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The Cauchy problem for a class of hyperbolic operators

with double characteristics

Kuniuiko Karran: ( 8 FE )*
SEIICHIRO WAKABAYASHI ( ZHHRHR—ER )*

1. Introduction

In [10] we proved that the Cauchy problem for hyperbolic operators is C* well-posed
if the operators satisfy some microlocal a priori estimates. So, in the studies of C*°
well-posedness of the hyperbolic Cauchy problem the problems are reduced to obt alning
the microlocal a priori estimates. In [11] we investigated a class of hyperbolic operators
with double characteristics, which contains effectively hyperbolic operafors, applying
results in [10]. In [11] we imposed some extra conditions on hyperbolic operators.
In this article we shall show that the Cauchy problem for hyperbolic operators with
double characteristics is C*° well-posed under reasonable assumptions. In doing so,
we shall use ideas in Kajitani-Wakabayashi-Nishitani [13]. One of chief distinctions of
our treatment is the use of ‘time functions’. Using ‘time functions’ we can consider
effectively hyperbolic operators and a wide class of non effectively hyperbolic operators |
with a unified treatment. C* well-podeness of the Cauchy problem for effectively
hyperbolic operators was proved by Iwasaki [5] ( see, also, [6], [14], [15], [16]). Ivrii
[7] studied C* well-posedness of the Cauchy problem for a class of non effectively
hyperbolic operators ( see, also, [2]).

Let P(z,&) be a polynomial of £ = (&,¢') = (&1, ,&n) of degree m whose coeffi-
cients are C* functions of z = (z1,2') = (21, -+ ,z,) €ER". We define the operator,

P¥(z, D) with Weyl symbol P(z,£) by

P(e Dpte) = [{ [ P utn av

*Institute of Mathematics, University of Tsukuba



69

for u € C°(R™). We consider the Cauchy problem

{Pw(z,D)uz f inQ,

(CP)
supp u C {z, > 0}

in the C* (or D' ) category, where  is an open subset of R™ and contains the origin,

and supp f C { z1 > 0 }. Let p(z,£) be the principal part of P(z,&). We assume that

(P-1) p(=,€) is hyperbolic with resbect to 4 = (1,0,---,0) €R™ for each z € R™,
i.e., p(z,§ —19) # 0 for z €ER™ and £ ER™.

To state our assumptions and results we need the following

Definition 1.1. Let 2% = (22,£°) € T*R™\ 0 and assume that (P-1) is satisfied. (1)
The localization polynomial p,o(82) of p(z,€) at 2° is defined by

p(2° + 862) = s#(p,o(62) + o(1)) as s — 0,

and p,o(8z) # 0in 6z € T,o(T*R") ( ~R*"). We denote by I'(p,o, (0,9)) the connected
component of the set {6z € T,o(T*R™); p,o(62z) # 0} which contains (0,9). (ii) Let
t(x, €) be a real-valued function in C(R"™ x (R*\ {0})) which is positively homogeneous
of degree 0. We say that #(z,£) is a time function for p with respect to (0,9) ( €R?")
at z0 if ¢(z°) = 0 and if there are a neighborhood U of z° and K CC T'(p,o, (0, 9)) such
that #(,£) is Lipschitz continuous in U and —(|¢|V¢t(z, €),—V,t(z,£)) € K for a.e.
(z,€) € U. (iii)) We denote by F,(2°) the Hamilton map corresponding to Hess p/2
at 29 e, Fp(zo) =1 (_p;:i'(z:(),) f;iiz:(),)) We define Trt F,(z°) = Y A;, where
Aj > 0 and the iA; are the eigenvalues of F,(2°) on the positive imaginary axis. (iv)
We denote by K2 the sets {z(t); £t > 0, and {=(t)} is a Lipschitz continuous curve
in R” satisfying £2z(t) € T(p(2(t),-), 9)* (a.e. t) and £(0) = 2°}, where I* = {z €R™;
z-£ >0 for any € € T'}.

