The Cauchy problem for a class of hyperbolic operators with double characteristics

KUNIHIKO KAJITANI (梶谷 邦彦)* SEIICHIRO WAKABAYASHI (若林誠一郎)*

1. Introduction

In [10] we proved that the Cauchy problem for hyperbolic operators is C^{∞} well-posed if the operators satisfy some microlocal a priori estimates. So, in the studies of C^{∞} well-posedness of the hyperbolic Cauchy problem the problems are reduced to obtaining the microlocal a priori estimates. In [11] we investigated a class of hyperbolic operators with double characteristics, which contains effectively hyperbolic operators, applying results in [10]. In [11] we imposed some extra conditions on hyperbolic operators. In this article we shall show that the Cauchy problem for hyperbolic operators with double characteristics is C^{∞} well-posed under reasonable assumptions. In doing so, we shall use ideas in Kajitani-Wakabayashi-Nishitani [13]. One of chief distinctions of our treatment is the use of 'time functions'. Using 'time functions' we can consider effectively hyperbolic operators and a wide class of non effectively hyperbolic operators with a unified treatment. C^{∞} well-podeness of the Cauchy problem for effectively hyperbolic operators was proved by Iwasaki [5] (see, also, [6], [14], [15], [16]). Ivrii [7] studied C^{∞} well-posedness of the Cauchy problem for a class of non effectively hyperbolic operators (see, also, [2]).

Let $P(x,\xi)$ be a polynomial of $\xi = (\xi_1,\xi') = (\xi_1,\cdots,\xi_n)$ of degree m whose coefficients are C^{∞} functions of $x = (x_1,x') = (x_1,\cdots,x_n) \in \mathbb{R}^n$. We define the operator $P^w(x,D)$ with Weyl symbol $P(x,\xi)$ by

$$P^{w}(x,D)u(x)=(2\pi)^{-n}\int\left\{\int e^{i(x-y)\cdot\xi}P(\frac{x+y}{2},\xi)u(y)\,dy\right\}d\xi$$

^{*}Institute of Mathematics, University of Tsukuba

for $u \in C_0^{\infty}(\mathbb{R}^n)$. We consider the Cauchy problem

(CP)
$$\begin{cases} P^{w}(x, D)u = f & \text{in } \Omega, \\ \text{supp } u \subset \{x_1 \ge 0\} \end{cases}$$

in the C^{∞} (or \mathcal{D}') category, where Ω is an open subset of \mathbf{R}^n and contains the origin, and supp $f \subset \{x_1 \geq 0\}$. Let $p(x,\xi)$ be the principal part of $P(x,\xi)$. We assume that (P-1) $p(x,\xi)$ is hyperbolic with respect to $\vartheta = (1,0,\cdots,0) \in \mathbf{R}^n$ for each $x \in \mathbf{R}^n$, i.e., $p(x,\xi-i\vartheta) \neq 0$ for $x \in \mathbf{R}^n$ and $\xi \in \mathbf{R}^n$.

To state our assumptions and results we need the following

Definition 1.1. Let $z^0 = (x^0, \xi^0) \in T^* \mathbb{R}^n \setminus 0$ and assume that (P-1) is satisfied. (i) The localization polynomial $p_{z^0}(\delta z)$ of $p(x, \xi)$ at z^0 is defined by

