The behavior of solutions with singularities of linear partial differential equations in C^{n+1}

Let $P(z, \partial)$ be a linear partial differential operator with order $m \geq 1$. Its coefficients are holomorphic in a neighbourhood of the origin z = 0 in C^{n+1} . K is a nonsingular complex hypersurface through z = 0, which is characteristic for $P(z, \partial)$. We choose the coordinate so that $K = \{z_0 = 0\}$. In the present talk we consider

(1)
$$P(z,\partial)u(z) = f(z),$$

where u(z) and f(z) are holomorphic except on K. In order to state the results we give notations and definitions: $z=(z_0,z_1,\cdots,z_n)=(z_0,z'),\ \partial_i=\partial/\partial_i,\ \partial=(\partial_0,\partial_1,\cdots,\partial_n)=(\partial_0,\partial')$ and $|z|=\max\{|z_i|;\ 0\leq i\leq n\}$. We write $P(z,\partial)$ in the form

(2)
$$\begin{cases} P(z,\partial) = \sum_{k=0}^{m} P_k(z,\partial) \\ P_k(z,\partial) = \sum_{l=s_k}^{k} A_{k,l}(z,\partial') \partial_0^{k-l} \\ A_{k,l}(z,\partial') = (z_0)^{j(k,l)} a_{k,l}(z,\partial'), \end{cases}$$

where $P_k(z,\partial)$ is the homogeneous part of order k. If $P_k(z,\partial) \not\equiv 0$, $A_{k,s_k}(z,\partial') \not\equiv 0$, and if $A_{k,l}(z,\partial') \not\equiv 0$, $a_{k,l}(0,z',\partial') \not\equiv 0$. If $P_k(z,\partial) \equiv 0$, put $s_k = +\infty$. Let us define the irregularities of K, which are closely related to the characteristic indices introduced in [1] and others. Put $d_{k,l} = l + j(k,l)$, $d_k = \min\{d_{k,l}; s_k \leq l \leq k\}$ and $e_k = d_k - k$. Put $\Sigma^* = the \ convex \ hull \ of \cup_{k=0}^m \Pi(k,e_k)$, where $\Pi(a,b) = \{(x,y) \in \mathbb{R}^2; x \leq a, y \geq b\}$. The boundary of Σ^* consists of a vertical half line Σ_0^* , a holizontal half line Σ_p^* and segments Σ_i^* $(1 \leq i \leq p-1)$. The set of vertices of Σ^* consists of p points (k_i, e_{k_i}) , $0 \leq k_{p-1} < k_{p-2} < \ldots < k_1 < k_0 = m$ (see Figure 1). Let γ_i be the slope of Σ_i^* , $0 = \gamma_p < \gamma_{p-1} < \cdots < \gamma_1 < \gamma_0 = +\infty$.

Definition 1. We call γ_i , $(0 \le i \le p)$ the irregularities of K for $P(z, \partial)$. In particular γ_{p-1} is called the minimal irregularity and denote by $\gamma_{\min,P}$.

Let us define some functions spaces. Let $\Omega = \Omega^0 \times \Omega'$ be a polydisk: $\Omega^0 = \{z_0 \in C^1; |z_0| \leq R\}$, $\Omega' = \{z' \in C^n; |z'| \leq R\}$. Put $\Omega^0_{\theta} = \{z_0 \in \Omega^0 - \{0\}; |argz_0| < \theta\}$ and $\Omega_{\theta} = \Omega^0_{\theta} \times \Omega'$. $\mathcal{O}(\Omega)$ $(\mathcal{O}(\Omega'))$ is the set of all holomorphic functions on Ω (resp. Ω'). $\mathcal{O}(\Omega_{\theta})$ is the set of all holomorphic functions on Ω_{θ} , which contains multi-valued functions on $\Omega - K$, if $\theta > \pi$. Now we introduce

^{*}上智大学 理工 数学 (Dep. Math. Sophia Univ. Tokyo 102 Japan)

FIGURE 1. Characteristic polygon

Definition 2. $Asy_{\{\kappa\}}(\Omega_{\theta})$ $(0 < \kappa \le +\infty)$ is the set of all $f(z) \in \mathcal{O}(\Omega_{\theta})$ with the following asymptotic expansion: for any θ' with $0 < \theta' < \theta$ and any N

(3)
$$|f(z) - (\sum_{k=0}^{N-1} a_k(z')z_0^k)| \le A_{\theta'}B_{\theta'}^N \Gamma(N/\kappa + 1)|z_0|^N \quad in \ \Omega_{\theta'},$$

where $a_k(z') \in \mathcal{O}(\Omega')$.

