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Abstract

If there are participants involved in a group wanting to recover a secret, then how $can\backslash$

we share the secret? Tlre purpose of this paper is to propose ideal threshold schemes
in terms of combinatorial designs. We associate our scheme with threshold scheme
expressed as a matrix and investigate the combinatorial properties of ideal schemes
with threshold access structure. It is shown that their existence is equivalent to the
existence of combinatorial designs. Also, assuming the existence of ideal schemes, we
show the condition for the number of blocks of ideal schemes to be expressed by the
cardinality of the divisible group.
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1. Introduction and Terminology

Informally, a secret sharing scheme is a method of sharing a secret $S$ among a finite
set of participants in such a way that certain authorized subsets of participants can
compute a secret $S$ . The purpose of this paper is to propose ideal threshold schemes
in terms of combinatorial designs. Also, assuming the existence of ideal scheme, we
show the condition for the number of blocks of ideal schemes to be expressed by the
cardinality of the divisible group.

Let $W_{=}\Delta\{S, V_{1}, \cdots, V_{n}\}$ . $S$ is called a secret and $V_{:}$ is called the share of the partici-
pant $P_{:}$ .
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Definition 1 $(\Lambda t, S, V)$ is a $secret$ sharing scheme $(SS)$ if $\mathcal{M}$ is a mapping: $S\cross Rarrow$

$V_{1}\cross V_{2}\cross\cdots\cross V_{n}$ , where $R$ is a set of random inputs.

Usually, access structures are defined as a subset of $2^{P}$ . For convenience, we define
them as a subset of $2^{V}$ . We use $P_{i}$ and $V_{\dot{e}}$ interchangeably. The set $\Gamma\subseteq 2^{p}(2^{P}$ is the
collection of all subsets of $\mathcal{P}$) is a monotone access structure if whenever $A\in\Gamma$ , for
any set $A\subseteq B,$ $A\neq B$ we have $B\in\Gamma$ . If $\Gamma$ consists of all subsets of $\mathcal{P}$ of at least some
fixed size $t$ , then we refer to $\Gamma$ as the $(t, |P|)$-threshold access structure(l $P|\triangle w$ )

$=$
. The

set of minimal authorized subsets of $\Gamma$ is denoted $\Gamma_{o}$ . $\Gamma_{o}$ uniquely determines $\Gamma$ and
conversely. Let $\mathcal{P}^{c}=$ {$p\in \mathcal{P}|there$ existsA $\in\Gamma_{o}$ with $p\in A$ }. So $\mathcal{P}^{c}$ contains those
participants $p$ such that there exists $A\in\Gamma$ with $(A\backslash p)\not\in\Gamma$ . We say that $\Gamma$ is connected
if $\mathcal{P}^{c}=\mathcal{P}$ . Let $\Gamma$ be a montone access structure defined on participant set $\mathcal{P}$ and let
$q$ be a positive integer. A perfect secret sharing scheme is a matrix $\Lambda t[BD91][BS92]$

such that

(a) $|S(p_{0})|=q$

(b) If $A\in\Gamma$ then $Aarrow p_{0}$

(c) If $A\not\in\Gamma$ then $A\star p_{0}$

We say that $\Lambda t$ is connected if $\Gamma$ is connected. If $\Gamma$ is a threshold access structure
then we refer to $\Lambda t$ as threshold scheme. Note that $|S(\mathcal{P}\cup p_{0})|\geq q$ for all $p\in \mathcal{P}^{c}$ .
With this in mind we define the information rate, $\rho$ , of $\Lambda 4$ by

$\rho=\frac{\sim \mathcal{P}}{}\Sigma_{p\in \mathcal{P}^{C}}log_{2}|S(p)|log_{2}q$ .

