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Towards the Kazhdan-Lusztig multiplicity formula
for generalized Kac-Moody algebras

By SatosHr Narro (P 12)

Department of Mathematics, Faculty of Science, Shizuoka University,
836 Ohya, Shizuoka 422, Japan

1. GENERALIZED KAc-MooODY ALGEBRAS

1.1. Let A = (a;j)ijer with I = {1,2,... ,n} be areal n x n matrix satisfying the
following conditions:

(C1) as; = 2, or a;; <0 (i € I);

(C2) a;; <0 (i # j), and a;; € Z if a;; = 2;

(C3) aij =0 aj; =0.

We call such a matrix a GGCM (= generalized, generalized Cartan matrix).

For any GGCM A = (a;5)i jer, we have a triple (h, IT = {a;}ier, IV = {&) }ier)
satisfying the following (see [6, Chap.1]):

(R1) b is a finite-dimensional (complex) vector space such that dim¢h = 2n —
rank A;

(R2) I = {ai}ier C b* is linearly independent, and IIV = {a)}ier C b is
linearly independent, where h*:= Homg(h, C);

(R3) (@j,a)) = aij (3,5 € I), where (-,-) denotes a duality pairing between b
and b*.

The above triple is called a realization of A.

From now on throughout this paper, we assume that the GGCM A is sym-
metrizable, i.e., that there exists a diagonal matrix D such that det D # 0 and DA
is symmetric.

A generalized Kac-Moody algebra (= GKM algebra) associated to a symmetriza-
ble GGCM A = (asj)i jer is a Lie algebra g(A) (over the complex number field C)



154

generated by the above vector space b and the elements e;, f; (i € I) satisfying the
following relations (see [1], or [6, Chap.11]):

[h, h'] =0 (h, k' e b),
(F1) { [h,ei] = (s, hYes, [h, fi]=—(os,h)fi (heb, i€l),
[ei, fi] = bijo (1,5 €1),

(F2) (ade;)!™%ie; =0, (adfi)'™%f; =0 (a5 =2, j#1),
(F3) [ei,e;] =0, [f,:,fj] =0 (ai, a5 <0, a;5 = 0).

Then, we have the root space decomposition of g(A) with respect to the Cartan
subalgebra b: g(A) = b@EfeA+ 90@2?&4_ 8 Where Ay (C YTierZ>o;) is
the set of positive roots, A_ (= —Ay4) is the set of negative roots, and g, is the
root space attached to a root « € A = AL UA_ C h*. Note that mult(a):=
dimg¢ g, = dim¢ g_, < +o0 ( € Ay).

Put ny:= E§GA+ g, M= Zf€A+ §_o and b:=h @ n,.

1.2. Weput I"®:={i € I | a; = 2}, and I'™:= {i € I | a;; < 0}. Let II"®:=
{a; € I | i € I"®} be the set of real simple roots, and II*"™:= {oy € II | i € I'™}
the set of imaginary simple roots.

For oj, 05 € IT'"™, we say that o; is perpendicular to o;j if a;; = 0. (Remark
that an imaginary simple root o; € II*™ is perpendicular to itself if a; = 0.) For
X € b* and o; € IT'™, we say that ; is perpendicular to ) if (A, oY) = 0.

Now, fix an element A € Py:= {} € * | (\, &) > 0 (i € I), and (), o)) €
I if a; = 2}. Then, we define a subset .A(A) of h* to be the set of all sums of (not
necessarily distinct,) pairwise perpendicular, imaginary simple roots perpendicular
to A." Note that A:= A(0) contains the set {0} U II'™ U {ma; | m € Zy,0; €
IT"™ with ajj = 0} by definition. For an element § = Y ;cyim kia; (ki € Z50), we
put ht(8) = Lierim ki.

1.3. For i € I"®, let r; be the simple reflection of h* given by: ri(A) = A —
(A, af)ai (A € b*). The Weyl group W of g(A) is the subgroup of GL(h*) gen-
erated by the r;’s (i € I"®). For an element w € W, {(w) denotes the length of
w.