Definition 3. $\tilde{\mathcal{M}} - Asy_{\{\kappa\}}(\Omega_{\theta})$ $(0 < \kappa \le +\infty)$ is the set of all $f(z) \in \mathcal{O}(\Omega_{\theta})$ with the following asymptotic expansion: for any θ' with $0 < \theta' < \theta$ and any N

(4)
$$|f(z) - (\sum_{k=0}^{N-1} a_k(z') z_0^k) \log z_0 - (\sum_{k=-H}^{N-1} b_k(z') z_0^k)| \\ \leq A_{\theta'} B_{\theta'}^N \Gamma(N/\kappa + 1) |z_0|^N |\log z_0| \quad in \ \Omega_{\theta'},$$

and

(5)
$$|f(z) - (\sum_{k=0}^{N} a_k(z') z_0^k) \log z_0 - (\sum_{k=-H}^{N-1} b_k(z') z_0^k)| \\ \leq A_{\theta'} B_{\theta'}^N \Gamma(N/\kappa + 1) |z_0|^N \quad in \ \Omega_{\theta'},$$

where $H \in \mathbb{N}$ and $a_k(z'), b_k(z') \in \mathcal{O}(\Omega')$.

Definition 4. $\mathcal{M}(\Omega)$ is the set of all $f(z) \in \mathcal{O}(\Omega_{+\infty})$ with the form $f(z) = a(z) \log z_0 + b(z) z_0^{-H}$, where $H \in \mathbb{N}$ and $a(z), b(z) \in \mathcal{O}(\Omega)$.

Definition 5. $\mathcal{O}_{(\kappa)}(\Omega_{\theta})$ $(\kappa > 0)$ is the set of all $f(z) \in \mathcal{O}(\Omega_{\theta})$ with the following bound: for any θ' with $0 < \theta' < \theta$ and any $\epsilon > 0$

(6)
$$|f(z)| \leq C_{\epsilon} \exp(\epsilon |z_0|^{-\kappa}) \quad in \ \Omega_{\theta'}.$$

Now we suppose that $P(z, \partial)$ satisfies the following condition:

Condition

(7)
$$\begin{cases} (a) \gamma_{\min,P} \neq +\infty & (b) d_{k_{p-1}} = 0 \\ (c) d_{k_i} = s_{k_i} & for \quad 0 \leq i \leq p-1. \end{cases}$$

Put $\gamma = \gamma_{\min,P}$. Then the main results are the following.

Theorem 6. If $u(z) \in \mathcal{O}_{(\gamma)}(\Omega_{\theta})$ is a solution of

(8)
$$P(z,\partial)u(z) = f(z) \in Asy_{\{\kappa\}}(\Omega_{\theta}) \quad (0 < \kappa \le \gamma),$$

then $u(z) \in Asy_{\{\kappa\}}(\Omega_{\theta})$.

Corollary 7. Suppose that $f(z) \in \mathcal{O}(\Omega)$ and $\theta > (\pi/2\gamma) + \pi$ in Theorem 6. Then $u(z) \in \mathcal{O}(\Omega)$.

Theorem 8. If $u(z) \in \mathcal{O}_{(\gamma)}(\Omega_{\theta})$ is a solution of

(9)
$$P(z,\partial)u(z) = f(z) \in \tilde{\mathcal{M}} - Asy_{\{\kappa\}}(\Omega_{\theta}) \quad (0 < \kappa \leq \gamma),$$

then $u(z) \in \tilde{\mathcal{M}} - Asy_{\{\kappa\}}(\Omega_{\theta})$.

Corollary 9. Suppose that $f(z) \in \tilde{\mathcal{M}}(\Omega)$ and $\theta > (\pi/2\gamma) + 2\pi$ in Theorem 8. Then $u(z) \in \tilde{\mathcal{M}}(\Omega)$.

Condition (a) means that K is an irregular characteristic surface in the sense in [1] and it is equivalent to p > 1. Condition (b) means that the (p-1)-th localization on K of $P(z, \partial)$, which is defined in [1], is a function. Condition (c) is an assumption imposed on the vertices of the characteristic polygon Σ^* . Theorems 6 and 8 are shown by the detailed analysis of the integral representation of solutions singular on K ([2, 3]) and for this purpose we assume (c).

A simple example satisfying the conditions in Theorems is

(10)
$$P(z,\partial) = a(z)\partial_1^m + b(z)\partial_1^{l'}\partial_0^{l'-l'} + \partial_0^k, \quad z = (z_0, z_1) \quad m > k' > k,$$

where we assume $a(0)b(0) \neq 0$ and l' > k' - k. For this $P(z, \partial)$, we have $\gamma = \min\{k/(m-k), (l'-k'+k)/(k'-k)\}$.

We can also obtain results similar to Theorems 6 and 8 of the following type for other $\mathcal{F}(\Omega_{\theta}) \subset \mathcal{O}(\Omega_{\theta})$:

$$\begin{cases} u(z) \in \mathcal{O}_{(\gamma)}(\Omega_{\theta}) \\ P(z, \partial)u(z) = f(z) \in \mathcal{F}(\Omega_{\theta}) \end{cases} \implies u(z) \in \mathcal{F}(\Omega_{\theta}).$$

REFERENCES

- [1] S. Ōuchi, Index, localization and classification of characteristic surfaces for linear partial differential operators, Proc. Japan Acad., 60, 189-192 (1984).
- [2] _____, An integral representation of singular solutions and removable singularities to linear partial differential equations, Publ. RIMS Kyoto Univ. 26, 735-783 (1990).
- [3] _____, The behaviour of solutions with singularities on a characteristic surface to linear partial differential equations in the complex domains, Publ. RIMS Kyoto Univ. 29, 63-120 (1993).