We denote such a scheme by PS$(\Gamma, \rho, q)$ . Note that $0<\rho\leq 1$ andp $=1$ if and only if
$|S(P\cup p_{0})|=q$ for all $p\in \mathcal{P}^{c}$ . It is known that $|V_{i}|\geq|S|$ in PS$(\Gamma, \rho, q)[BD91][BS92]$ .
where $|V_{i}|$ is the size of the share and $|S|$ is the size of the secret. A PS$(\Gamma, \rho, q)$ such
that $|V_{i}|=|S|$ is called ideal. [BD91] showed that every ideal scheme has a matroid
structure on $W$ by using a combinatorial argument. If $\rho=1$ then secret sharing scheme
$\Lambda t$ is said to be ideal.

Definition 2 $A$ (finite) incidence structure V is a triple (V, $B,$ $I$ ) which consists of two
$finite_{f}$ nonempty and disjoint sets V and $B$ and a subset $I\subseteq P\cross$ B. The elements of I
are called flags while those of V and $B$ are referred to as points and lines respectively.
I is cdled the incidence relation. We say that a point $x$ and a line $L$ are incident with
each other and write $x\in L$ if and only if $(x, L)$ is a flag.

Definition 3 A $t-(v, k, \lambda)$ design $D$ (or, briefly a t-design) consists of a set of points
and a set of blocks such that the following properties hold:

(a) $D$ has $v$ points.
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(b) Every block of $D$ consists of exactly $k$ points.

(c) through any $t$ points of $D$ , there are exactly $\lambda$ blocks.

The five constants $(v, b, r, k, \lambda)$ are called the parameters of the block design (V, B).
In this paper, we will use the letters $v,$ $b,$ $r,$

$k$ and $\lambda$ for the parameters unless stated
otherwise.

For the definition of block design, see the Appendix and $al$so for the theory of block
design, see reference [HP85].

2. Basic Results on Ideal Scheme

In this section we briefly introduce basic results on ideal schemes[BD91][BS92][SV87].

Result 1 Let $\mathcal{M}$ be a PS$(\Gamma, 1, q)$ , Then every distinct row of $\Lambda t$ occurs precisely $\lambda$

times, for some $\lambda\geq 1$ ,

for some $\rho\leq 1$ . Then the number of distinct rows of $\mathcal{N}$ is at least equal to the
number of distinct rows of M.

Result 2 Let $\mathcal{D}$ be a $TD_{1}(t, w+1, q)$ . Then there exists $\Lambda t$ , a PS$(\Gamma, 1, q)$ , where $\Gamma$ is
the $(t, w)$ -threshold access structure.

Result 3 Let $\mathcal{M}$ be a PS $(\Gamma, 1, q)$ , where $\Gamma$ is the $(t, w)$ -threshold access structure.
Then there exists $\mathcal{D}$ a $TD_{1}(t, w+1, q)$ .

3. Ideal Threshold Schemes and Designs

In this se.ction we look at the relationship between ideal threshold schemes and a
class of block designs called GD, ARBIBD, and Steiner System.

3.1 Ideal scheme and design

Lemma 1 A t-design can be constructed from finite geometry $D$ .

Proof: Consider the collection of subsets of $B$ and the set of $\mathcal{P}$ on the d-dimensional
vector space over the finite field $GF(q)$ . Let $G$ be a t-transitive multiply group on the
set $\mathcal{P}$ . We take $t$ points $x_{l},$ $\cdots,$ $x_{t}$ and a subset $B$ of $\mathcal{P}$ including all that. That is,
assume that there are $\lambda$ blocks including distinct points $x_{1},$ $\cdots,$ $x_{t}$ and let their blocks
be $f_{1}(B)=B,$ $f_{2}(B)=B,$ $\cdots,$ $f_{\lambda}(B)=B$ . Now, If $y_{1},$ $\cdots,$ $y_{t}$ are $t$ points taken from
set $\mathcal{P}$ arbitrarily, then there is a element $g$ of $G$ which moves $x_{1},$ $\cdots,$ $x_{t}$ to $y_{1},$ $\cdots,$ $y_{t}$