Remark. (i) It can be proved that p,o(62) is hyperbolic with respect to (0,9) € R**
under (P-1) ( see, e.g., [3]). (ii) We can also define ‘time functions’ for microhyperbolic
functions ( symbols) ( see [8] and [17]). (iii))-When ¢(z,¢) is a real-valued function
in C1(R™ x (R™ \ {0})) and positively homogeneous of degree 0, #(z,£) is a time
function for p with respect to (0,) at 2° if and only if — H;(2°) € I'(p,o, (0, 9)), where
Hi(2) = S0, ((04/06;)(2)(0/023) — (94/02;)(2)(0/0%;)).
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In addition to (P-1) we impose the following condition on p(z,£) for every 2° =

(20,6°) €R™ x ™~ with dp(2°) = 0, where §*~! = {£ € R”; |¢] = 1}.

(P-2),0 There are conic neighborhoods € and C of z° and (y°,7°), respectively, a
homogeneous canonical transformation x: ¢ = C, time functions ¢;(y,7) (1< j < d) -
for p o x with respect to (0,9) at (¥°,7°), a real-valued symbol A(y,n’) of positively
homogeneous of degree 1, a non-negative symbol a(y, n') of positively homogeneous of -
degree 2, an elliptic symbol e(y, #’) and C > 0 such that 2° = x(y°, 7°%), dx(y0,10)(0,9) €
I'(p.o, (0, 9)),

~

(1.1) p(x(y, ) = e(y, H{m(m — XMy, n")) —a(y,n')} inC,

o ~t
T(y, n’)a—w(y, 7') < Ca(y,n') for (y,n')€C,

. ~t ~
where T'(y, ') = min;<j<q [tj(y,0,7')| and C = {(y,7"); (y,n) € C for some m }.

Let 20 = (2°,£°) €R™ x S™~! satisfy dp(z°) = 0, and let F; and F, be classical
Fourier integral operators corresponding to x and x~! which are elliptic at (y°, 7°) and

29, respectively. Under the assumption (P-2),0 we have

o(Fo P (2, D)F1)(y,n) = &(y, M) {m(m — A(y,n")) — a(y, ") + By, n)}

in a conic neighborhood Cq of (3°,7°) if || > 1, where o(a¥(y, D))(y,7) = a(y,n),
&(y,n) is an elliptic classical symbol in Co and B(y, 1) is a classical symbol in S%,O. For
the imaginary part of the subprincipal symbol of P¥(z, D) we assume that for every
2% €R™ x S™~! with dp(2°) =0

(P-3),0 There are A(y,n') € S{, and C > 0 such that
' / 16\ ’ ' ' ‘ , .5l
T(y,n')[Im B(y,0,%") + —2-53/—1(3/,71 ) = Ay, 7)A(y,7')| < C(Va(y,n') +1) inC,.

To control Re B(z, £) we assume that at least one of the following conditions (P-4-1),0

and (P-4-2),0 is satisfied for every z° €R™ x S™~! with dp(z°) = 0:

(P-4-1),0 There are B(y,7') € S{, and C > 0 such that

T(y,1')|Re B(y,0,7') — By, ")\, 7')| < C(v/aly,7) +1) in Cy.



(P-4-2);0  Re Pp_1(2°) < Tr* F,(z°), where P,,_1(z, £) denotes the homogeneous
part of degree (m — 1) of P(z,§).

Now we can state our main result.

Theorem 1.2. Assume that Q is bounded. Under the above assumptions, For any
f € D' with supp f C {z1 > 0} there is u € D' satisfying (CP). Moreover, if z° € Q,
Kon{z1 >0} CC @, supp u C {1 > 0} and P*(z, D)u = 0 ( resp. P¥(z, D)u € C*)
near K, then z° ¢supp u ( resp. z° ¢sing supp u).

Remark. If the hypothese of Theorem 1.2 are fulfilled, taking @ = R" (CP) is
well-posed in D' and C*, and supp u C {z € R"; z € K} for some y €supp f}.