$$p(z^{0} + s\delta z) = s^{\mu}(p_{z^{0}}(\delta z) + o(1))$$
 as $s \to 0$,

and $p_{z^0}(\delta z) \not\equiv 0$ in $\delta z \in T_{z^0}(T^*\mathbf{R}^n)$ ($\simeq \mathbf{R}^{2n}$). We denote by $\Gamma(p_{z^0}, (0, \vartheta))$ the connected component of the set $\{\delta z \in T_{z^0}(T^*\mathbf{R}^n); p_{z^0}(\delta z) \neq 0\}$ which contains $(0, \vartheta)$. (ii) Let $t(x, \xi)$ be a real-valued function in $C(\mathbf{R}^n \times (\mathbf{R}^n \setminus \{0\}))$ which is positively homogeneous of degree 0. We say that $t(x, \xi)$ is a time function for p with respect to $(0, \vartheta)$ ($\in \mathbf{R}^{2n}$) at z^0 if $t(z^0) = 0$ and if there are a neighborhood \mathcal{U} of z^0 and $K \subset \Gamma(p_{z^0}, (0, \vartheta))$ such that $t(x, \xi)$ is Lipschitz continuous in \mathcal{U} and $-(|\xi|\nabla_{\xi}t(x, \xi), -\nabla_x t(x, \xi)) \in K$ for a.e. $(x, \xi) \in \mathcal{U}$. (iii) We denote by $F_p(z^0)$ the Hamilton map corresponding to $Hess\ p/2$ at z^0 , i.e., $F_p(z^0) = \frac{1}{2}\begin{pmatrix} p_{\xi x}(z^0) & p_{\xi \xi}(z^0) \\ -p_{xx}(z^0) & -p_{x\xi}(z^0) \end{pmatrix}$. We define $Tr^+ F_p(z^0) = \sum \lambda_j$, where $\lambda_j > 0$ and the $i\lambda_j$ are the eigenvalues of $F_p(z^0)$ on the positive imaginary axis. (iv) We denote by $K_{x^0}^{\pm}$ the sets $\{x(t); \pm t \geq 0$, and $\{x(t)\}$ is a Lipschitz continuous curve in \mathbf{R}^n satisfying $\frac{d}{dt}x(t) \in \Gamma(p(x(t), \cdot), \vartheta)^*$ (a.e. t) and $x(0) = x^0\}$, where $\Gamma^* = \{x \in \mathbf{R}^n; x \cdot \xi \geq 0 \text{ for any } \xi \in \Gamma\}$.

Remark. (i) It can be proved that $p_{z^0}(\delta z)$ is hyperbolic with respect to $(0, \vartheta) \in \mathbb{R}^{2n}$ under (P-1) (see, e.g., [3]). (ii) We can also define 'time functions' for microhyperbolic functions (symbols) (see [8] and [17]). (iii) When $t(x,\xi)$ is a real-valued function in $C^1(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$ and positively homogeneous of degree 0, $t(x,\xi)$ is a time function for p with respect to $(0,\vartheta)$ at z^0 if and only if $-H_t(z^0) \in \Gamma(p_{z^0},(0,\vartheta))$, where $H_t(z) = \sum_{i=1}^n ((\partial t/\partial \xi_i)(z)(\partial/\partial x_i) - (\partial t/\partial x_j)(z)(\partial/\partial \xi_j))$.

In addition to (P-1) we impose the following condition on $p(x,\xi)$ for every $z^0 = (x^0, \xi^0) \in \mathbb{R}^n \times S^{n-1}$ with $dp(z^0) = 0$, where $S^{n-1} = \{\xi \in \mathbb{R}^n; |\xi| = 1\}$.

(P-2)_{z0} There are conic neighborhoods \mathcal{C} and $\tilde{\mathcal{C}}$ of z^0 and (y^0, η^0) , respectively, a homogeneous canonical transformation $\chi \colon \tilde{\mathcal{C}} \xrightarrow{\sim} \mathcal{C}$, time functions $t_j(y, \eta)$ ($1 \le j \le d$) for $p \circ \chi$ with respect to $(0, \vartheta)$ at (y^0, η^0) , a real-valued symbol $\lambda(y, \eta')$ of positively homogeneous of degree 1, a non-negative symbol $\alpha(y, \eta')$ of positively homogeneous of degree 2, an elliptic symbol $e(y, \eta')$ and C > 0 such that $z^0 = \chi(y^0, \eta^0)$, $d\chi_{(y^0, \eta^0)}(0, \vartheta) \in \Gamma(p_{z^0}, (0, \vartheta))$,

(1.1)
$$p(\chi(y,\eta)) = e(y,\eta)\{\eta_1(\eta_1 - \lambda(y,\eta')) - \alpha(y,\eta')\} \quad \text{in } \tilde{\mathcal{C}}$$
$$T(y,\eta')\frac{\partial \alpha}{\partial y_1}(y,\eta') \le C\alpha(y,\eta') \quad \text{for } (y,\eta') \in \tilde{\mathcal{C}}',$$

where $T(y, \eta') = \min_{1 \leq j \leq d} |t_j(y, 0, \eta')|$ and $\tilde{\mathcal{C}}' = \{(y, \eta'); (y, \eta) \in \tilde{\mathcal{C}} \text{ for some } \eta_1\}.$