Let A™¢:= W - II"® be the set of real roots, A™:= A\ AT the set of imaginary

roots. For a real root o = w(a;) (w € W, a; € I1"°), we define the reflection ro of



h* with respect to a by: r4(A) = A= (N, a¥)a (A € Ab*), where oV 1= w(a) € b

is the dual real root of &. Note that ro = wryw™! € W.

1.4. For ) € b*, we denote by V() the Verma module U(g(A)) ®y(p) C(}) with
highest weight A over the GKM algebra g(A). Here, C(}) is the one-dimensional
h-module with weight A, on which ny acts trivially. As is well-known, the Verma
module V(}\) is the universal highest weight g(A)-module with highest weight ),
and has a unique maximal proper g(A)-submodule V/(}). Then, we define L(})
to be the quotient g(A)-module of V()) by V'(}), so that L(}) is the irreducible
highest weight g(A)-module with highest weight .

2. BRUHAT ORDERING AND KAZHDAN-LUSZTIG POLYNOMIALS

2.1. Here, we extend the notion of the Bruhat ordering on the Weyl group W to
that on the direct product set Wx.A of W and A = A(0) as follows.

Definition 2.1 (Bruhat ordering). Let wy,wy € W. We write w; « wy if there
exists some v € A" N A} such that wi; = ryws and £(wy) = £(wz) + 1. Moreover,
for w,w' € W, we write w 2> w' if w = w' or if there exist wq,... ,w, € W such

that

!
W= Wy &+~ Wy — W.

Definition 2.2 (cf. [11, Definition 2.2]). Let f;,0; € A. We write f; « (2
if there exists some a; € II*™ such that B = By + aj. Moreover, for § =
Ckerim Mik, B = Lrepm mhay € A, we write 8 = ' if my, > m), for all k € I'™.

Definition 2.3 (cf. [11, Definition 2.3]). For (w1, f1), (w2, 52) € Wx A, we write
(w1, B1) « (w2, B2)

if wy e wy and By =0, or if w =wy and F; « Ps.

Moreover, for (w,8), (v, 8') € Wx A, we write (w,8) = (v, /) if w 2 v’ and
=g

2.2. Here, we review the definitions of the Kazhdan-Lusztig polynomials and the
inverse Kazhdan-Lusztig polynomials, and then give their certain extensions. We
first note that the Weyl group W of the GKM algebra g(A4) is a Coxeter group
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with canonical generator system {r; | 1 € I"®}. The Hecke algebra H(W) of
W is the associative algebra over the Laurent polynomial ring Z[q%, q‘%] (in the
indeterminate qg) which has a free Z[q%, q‘%]-basis {Tw}wew with the following
relations:

(H1) Ty T = Ty if L(ww') = L(w) + £(w') (w,w' € W);

(H2) (T, + 1)(Tr; - q) =0 (i €1™).

Let + be the involutive automorphism of the ring H(W) defined by: 1(q7) =
g7, Y(Ty) = (Ty-1)"! (w € W). Then, we know the following proposition due
to Kazhdan and Lusztig [9].

ProPoSITION 2.4 ([9]). For each w € W, there exists a unique element C,, €
‘H(W) having the following properties:

(1) #(Cw) = Cu;

(2) Cu = (-1)g5" - & (~1)"0)q~0) (P (0)) T,
where Py, , = 1, and Py,w(qg\its” a polynomial with integer coeflicients in the inde-
terminate q of degree < (1/2) - (¢(w) — £(y) — 1) for y < w.
Moreover, the elements Cy, (w € W) form a free Z[q%, q~%]-basis of H(W).

The above polynomials Py (q) € Z[q] (y < w) are called the Kazhdan-Lusztig
polynomials. We set Py ,(g):= 0 unless y < w.
Now, for 8,4 € A = A(0), we define a polynomial Ps 4:(g) in g by

1 if g8,
Ppp(g):= { 0

otherwise.