In [11] we assumed that all time functions ¢;(y,n) (1 < j < d) in (P-2),0 do not
depend on 7 under suitable choice of canonical coordinates and belong to B*(R").
Then we could use usual symbol calculus in S /2- Under the assumption (P-2),0
we need symbol calculus with large parameters in a subclass of 5{72’1 /2 which is not

included in S}7, ,, for p > 1/2.

2. Outline of the proof of Theorem 1.2

We assume that (P-1) is satisfied and that (P-2),0, (P-3),0 and at least one of
the conditions (P-4-1),0 and (P-4-2),0 are satisfied for every z° € R™ x S™~! with
dp(z°) = 0. Fix 20 = (z°,£°)'e R™ x S~ ! so that dp(z°) = 0, and let ¢;(z,£)
(1 < j < d) be the time functions in (P-2),0. Let x(t) be a function in C*°(R) such
that x(¢) =0 for |¢{| <1/2, x(t) =1for |t| > 1 and 0 < x(¢) <1. Let N > 1, and put

Wiz, &) = 3 (Nt (= &x(E/N) (€ + M) 72,

where (€)x = (N? + |€]?)!/%. We define a metric g in R” x R” by
9,6 = W(z,€)*(|dz|” + (€) 57 1d¢[*).

Then g is ¢ temperate in the sense of Hormander ( see [4]). Here and after we use

notations and terminologies in [4]. Define

d

®(z,€) = [J((t; (=, €)*x(IEl/N)(E)w + t; (2, OXEI/NNEVR).

iji=1

1
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We can prove that ®(z, €) is 7, g temperate in the sense of Hormander ( see [4]). Choose

p(z,€) € C=(R*") such that supp p C {(,€); |z|?> + |£|*> < c(p)}, [ p(z,€)dzdE =1,
p(z,€) > 0 and

o5 (2, €)] < C(p)A(p)!*1 N + p|1*

for any (z,€) € R?™ and any multi-indices a and 3, where pgg))(z,ﬁ) = Dg@g‘p(:c,ﬁ),

c(p), C(p) and A(p) are positive constants and & > 1 will be specified later. Taking

¢(p) to be small enough, we put

Wz, €) = / o(W(g, n)(z - 9), (M5 W (g, m)(E — 7))
x (MW (y,n)*"+dy dn,
$(z, ) = / (W (2, 6)(z — v), ()7 W (2, €)(€ — m))

x (O3 W (2,£)™®(y, n)dy dn.
‘Then we have the following

Lemma 2.1. There are positive constants C1, C; and A such that

CrW (z,€) < W(z, ) < LW (2,¢),
Cr1®(,£) < 3(z,£) < C18(2,¢),
'WE;;(”:’ £)| < CrAlHl o 4 BIEW (z, €)1+l Bl g) el
(5 (2, )] < oAl Blja 4 Bl (2, )W (2, €)1 ) 1

Moreover, there are a conic neighborhood C; of z°, a closed convex cone T in T*R™\0,

¢ > 0 and v(N) > 0 such that I cC I'(p,,(0,9)) for z = (z,€) € C; with |£| =1 and

| (—(ENVed(2,€), V. B(2,8)) €T,
(~(E)nVed(z,£), Vo (2, 8))| > W (a, £)®(z,€)
if (z,€) € C; and |€] > 29(N).
Define a metric gg by
go,z,¢ = |d2|2 + (6)}:2|d£|2’

where h > N. Following the arguments in §18.4 of [4] and in [13], we can prove the

following
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Proposition 2.2. Let m(z,£) be g, gy temperate and a(z,£) € S(m, go). Fix k,
and 6 so that k > 2,1 < £ < 3/2 and 0 < § < 3 — 2. Then there are C, 5 > 0,
Mo > 1, s4.6(2,8), 54,8(2,€) and ri(z,€) such that 3, s(z, &) is real-valued,

FM

~ ~+xM
&  Fa#d =

> (—)(EMV8/8)* (FiMV,8/3) a O (z,8)/(a1p)
lal+18]<k-1

+ Y sap(@ a0+ Y za,ﬁ(m,e)aﬁfi;(z €) + ri(z, €),

laf+181<k-1 | 2<]al+[Al<k-1
. a a &|+| 8 =1-|al|-]&| -
15206 5)(2, €)] < Cap MIHBIWY (g, )2l HAIHG 15 ) 1=l

)

[Ba,s (2 )| < CapMIHA- 1y (g §)|°‘l+|ﬂl+|al+lﬂl(€)—lal &l

rk(z,€) € S(m(W/(€)n)*, g)

ifN=M?»%and M > M,.
Remark. Proposition 2.2 was essentially proved in [13].