Let $z^0 = (x^0, \xi^0) \in \mathbb{R}^n \times S^{n-1}$ satisfy $dp(z^0) = 0$, and let F_1 and F_2 be classical Fourier integral operators corresponding to χ and χ^{-1} which are elliptic at (y^0, η^0) and z^0 , respectively. Under the assumption $(P-2)_{z^0}$ we have

$$\sigma(F_2P^w(x,D)F_1)(y,\eta) = \tilde{e}(y,\eta)\{\eta_1(\eta_1 - \lambda(y,\eta')) - \alpha(y,\eta') + \beta(y,\eta)\}$$

in a conic neighborhood $\tilde{\mathcal{C}}_0$ of (y^0, η^0) if $|\eta| \geq 1$, where $\sigma(a^w(y, D))(y, \eta) = a(y, \eta)$, $\tilde{e}(y, \eta)$ is an elliptic classical symbol in $\tilde{\mathcal{C}}_0$ and $\beta(y, \eta)$ is a classical symbol in $S_{1,0}^1$. For the imaginary part of the subprincipal symbol of $P^w(x, D)$ we assume that for every $z^0 \in \mathbb{R}^n \times S^{n-1}$ with $dp(z^0) = 0$

 $(P-3)_{z^0}$ There are $A(y,\eta')\in S^0_{1,0}$ and C>0 such that

$$T(y,\eta')|\operatorname{Im}\beta(y,0,\eta')+\frac{1}{2}\frac{\partial\lambda}{\partial y_1}(y,\eta')-A(y,\eta')\lambda(y,\eta')|\leq C(\sqrt{\alpha(y,\eta')}+1)\quad\text{in }\tilde{\mathcal{C}}_0'.$$

To control Re $\beta(x,\xi)$ we assume that at least one of the following conditions $(P-4-1)_{z^0}$ and $(P-4-2)_{z^0}$ is satisfied for every $z^0 \in \mathbb{R}^n \times S^{n-1}$ with $dp(z^0) = 0$:

 $(P-4-1)_{z^0}$ There are $B(y,\eta')\in S^0_{1,0}$ and C>0 such that

$$|T(y,\eta')|\operatorname{Re}\beta(y,0,\eta')-B(y,\eta')\lambda(y,\eta')|\leq C(\sqrt{\alpha(y,\eta')}+1) \quad \text{in } \tilde{\mathcal{C}}_0'.$$

 $(P-4-2)_{z^0}$ Re $P_{m-1}(z^0) < Tr^+ F_p(z^0)$, where $P_{m-1}(x,\xi)$ denotes the homogeneous part of degree (m-1) of $P(x,\xi)$.

Now we can state our main result.

Theorem 1.2. Assume that Ω is bounded. Under the above assumptions, For any $f \in \mathcal{D}'$ with supp $f \subset \{x_1 \geq 0\}$ there is $u \in \mathcal{D}'$ satisfying (CP). Moreover, if $x^0 \in \Omega$, $K_{x^0}^- \cap \{x_1 \geq 0\} \subset \Omega$, supp $u \subset \{x_1 \geq 0\}$ and $P^w(x, D)u = 0$ (resp. $P^w(x, D)u \in C^{\infty}$) near $K_{x^0}^-$, then $x^0 \notin \text{supp } u$ (resp. $x^0 \notin \text{sing supp } u$).

Remark. If the hypothese of Theorem 1.2 are fulfilled, taking $\Omega = \mathbb{R}^n$ (CP) is well-posed in \mathcal{D}' and C^{∞} , and supp $u \subset \{x \in \mathbb{R}^n; x \in K_y^+ \text{ for some } y \in \text{supp } f\}$.

In [11] we assumed that all time functions $t_j(y,\eta)$ ($1 \le j \le d$) in $(P-2)_{z^0}$ do not depend on η under suitable choice of canonical coordinates and belong to $\mathcal{B}^{\infty}(\mathbb{R}^n)$. Then we could use usual symbol calculus in $S_{1,1/2}^{\infty}$. Under the assumption $(P-2)_{z^0}$ we need symbol calculus with large parameters in a subclass of $S_{1/2,1/2}^{\infty}$ which is not included in $S_{\rho,1/2}^{\infty}$ for $\rho > 1/2$.