Moreover, for (w, 8), (v, 8') € Wx A, we put

Plu,p),(w,6)(9) = Pu,u(q) - Pp,p(9),

and call this polynomial the eztended Kazhdan-Lusztig polynomial.

It is also known (see [10], and also [8, §5]) that there exist the inverse Kazhdan-
Lusztig polynomials Qy y(q) € Z[g] (w < y € W) for the Coxeter group W such
that

E (-l)l(y)-l(w)Qw,y(Q)Py,w’(Q) = by (w < w).

wly<w’

We set Qu y(g):= 0 unless w < y.



For (w, B), (w', ) € Wx A, we put

Qw,f),(w',)(9) = Quuw(q) - @p 5 (q),

where Qg 4:(9) := Pg g:(q), and call this polynomial the eztended inverse Kazhdan-
Lusztig polynomaial.

Then, it is easy to see the following.

For (w, B), (w', 8') € Wx A, we have

) (_1)(l(y)+ht(”/))—(l(W)+ht(ﬂ))Q(w

orea )M (D Fyr),(w,69(2) = 8w p),(w,8):
y,Y)EWX

3. IRREDUCIBLE SUBQUOTIENTS AND EMBEDDINGS OF VERMA MODULES

A g(A)-module V is said to be h-diagonalizable if V' admits a weight space
decomposition: V = E?eb‘ V:, where V; is the weight space of weight 7 € h*. We
denote by P(V) the set of all weights of V. We call an h-diagonalizable module
V= Z?eP(V) V; a weight module if dimg V; < +oo for all 7 € h*.

Now, for A € h*, following [13, §2], we define the category C()) to be the full-
subcategory of the category of all g(A)-modules whose objects are weight modules
V such that P(V) C A — Z;erZ>004. For A\, € b*, we write p < Aif A —p €
Yier Lxo0i.

Here, we recall from [3, Definition 3.5] the definition of the multiplicity [V :
L(u)] of L() in V for a module V' € C(}) (in [3], the multiplicity [V : L(u)] is

defined for V in a wider category ©).

ProrosiTION 3.1 ([3, Proposition 3.2]). Let \,u € b*, and V € C()\). Then,

there exists a finite increasing filtration
0=VOCVI C‘...th=V

of g(A)-submodules of V such that for each j (1 < j < t) the quotient module
Vj/Vj-1 either is isomorphic to some L(u;) (u; € b*), or has no weights T with
T 2 U
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We call the above filtration a local composition series of V at u. We know that
the cardinality of the set {1 < j <t | V;/V;_1 & L(u)} is independent of the
choice of the local composition series of V' at u. So, we call it the multiplicity of
L(p) in V, and denote it by [V : L(u)].

Now, we choose and fix an element p € h* such that (p, oY) = (1/2)-a;; (i € I).

From now on, we shall use the notation

(w,B) 0 A= w(A+p— )= p

for (w,8) € WxA and A € Py.

We recall the following two theorems, which are essentially proved in [11].

THEOREM 3.2 (cf. [11, Proposition 2.11]). Fix A € Py. Let (wq,51), (w3, B2) €
Wx A(A). Then, we have

dimg Homg 4)(V((w1, 1) 0 4), V((wz, f2) 0 4)) < 1.

Note that any nonzero g(A)-module homomorphism between two Verma mod-

ules is injective. So, we may write

V((w1, 1) 0 A) C V((w2,B2) 0 4)
when the equality holds in the above theorem.

THEOREM 3.3 (cf. [11, Proposition 2.12]). Let A € Py, (w1, 1), (ws,B:) €
Wx A(A). Then,

V((w1, 1) 0 A) C V((w3,B2) 0 A)
= (w1, 61) 2 (w2, B2)
= [V((wa2, B2) 0 A) : L((w1, 1) 0 A)] # 0.