Let o(z, £) be real-valued functions in 57 ,(R"™ x (R™ \ {0})) such that to(z, £) are
positively homogeneous of degree 0, to(z,£) = z1 — 23 + |z — 2°|% 4 |€/|€] — €°]2 near
z%. Put

A(z, §) = (ato(, &) — b) log(€)(1 — On14(€))¥(z,§),

where O(t) € C§°(R) satisfies O(t) =1if |t| < 1 and supp © C (-2,2), ©4(¢) =
O([£l/R), ¥(z, &) € C®(T*R™ \ 0) is positively homogeneous of degree 0, ¥(z,£) =1
in a conic neighborhood of 2% a > 1, b € Q@ and A > 1. Roughly speakihg, by
virtue of results in [10], in order to prove Theorem 1.2 it suffices to obtain uniform
microlocal a priori estimates in v > o for PY(, D-— iv9) = (e~2)¥(2, D)P¥(z, D —
iv9)(er)?(z, D), where h = K+, and 7o and K a;re positive constants. In doing so, we
put
Qx(y, D;v) = FPY (2, D — ivd) A,

where F; and F are the Fourier integral operators given in the assumptions. In order
to get a priori estimates for Qi (y, D;v) we use norms H(a)-M)"’(z D)ul|g2, i.e., we
study Q“(y, D;v) = ( ) (z, D)Q%(y, D; 7)( ) (z, D). Then Proposition 2.2
admits us to calculate the symbol Q(y,n;v) of Q¥ (y, D;v). After the calculation the

procedure to prove Theorem 1.2 is almost the same as in [9] and [11]. However, the
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symbols appearing in the proof are not so good as in [9] and [11]. To apply Fefferman-
Phong’s inequality [1] we need more complicate discussions. For a detail of the proof

we refer to [12].

3. Some remarks

We remarked that C* well-posedness of the Cauchy problem for hyperbolic operators
can be proved if microlocal a priori estimates are proved ( see [10]). So, one can
also prove well-posedness of the Cauchy problem if one can prove microlocal a priors
estimates under other microlocal assumptions. For example, the Cauchy problem for
P¥(z,D) is C* well-posed if P¥(z, D) satisfies at least one of the conditions given in

[11], [13] and here for every z° = (2°,£°) € R™ x S™~! with dp(z°) = 0.

For every 2° = (2%,£%) € R” x S"*~! with dp(z°) = 0, choosing a suitable ho-
mogeneous canonical transformation y from a conic neighborhood C of (¥°,7°) =
(0,0,---,0,1) to a conic neighborhood C of 2% and representing p(x(y,7n)) in the
form of (1.1), we shall give some examples which satisfy the condition (P-2),0 when
x satisfies dx(y0.,0)(0,9) € T(p,0,(0,9)). We note that dp(z°) = 0 implies that
Ay, n™) = afy®,n®) = 0.