2. Outline of the proof of Theorem 1.2

We assume that (P-1) is satisfied and that $(P-2)_{z^0}$, $(P-3)_{z^0}$ and at least one of the conditions $(P-4-1)_{z^0}$ and $(P-4-2)_{z^0}$ are satisfied for every $z^0 \in \mathbb{R}^n \times S^{n-1}$ with $dp(z^0) = 0$. Fix $z^0 = (x^0, \xi^0) \in \mathbb{R}^n \times S^{n-1}$ so that $dp(z^0) = 0$, and let $t_j(x, \xi)$ ($1 \le j \le d$) be the time functions in $(P-2)_{z^0}$. Let $\chi(t)$ be a function in $C^{\infty}(\mathbb{R})$ such that $\chi(t) = 0$ for $|t| \le 1/2$, $\chi(t) = 1$ for $|t| \ge 1$ and $0 \le \chi(t) \le 1$. Let $N \ge 1$, and put

$$W(x,\xi) = \sum_{j=1}^{d} \langle \xi \rangle_{N}^{1/2} (t_{j}(x,\xi)^{2} \chi(|\xi|/N)^{2} \langle \xi \rangle_{N} + N)^{-1/2},$$

where $\langle \xi \rangle_N = (N^2 + |\xi|^2)^{1/2}$. We define a metric g in $\mathbb{R}^n \times \mathbb{R}^n$ by

$$g_{x,\xi} = W(x,\xi)^2 (|dx|^2 + \langle \xi \rangle_N^{-2} |d\xi|^2).$$

Then g is σ temperate in the sense of Hörmander (see [4]). Here and after we use notations and terminologies in [4]. Define

$$\Phi(x,\xi) = \prod_{j=1}^{d} ((t_j(x,\xi)^2 \chi(|\xi|/N)^2 \langle \xi \rangle_N + t_j(x,\xi) \chi(|\xi|/N) \langle \xi \rangle_N^{1/2}).$$

We can prove that $\Phi(x,\xi)$ is σ,g temperate in the sense of Hörmander (see [4]). Choose $\rho(x,\xi) \in C^{\infty}(\mathbf{R}^{2n})$ such that supp $\rho \subset \{(x,\xi); |x|^2 + |\xi|^2 < c(\rho)\}, \int \rho(x,\xi) dx d\xi = 1,$ $\rho(x,\xi) \geq 0$ and

$$|\rho_{(\beta)}^{(\alpha)}(x,\xi)| \le C(\rho)A(\rho)^{|\alpha|+|\beta|}|\alpha+\beta|!^{\kappa}$$

for any $(x,\xi) \in \mathbf{R}^{2n}$ and any multi-indices α and β , where $\rho_{(\beta)}^{(\alpha)}(x,\xi) = D_x^{\beta} \partial_{\xi}^{\alpha} \rho(x,\xi)$, $c(\rho)$, $C(\rho)$ and $A(\rho)$ are positive constants and $\kappa > 1$ will be specified later. Taking $c(\rho)$ to be small enough, we put

$$\begin{split} \widetilde{W}(x,\xi) &= \int \rho(W(y,\eta)(x-y), \langle \eta \rangle_N^{-1} W(y,\eta)(\xi-\eta)) \\ &\times \langle \eta \rangle_N^{-n} W(y,\eta)^{2n+1} dy d\eta, \\ \widetilde{\Phi}(x,\xi) &= \int \rho(\widetilde{W}(x,\xi)(x-y), \langle \xi \rangle_N^{-1} \widetilde{W}(x,\xi)(\xi-\eta)) \\ &\times \langle \xi \rangle_N^{-n} \widetilde{W}(x,\xi)^{2n} \Phi(y,\eta) dy d\eta. \end{split}$$

Then we have the following

Lemma 2.1. There are positive constants C_1 , C_2 and A such that

$$\begin{split} C_1^{-1}W(x,\xi) &\leq \widetilde{W}(x,\xi) \leq C_1W(x,\xi), \\ C_1^{-1}\Phi(x,\xi) &\leq \widetilde{\Phi}(x,\xi) \leq C_1\Phi(x,\xi), \\ |\widetilde{W}_{(\beta)}^{(\alpha)}(x,\xi)| &\leq C_2A^{|\alpha|+|\beta|}|\alpha+\beta|!^{\kappa}W(x,\xi)^{1+|\alpha|+|\beta|}\langle\xi\rangle_N^{-|\alpha|} \\ |\widetilde{\Phi}_{(\beta)}^{(\alpha)}(x,\xi)| &\leq C_2A^{|\alpha|+|\beta|}|\alpha+\beta|!^{\kappa}\Phi(x,\xi)W(x,\xi)^{|\alpha|+|\beta|}\langle\xi\rangle_N^{-|\alpha|} \end{split}$$

