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Finding out and analyzing “meaningful” examples of R-holonomic complexes (cf.

[SKK2]) seems to be one of the most challenging problems in “microlocal analysis in

the future”. Examples so far known are related to the $\theta$-zerovalues, and they are con-

structed with the help of the so-called “Jacobi structure”, that is, a set $\{p_{j}\}_{1\leqq j,k\leqq 2n}$ of

microdifferential operators of order $<1$ that satisfy

la, $p_{k}$ ] $=2\pi\sqrt{-1}e_{jk}$ $(1\leqq j, k\leqq 2n)$

with $(e_{jk})_{1\leqq j,k\leqq 2n}$ being a non-degenerate matrix whose entries are all integers; the infinite

order system we are interested in is then constructed as $(\exp p_{j}-1)u=0(j=1, \cdots , 2n)$ ,

roughly speaking. (Cf. [S]). In order to construct a Jacobi structure making use of ma-

trices of differential operators, we usually need to consider some auxiliary systems. (Cf.

[SKKI]. Actually the condition on the order of $p_{j}$ also becomes somewhat more delicate;

$ord(\sum c_{j}p_{j})<1$ for any $c=(c_{1}, \cdots, c_{2n})\in \mathbb{C}^{2n}$ is the one employed in [SKKI].) An

example of this sort is explicitly written down in [KKT] (for $n=2$), and detailed analysis

of the example is given there; as is known by a general result on $R$-holonomic complexes,

the $\mathcal{O}$-solution complex of the system in question is R-constructible. Still more important

is the fact that we can determine its structure explicitly ([KKT], \S 3); in particular, its

first cohomology group is a locally constant sheaf of rank 1 on some stratum, and it has

a non-trivial “monodromic” structure. As the system discussed there can be regarded as
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the counterpart of the de Rham system in the category of R-holonomic complexes (cf. [K2]

\S 3.5), I dare say the R-holonomic complexes studied in [K1] (for $n=1$ ) and in [KKT] (for

$n=2)$ should be the starting point of a concrete study of R-holonomic complexes.
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