Example 3.1. Let f(s) be a function in C*(R?) such that f(0) = 0 and f(s) > 0,
0f/0si(s) > 0 and Y7, 5;8f/0s;(s) < Cf(s)if 0 < 55 <1 (1< j < d), where
s =(s1,82, -+ ,84) and C > 0. If f(s) is a polynomial of s with non-negative coeflicient,
then f(s) satisfies the above conditions. Let t;(y,n) ( 1 < j < d) be real-valued
functions in C*(R"™ x (R" \ {0})) which are positively homogeneous of degree 0 and
satisfy ¢;(y°, n°) = 0. Choose symbols a;(y',7'), ¢;(y,7') and r;(y,7') (1 < j < d)
so that these are positively homogeneous of degree 0, a;(y',n') > 0, ¢;(y,7') > 0,
ri(y,n') 2 0 and o;(y*, n°)r; (3% 1n®) = 0. Put

s;(y,n') = i (v, ') (g; (9, ')t (3,0,7)% + 75 (y, 7)),

a(y) 77,) = f(sl(yy "7’)) e ,Sd(y, 77’))77721

Then (P-2),0 is satisfied if

0t;
(3.1) 3—1;(?/0,170) >0 and qgom0)(—Hy(y%,7°) >0 (1<) <d),
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where

90 ,,0)(5y, &n) = 8m (8m — VyMy% n) - by — VA (y°, 1) - 6n')
Z (0 {5 (v, n°)gi (8%, n®) (V5 (4°.1°) - Sy + Vt; (3°,0°) - 61')?

+ "j(y ') (Hess o (v, n°))(8y', 61') /2

+ a5 (y°, n*)(Hess r; (°, n°))(6y, 6v') /2},

: LY P
Hess r;(y°,7°'))(6y, 6n') = 2 (4%, )6y
( (3%, 1°"))(8y, 67') k;1 3yk3w(y %) 6yx 6y,

L 9%y %r;
+2§:§: ; °'55+§: Sk 6
2 uzaykan(y 1 )Syrbn 2 kaﬂ (%%, n°")6mebne.

Here (3.1) implies that ¢;(y,n) ( 1 < j < d) are time functions for p o y with respect
0 (0,9) at (y°,7°).

Example 3.2. Let n > 3, and put

2 2
a(y,n') = (91 +1/v3 + yi) (yl -+ yi) n (= -y —y2)nk).

Then (P-2),0 is satisfied if

(3.2) g;;( °’)|2+l (y ) < 1.

Here we have chosen #1(y,7) = (y1 + V¥2 + ¥2)n, and t2(y, 1) = (y1 — V2 + ¥2)mn
which are Lipschitz continuous, and (3.2) implies that ¢;(y,n) ( j = 1,2) are time
functions for p o x with respect to (0,9) at (y°,1°).

Finally we shall give medning of time functions. Applying the same argufnents as in

[9], we have the following

Theorem 3.3. Let 2% = (2°,¢°) € R™ x S™"!, and let P(z,£) be a symbol in
S™ such that p(z,£) is microhyperbolic with respect to (0,9) € R®™ at 2°, where
p(z,&) denotes the principal symbol of P(z,£). Assume that (P-2),0, (P-3),0 and
at least one of the conditions (P-4-1),0 and (P-4-2),0 are satisfied. If t(z,£) is a
smooth time function for p(z,£) with respect to (0,9) at 2°, 2° ¢ WF(P¥(z, D)u) and
W F(u)n{t(z,€) < 0}NC = @ with some conic neighborhood C of z°, then z° ¢ WF(u).
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Remark. (i) Theorem 3.3 is a microlocal version of Hélmgren’s uniqueness theorem.
(ii) (0,9) can be replaced by any non-zero vector in R?". (iii) We can give the theorem

in the form of Theorem 1.3 in [9].

Assume that the hypothese of Theorem 3.3 are satisfied for z° replaced by z =
(z,€) € QN {|¢] = 1}, where € is an open conic set in T*R™ \ 0 and contains z°. Let
t(z, &) be a smooth time function for p(z,£) with respect to J € R*™ in Q, ie., t(z,§)
is a real-valued smooth function in 7*R" \ 0 and positively homogeneous of degree 0
and —H,(z) € I(p,,9) for z € Q. If WF(P¥(z,D)u) NQ = @, and if u is not smooth
at the present time ( i.e., WF(u) N {t(z,£) = 0} N Q # @), then u was not smooth in
the past ( i.e., WF(u)N{{(z,£) <0} N2 # 0). So time functions give measure of time

concerning propagation of singularities.
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