4. TRANSLATION FUNCTORS

Here, for \, 4 € h*, we define the translation functor Tl;\ from the category C(u)
to the category C()), which is a generalization to GKM algebras of the one defined
in [12] by W. Neidhardt. This functor enables us to show that the multiplicity



[V((w,B) o A) : L((w', ') 0 A)] ((w, B), (v', ') € Wx.A(A)) does not depend on
the choice of A € Py. '
Since we assume that the GGCM A is symmetrizable, there exists a nondegen-
erate, symmetric, invariant bilinear form (-|-) on g(A). Recall that the restriction
of this bilinear form (:|-) to b is also nondegenerate, so that it induces on h* a
nondegenerate, W-invariant bilinear form, which we again denote by (-|-). Then,
we can define the so-called (generalized) Casimir operator @ on the modules V in
the category C(}) () € b*), or more generally in the category O (see [6, Chaps.2
and 9]). Further, under the action of €, a module V € C()\) decomposes into the

direct sum
® k
V= Zkec v

of generalized eigenspaces V(¥) for the eigenvalue k € C of Q. Note that on a
highest weight g(A)-module V' with highest weight A € h* Q acts as the scalar
operator (|A + p|2 — |p|?)Iv, where |u|? denotes (u|u) for u € b*.

Definition 4.1. For A\ u € h*, define the functor T,f‘ from the category C(u) to
the category C()) by

2_ )12
Ta(V)i=(V ®c L( — ) A=V (v e c(u)),
which we call the translation functor from y to A.
Remark. By [4, Proposition 4.6], we see that the functor Tz‘ is an exact functor.

Now, following the general line of [12], we can prove a series of propositions

below.

PRrOPOSITION 4.2. Let A € Py, (w,f) € WxA. T'hen,‘ we have

V((w,f)o4) if p e A1),

A 0 0)) &
T3 (V((w, B) 0 0)) {0 if B¢ .A4).

PropPosITION 4.3. Let A € Py, (w, ) € WxA. Then, we have

. T(fl(L((w, B)o0)) =& L((w,f)oA) or O.

Remark. T{(L((w,5)00)) =0 unless G & .A(A).
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Pnoposrrmlj 4.4. Let A€ Py,ueb* (w,f) e WxA(A). If
0=VcWic---CVi=V((w,p)o0)
is a local composition series of V((w, 8) 0 0) at u — A, then
0 =Tg'(Vo) C Tg'(V1) C -+~ C Tg'(Vs) 2 V((w, B) 0 4)

is a local composition series of V((w, ) o A) at u.

Using Propositions 4.3 and 4.4, we can show the following, which is one of our

main results.

THEOREM 4.5. Let A € Py. Then, for any (w, 8), (v, ') € Wx . A(A), we have

[V((w,8) 0 4) : L((w', ') 0 A)] = [V((w, B) © 0) : L((w', ') 0 0)].

As a corollary of the proof of Theorem 4.5, we obtain

COROLLARY 4.6. Let A € Py, (w,B) € WxA(A). Then, we have

T (L((w, B) 0 0)) = L((w, B) o 4).

5. GENERALIZATION OF THE KAZHDAN-LUSZTIG CONJECTURE

5.1. Here, let Ay = (aij)ijes be a symmetrizable GCM (= generalized Cartan
matrix) indexed by a finite set J, and let g ;= g(A) be a Kac-Moody algebra over
C associated to Ay with the Cartan subalgebra b, simple roots Iy = {0;}ics (C
b%), simple coroots Y = {a)}ics (C b), and the Weyl group W (C GL(b%)).
In addition, let Py 4(q) (w,w' € Wy) be the Kazhdan-Lusztig polynomials for the
Coxeter group Wy (see §2.2).

For A € b’ = Homg(h, C), we denote by V() the Verma module with highest
weight A over g;, and by L j(}) its unique irreducible quotient. For A, u € %, we
denote by [V(}) : Lj(p)] the multiplicity of Lj(x) in Vz()) (see §3).

First, we recall the following celebrated result due to Kashiwara [7, 8], or Casian

[2].



THEOREM 5.1 ([2], [7, 8]). Let g; = g(Aj) be a Kac-Moody algebra associated
to a symmetrizable GCM Aj. Assume that A is an element of b such that
(A,0) € I»q for all i € J. Then, for any w,w' € W, we have

[Va(w(A+ ps) = ps) : La(w'(A+ p5) = p5)] = Puw(1).

