (for instance, $0$ . Int) are omitted. Then, we get a set of constraints listed as follows:
$(\alpha=lub(\beta, \gamma)$ is interpreted as $\beta\leq\alpha$ and $\gamma\leq\alpha.$ )

$\alpha\leq$ [nil: $\perp,$ List $\cdot\gamma x\delta$]
$\gamma\leq Num,$ $\beta\leq Num,$ $\delta\leq\alpha$

$\gamma\leq\epsilon,$ $\beta\leq\epsilon$

Int $\leq\beta,$ $\epsilon\leq\beta$

$\alpha$ and $\delta$ occurs circularly. Solving the circularity, we have $\alpha\leq\mu\tau.$ [$nil:\perp$ , List: $\gamma x\tau$] . $\beta$ and $\epsilon$ occur circularly,
too. Hence, they are unified. Consequently, we have

$\alpha\leq\mu\tau.$ [$nil:\perp$ , List: $\gamma xr$], $\gamma\leq Num$

The rest of the constraints is graphically represented as:

$Int7arrow Numarrow\beta\backslash |$

This graph has no contradiction, i.e., has solutions. The constraints are minimum so that they themselves are
constraints of SumList that imposes the outer program. We conclude that SumList has the lower bound
type, $\mu\tau.$ [$nil:\perp$ , List: Num $x\tau$] $arrow Num$ .

SumList can accept all instance whose type is less than or equal to $\mu\tau.$ [$nil$ $\perp$ , List: Num $x\tau$]. Suppose
that Int $\leq Real\leq$ Num. For instance,

nil (Int)
[10, 20, 30, 40] (Int)
[0.32, 5.5, 100] (Real)

where $()$ is a type of the return value.
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6. Subtyping and Subclassing
Up to now, polymorphism of object-oriented languages is based on subclassing. The reasons why this has
worked well are (i). the fact that a record type having more labels is a subtype of one having fewer labels
goes with the way to inherit super class, that is making a subclass by adding new labels. (ii). the object-
oriented language such as $C++has$ very strong restriction on inheritance. It makes all virtual functions in
inheritance relation having the same type so that inheritance anomaly never occurs. However, as described
in [Cook et al.,1990], subclassing and subtyping are distinct notions and subclassing-based polymorphism has
possibility to bring about dynamic type errors. Subtyping is ordered structure obtained by abstracting a
concept of “type safeness“. As shown by this study, it is easy to extract subtype constraints from a program.
Meanwhile, we consider that subclassing does not have such a fruitful structure because inheritance hierarchy
is an arbitrary partially ordered set given by a programmer. The reason there are a few profound theories on
subclassing-based inheritance is that it has to deal with an arbitrary partially ordered set.

We consider that inheritance is a tool only for incremental programming and that subtyping is used for a
source of polymorphism. Therefore, when we write a subclass, it may not be a subtype of the super class. In
this case, an instance of the subclass can not be assigned to a variable of the superclass. For this reason, we
think when superclass is inherited, any kind of modification such as addition of a new method, deletion, etc.,
are allowed in our type system.

7. Conclusion
We have presented a type system and its inference system with recursive data structures in the presence of
subtyping by considering a type as a regular tree. Besides, our system keeps several properties that Damas
and Milner’s system has such as existence of principle types and syntactic completeness of type checking
algorithm. From the point of our inference system, subtyping-based polymorphism is considered to be natural.
We have provided a semantics of F-bounded polymorphism by defining a type as a regular tree and using the
parametric type polymorphism of Damas and Milner’s type system. Because our inference system requires a
weaker condition, we expect that our system is applicable to practical programming languages widely. Although
we have investigated in the framework of a simple functional language, its extension to imperative languages
is not difficult. We believe our type system enables ML to incorporate subtyping naturally.

There are several areas that need further investigation. These are (i). to estimate the complexity of our
inference algorithm. (ii). to provide semantics of our inference system on a model of recursive types such as an
ideal model[MacQueen et a1.,1986] and a PER model[Bruce et al., 1992] (iii). implementation of our algorithm
on interpreters and compilers. As for (iii), an inference interpreter is currently under development. (iv). to
investigate an efficient implementation scheme.

Acknowledgement
We would like to thank Atsushi Ohori who was kind enough to read the earlier version of this paper and gave
us helpful suggestions. We would also like to thank Jacques Garrigue for comments.

Bibliography
[Amadio et al.,1991] Robert M. Amadio and Luca Cardelli. Subtyping Recursive Types. In Conference

Record of the Eighteenth Annual ACM Symposium on Princip les of Programming
Languages, pages 104-118, January 1991.

[Baumgartner et a1.,1992] Gerald Baumgartner and Vincent F. Russo. Type Abstraction and Subtype Poly-
morphism for Object-Oriented Languages(draft). Technical report, Purdue Univer-
sity, 1992.

[Bruce et a1.,1992] Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types and
higher-order polymorphism. In Conference Record of the Nineteenth Annual ACM
Symposrum on Principles of Programming Languages, pages 316-327, January 1992.

[Canning et a1.,1989] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. F-Bounded Poly-
morphism for Object-Oriented Programming. In The Fourth International Con-
ference on Functional Programming Languages and Computer Architecture, pages
273-280, September 1989.

[Carde.lli et al.,1985] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. In Computrng Surveys, volume 17, 1985.

[Cardelli,1984] Luca Cardelli. A Semantics of Multiple Inheritance. In D.B. MacQueen G. Kahn
and G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in
Computer Science, pages 51-67. Springer-Verlag, 1984.



33

[Cook et al., 1990] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance Is Not Subtyp-
ing. In Conference Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 125-135, January 1990.

[Courcelle,1983] Bruno Courcelle. Fundamental Properties of Infinite Trees. In Theoretical Computer
Science, volume 25, pages 95-169, March 1983.

[Damas, 1985] Luis Damas. Type Assignment in Programming Languages. PhD thesis, Department
of Computer Science, University of Edinburgh, April 1985. CST-33-85.

[Kaes,1992] Stefan Kaes. Type Inference in the Presence of Overloading, Subtyping and Recur-
sive Types. In Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pages 193-204, 1992.

[Kozen et a1.,1992] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient Inference of
Partial Types. In FOCS, 1992.

[MacQueen et al.,1986] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. In Information and Control, volume 71, pages 95-130, 1986.

[Milner,1978] R. Milner. A Theory of Type Polymorphism in Programming. In Journal of Com-
puter and System Sciences, volume 17, 1978.

[Snyder,1986] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan-
guages. In Proc. ACM Conf on Object-Oriented Programming: Systems, Languages
and Applications, pages 38-45, 1986.

[Stansifer,1988] Ryan Stansifer. Type Inference with Subtypes. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages 88-97,
January 1988.

[Thatte,1988] Satish Thatte. Type Inference with Partial Types. In Proceedings of Internati-
nal Colloquium on Automata, Languages, and Programming, volume 317 of Lecture
Notes in Computer Science, pages 615-629. Springer-Verlag, 1988.

[Wand,1987] Mitchell Wand. Complete Type Inference for Simple Objects. In Proceedings of
Second Symposium on Logic in Computer Science, pages 37-44, 1987.