preserving their order. If we call the set $f_{:}(B)(f_{1}\in G)$ which is a mapping of $B$ by
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using a element $g$ of $G$ as a block, then $gf_{1}(B),$ $gf_{2}(B),$ $\cdots$ , $gf_{\lambda}(B)$ are blocks including
$y_{1},$ $\cdots,$ $y_{t}$ . When the above is done while assuming that the number of elements of $\prime P$

is $v$ and the number of elements of $B$ is $k,$ $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design consisting
of the set $B=\{gf_{i}(B)|gf:\in G, i=1, \cdots, \lambda\}$ . Considering the elements of a set $\mathcal{B}$ as
lines and elements of a set $\mathcal{P}$ as points, we can construct a $t-(v, k, \lambda)$ design from
finite geometry $D$

Theorem 1 If an element of a block occurs as the same numbers, then an ideal scheme
PS$(\Gamma, 1, q)$ exists on the d-dimensional vector space over $GF(q)$ ,

Proof: Let $d$ be an integer and we assume the existence of $t-(v, k, \lambda)design$ from
Lemmal. An ideal condition for $\mathcal{M}$ is to have the same numbers $q$ in each columm.
In terms of block design, this means that an element of a block in the corresponding
design $\mathcal{D}$ occurs with the same frequency. (In such design, each element occurs in $r$

blocks); As a result, an ideal scheme PS$(\Gamma, 1, q)$ exists.

3.2 Examples

Let us illustrate ideal schemes by some simple examples.

Example 1 Let $\Gamma$ be the $(2, 2)$ -threshold structure defined on participants set $\mathcal{P}=$

$\{a, b\}$ , Then $\Lambda t$ is a PS$(\Gamma, 1,5)$ and 7) is the equivalent to $GD(3,1,3;9)$ .

.

$\Lambda t$ $=$ $[p_{2}14^{0}300201423a230211444233201b]\mathcal{D}=\{7\{4\{3\{3\{2\{2\{1\{1\{14468556529\}6\}9\}7\}9\}8\}8\}7\}3\}$ (1)

Example 2 Let $\Gamma$ be the $(2, 2)$ -threshold structure defined on participants set $\mathcal{P}=$

$\{a, b\}$ . Then $\mathcal{M}$ is a PS$(\Gamma, 1,3)$ and 7) is the equivalent to $OA(3_{f}1;3)$
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$\Lambda t$ $=$ $\{\begin{array}{l}p_{0}ab\backslash 211222200012020001110121102\prime\end{array}$

{1 4 7}
{1 5 8}
{1 6 9}
{2 4 8}

$\mathcal{D}=\{2 5 9\}$ (2)
{2 6 7}
{3 4 9}
{3 5 7}
{3 6 8}

Example 3 Let $\Gamma$ be the $(2, 3)$ -threshold structure defined on participants set $\mathcal{P}=$

$\{a, b, c\}$ , Then $\Lambda t$ is a PS$(\Gamma, 1,7)$ and $\mathcal{D}$ is the equivalent to ARBIBD$(4,4,1)$ ,

$\Lambda t=\ovalbox{\tt\small REJECT} p_{3}24^{0}5362302000111$ $426534a240323211143562443032223b116,263454^{\backslash }405663351c$

{1 2 3 4}
{1 5 9 13}
{1 6 11 16}
{1 7 12 14}
{2 6 10 14}
{2 5 12 15}
{2 8 11 13}

$D=$ {3 5 10 16} (3)
{3 7 11 15}
{3 8 9 14}
{4 6 9 15}
{4 7 10 13}
{4 8 12 16}
{5 6 7 8}
{9 10 11 12}
{13 14 15 16}

4. The Number of Blocks in Ideal Schemes

In this section we show the condition for the number of blocks of ideal schemes to
be expressed by the cardinality of the divisible group.