Here, p; is a fixed element of b such that (pj,aY)=1forall i € J.

5.2. We now return to the setting of §1-§4. Note that we assume that the GGCM

A is symmetrizable. In [11], we have essentially proved the following theorem.

THEOREM 5.2 (cf. [11, Proposition 2.9]). Let A € Py, (w, ) € Wx.A(A). Then,
any irreducible subquotient of V((w, ) o A) is isomorphic to L((w', 8') o A) for
some (v, B') € Wx.A(A) with (w', 8') = (w, 8). Moreover, the converse statement
also holds.

Therefore, the multiplicities [V ((w, 8) 0 A) : L((v', 8') 0 A)] ((w, B), (v', ') €
Wx A(A)) are of great interest. Here, we shall derive some partial information
about the above multiplicities from Theorem 5.1, which is for the case of Kac-
Moody algebras.

Remark that the submatrix Afre := (a;j);jer of a symmetrizable GGCM
A = (asj)ijer is a symmetrizable GCM. Let g;r. be the Lie subalgebra of g(A)
generated by by U{e;, f; | i € I"¢}, where b« is a certain good subspace of b,
such that the triple (hre, {ouly . Yierre, {o }ie1re) is a realization of the GCM Apr-.
(Here, «ilp,,. denotes the restriction of o; to bhyr..) Then, gj- is canonically
isomorphic to a Kac-Moody algebra g(Aj-) over C associated to the GCM Ajre
with the Cartan subalgebra hr.. In fact, we have

grre = b D 3% g0
a€EAjgre
where Apre := A N (T;epre L>004), or rather its restriction to byr., can be re-
garded as the root system of (gjre, hsre). From now on, we canonically identify the
subalgebra g of g(A) with g(Apre).
Then, we have the following by exactly the same argument as the one for [15,

Theorem 2.3], abusing the notation of §5.1 under the above identification.
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PROPOSITION 5.3. Let A\, € b*. Assume that A — pu € Yjcyre Za;. Then, we
have

[V(A) : L(p)] = [Vire (M 1re) : Lrre(pily e )]-
Here, for 7 € §*, Vpe(7ly,,.) is the Verma module over the Kac-Moody algebra

[

grre (&2 g(Ajyre)), whose highest weight € b%.. is the restriction of T to Hre,
I g g (]Ire I I

and Lyre(7y,,.) is its unique irreducible quotient.

As a direct consequence of Theorem 5.1 and Proposition 5.3, using Theorem

3.3, we obtain the following theorem.

THEOREM 5.4. Let A € Py, (w,f), (w',8') € Wx A(A). Then, we have

[V((w, ) 0 4) : L((w, B') © A)] 2 Pru ) (wr,p1)(1)

where Py, gy (w,)(q) is the extended Kazhdan-Lusztig polynomial (introduced in
§2.2). Moreover, the equality holdsif f = ', orif w = w' = 1.

Now, recall that the Weyl group W of the GKM algebra g(A) is by definition
the subgroup of GL(4*) generated by the simple reflections r; (i € I"¢). However,
W by itself seems to be too small for the description of the representation theory
of g(A). Actually, from Theorems 3.3 and 5.2, we have an impression that the
direct product Wx .4 of W and A behaves as if it were the true “Weyl group” of
the GKM algebra g(A).

On the other hand, in the case where a;; # 0 (i € I), the set A = A(0) consists
of all sums of distinct, pairwise perpendicular, imaginary simple roots. So, in
this case, 4 = A(0) can be embedded into the Coxeter group (Z/2Z)™ with m
the cardinality of the set I*™, via the identification of an imaginary simple root
a;j € IT'™ with a generator 1 € Z/2Z. Hence, Wx A can be embedded into the
direct product Wx(Z/2Z)™ of Coxeter groups, together with the Bruhat ordering

-(see Definitions 2.1-2.3).

Under this embedding, the Kazhdan-Lusztig polynomial associated to the el-
ements (w, ), (w', ') € Wx A should be just the extended Kazhdan-Lusztig
polynomial Py, g) w,6(g) defined in §2.2. (Here, note that the Kazhdan-Lusztig
polynomial F;53(q) (0,1 € Z/2Z) for the Coxeter group Z/2Z with generator 1 is
identically equal to 1.) Therefore, it seems natural to us to suggest the following

conjecture.



CONJECTURE. Assume that the GGCM A = (a;j); jer satisfies the condition that
aii 0 (i €I). Let A € Py, (w,p), (v, ') € Wx A(A). Then, we have

[V((w,B) 0 A4) : L((w', §') 0 A)] = Pl ) (w81 (1)-

5.3. Since this paper was prepared, we have succeeded in proving that the above
conjecture is true. We now sketch briefly the idea of the proof. From now on, we
assume that the GGCM A = (a;j); jer is symmetrizable, and satisfies the condition
that a;; # 0 (¢« € I). Note that in this case the set A(A) consists of all sums of
distinct, pairwise perpendicular, imaginary simple roots perpendicular to A’ € P,.

Then, we can prove the following generalization to GKM algebras of Jantzen’s

character sum formula corresponding to a quotient of two Verma modules (cf. [5]
and [14]). '

THEOREM 5.5. Let g(A) be a GKM algebra associated to a symmetrizable GGCM
A = (a;j)ijer satisfying the condition that a; # 0 (1 € I). Fix A € Py. Let
o = w(aj) € Ay, where w € W and o € II'™ with (A, af) = 0. We set
A=w(A+p)—p=(w,0)0A, pi=r—a=w(A+p—05)—p=(w,aj)0 A, and
N(A):=V()X)/V(u) (see Theorem 3.3). Then, N()) has a g(A)-module filtration

N(\)=NMNoDdNA)1DNMH)2D--

such that:
(1) N(A)/N(N)1 = L()) as a g(A)-module;
(2) ¥ ch N(X);
i1
=Y > chV(A-j3B) - > > chV(A—a—my)
feAs 5>1 , vEA4 m>1
2(M+018)=1(818) 2(A=a+ply)=m(7h)
—ch V(A - a).

Here, ch denotes the formal character.

By double induction on 4(w') — ¢(w) and ht(8') — ht(8), using Theorem 5.4
as the starting point of the induction and Theorem 5.5 for the induction step,
we can prove that the above conjecture holds under the condition on the GGCM
A= (aij)i,jej that a;; # 0 (i € I).
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As a consequence, we obtain the following theorem.

THEOREM 5.6. Let g(A) be a GKM algebra. Assume that the symmetrizable
GGCM A = (a;j)ijer satisfies the condition that a;; # 0 (i € I). Let A € P;.
Then, for (w, f) € Wx A(A), we have

chV((w,B)o A) = > Plw,g),(wp(1) ch L((w', B') o A).
(w',B)EW x A(4)

Equivalently, for (w, ) € Wx.A(A), we have

ch L((w, ) 0 4)
— s );V A(A)(_1)(l(WIHht(ﬂl))-(l(w)+ht(ﬂ))Q(w,ﬂ),_(w’,ﬂ’)(1) ch V((w', B') 0 A),
w!, NeEW x

where Q) w,p)(9) ((v',f') € Wx A(A)) are the extended Kazhdan-Lusztig
polynomials. :

Remark. It is well-known that ch V(X)) = e())- 1 (1—e(—a))™™@®) (X € b*),
a€dy

where ¢(7) is a formal exponential for 7 € b* (see [6, Chap.10]). Moreover, we
know that Q1 (1) = 1 (w’ € W). Therefore, in view of the Weyl-Kac-Borcherds
character formula for L(A) (A € P;) (see [1], or [6, Chap.11]), the condition on the
GGCM A = (aij);jer that aj; # 0 (i € I) of Theorem 5.6 seems to be necessary.
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