Theorem 2 The number of blocks of ideal scheme PS$(\Gamma, 1, q)$ expressed by the cardi-
nality of the divisible group is
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$b=n^{2}\lambda$

Proof: From the relations of GD parameters

$\bullet$ $vr=bk$

$\bullet$ $r(k-1)=n(v/n-1)\lambda$ ,

we obtain the simple equation $b= \frac{v(v-n)\lambda}{k(k-1)}=\frac{kn^{2}(k-1)\lambda}{k(k-1)}=n^{2}\lambda$

Theorem 3 The existence of ideal threshold scheme is equivalent to the existence of
combinatorial design satisfying the condition for the number of blocks $exp$ressed by the
cardinality of the divisible group. In other words, the following two statements are
equivalent.

$\bullet$ $D=(\mathcal{P}, \mathcal{B})$ is a $t$ design with parameter $v,$ $b,$ $r,$ $k,$ $\lambda$ satisfying the condition for
the number of blocks expressed by the cardinality of the divisible group.

$\bullet$ PS$(\Gamma, 1, q)$ is an ideal scheme with $(t, w)$-threshold access structure $\Gamma$ .

Proof: Immediate from theorems 1 and 2.

5. Conclusion

We have addressed the problems associated with a threshold scheme expressed as a
matrix and investigated the combinatorial properties of ideal schemes with threshold
access structure. We showed that their existence is equivalent to the existence of
combinatorial designs. Also, we presented the condition for the number of blocks in
ideal schemes.
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Appendix 1 : The Definition of Designs

A group-divisible design $GD(k, \lambda, n;v)$ is a triple (X, $G,$ $A$ ), which satisfies the following
four properties:

(1) $X$ is a set of $v$ elements called points.

(2) $G$ is a partition of $X$ into $v/n$ subsets of $n$ points, called groups.

(3) $A$ is a set of subsets of $X$ (called blocks), each of size $k$ , such that a group and a
block contain at most one common point.

(4) every pair of points from distinct groups occurs in exactly $\lambda$ blocks.

The relations between $GD$ parameters is as follows (if $n=1$ , then this relation gives
the relation of BIBD).

$\bullet$ $vr=bk$

$\bullet$ $r(k-1)=n(v/n-1)\lambda=(v-n)\lambda$

A Transversal Design $TD(k, \lambda;n)$ is a triple (X, $G,$ $A$ ), which satisfies the following
four properties:

(1) $X$ is a set of $kn$ elements called points.

(2) $G$ is a partition of $X$ into $v/n$ subsets of $n$ points, called groups.

(3) $A$ is a set of $\lambda n^{2}$ subsets of $X$ (called blocks)such that a group and a block contain
at most one common point.

(4) every pair of points from distinct groups occurs in exactly $\lambda$ blocks.

An Affine Resolvable BIBD is a $2-(v, k, \lambda)designD=(P, B, I)$ which has a partition
$\mathcal{B}=B_{1}\cup B_{2}\cup\cdots\cup B_{r}$ of the block set $B$ such that any point occurs exactly once
in the blocks of each set $B_{i},$ $1\leq i\leq r$ ($i.e.$ , each $B_{i}$ is a parallel class of $D$ ), and two
blocks of distinct classes intersect exactly in $\mu,$ $\mu\geq 0$ , points. It holds that $|B|=rn$ ,
$\}P|=kn,$ $n\geq 2$ , and $\lambda=\frac{r(k-1)}{nk-1},$ $k=\mu n$ .

An Orthogonal Array $OA(k, n)$ is an $n^{2}\cross k$ array, with entries chosen from a symbol
set of $n$ elements, such that any pair of columns contains every ordered pair of symbols
exactly once.
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A Steiner System $S(t, k, w)$ is a pair (X, $A$), where $X$ is a set of $w$ elements(called
points) and $A$ is a set of k-subsets of X(called blocks), such that every t-subset of
points occurs in exactly one block. A $S(t, k, w)$ is said to be non-trivial if $t<k<w$ .