Moreover, there are a conic neighborhood C_1 of z^0 , a closed convex cone Γ in $T^*\mathbf{R}^n \setminus 0$, c > 0 and $\gamma(N) > 0$ such that $\Gamma \subset \Gamma(p_z, (0, \vartheta))$ for $z = (x, \xi) \in C_1$ with $|\xi| = 1$ and

$$\begin{split} (-\langle \xi \rangle_N \nabla_\xi \widetilde{\Phi}(x,\xi), \nabla_x \widetilde{\Phi}(x,\xi)) \in \Gamma, \\ |(-\langle \xi \rangle_N \nabla_\xi \widetilde{\Phi}(x,\xi), \nabla_x \widetilde{\Phi}(x,\xi))| \geq c W(x,\xi) \Phi(x,\xi) \end{split}$$

if $(x, \xi) \in C_1$ and $|\xi| \geq 2\gamma(N)$.

Define a metric g_0 by

$$g_{0,x,\xi} = |dx|^2 + \langle \xi \rangle_h^{-2} |d\xi|^2,$$

where $h \ge N$. Following the arguments in §18.4 of [4] and in [13], we can prove the following

Proposition 2.2. Let $m(x,\xi)$ be σ, g_0 temperate and $a(x,\xi) \in S(m,g_0)$. Fix k, κ and δ so that $k \geq 2$, $1 < \kappa < 3/2$ and $0 < \delta < 3 - 2\kappa$. Then there are $C_{\alpha,\beta} > 0$, $M_0 > 1$, $s_{\alpha,\beta}(x,\xi)$, $\tilde{s}_{\alpha,\beta}(x,\xi)$ and $r_k(x,\xi)$ such that $\tilde{s}_{\alpha,\beta}(x,\xi)$ is real-valued,

$$\begin{split} &\widetilde{\Phi}^{\mp M}\#a\#\widetilde{\Phi}^{\pm M} = \\ &\sum_{|\alpha|+|\beta|\leq k-1} (-1)^{|\alpha|} (\pm M\nabla_{\xi}\widetilde{\Phi}/\widetilde{\Phi})^{\alpha} (\mp iM\nabla_{x}\widetilde{\Phi}/\widetilde{\Phi})^{\beta} a_{(\alpha)}^{(\beta)}(x,\xi)/(\alpha!\beta!) \\ &+ \sum_{|\alpha|+|\beta|\leq k-1} s_{\alpha,\beta}(x,\xi) a_{(\alpha)}^{(\beta)}(x,\xi) + \sum_{2\leq |\alpha|+|\beta|\leq k-1} \widetilde{s}_{\alpha,\beta}(x,\xi) a_{(\alpha)}^{(\beta)}(x,\xi) + r_{k}(x,\xi), \\ &|s_{\alpha,\beta}^{(\tilde{\alpha})}(x,\xi)| \leq C_{\alpha,\beta} M^{|\alpha|+|\beta|} W(x,\xi)^{2+|\alpha|+|\beta|+|\tilde{\alpha}|+|\tilde{\beta}|} \langle \xi \rangle_{N}^{-1-|\alpha|-|\tilde{\alpha}|}, \\ &|\widetilde{s}_{\alpha,\beta}^{(\tilde{\alpha})}(x,\xi)| \leq C_{\alpha,\beta} M^{|\alpha|+|\beta|-1} W(x,\xi)^{|\alpha|+|\beta|+|\tilde{\alpha}|+|\tilde{\beta}|} \langle \xi \rangle_{N}^{-|\alpha|-|\tilde{\alpha}|}, \\ &r_{k}(x,\xi) \in S(m(W/\langle \xi \rangle_{N})^{k},g) \end{split}$$

if $N = M^{2-\delta}$ and $M > M_0$.

Remark. Proposition 2.2 was essentially proved in [13].

Let $t_0(x,\xi)$ be real-valued functions in $S_{1,0}^0(\mathbf{R}^n \times (\mathbf{R}^n \setminus \{0\}))$ such that $t_0(x,\xi)$ are positively homogeneous of degree 0, $t_0(x,\xi) = x_1 - x_1^0 + |x - x^0|^2 + |\xi/|\xi| - |\xi|^2$ near z^0 . Put

$$\Lambda(x,\xi) = (at_0(x,\xi) - b)\log\langle\xi\rangle(1 - \Theta_{h/4}(\xi))\psi(x,\xi),$$

where $\Theta(t) \in C_0^{\infty}(\mathbf{R})$ satisfies $\Theta(t) = 1$ if $|t| \leq 1$ and supp $\Theta \subset (-2,2)$, $\Theta_h(\xi) = \Theta(|\xi|/h)$, $\psi(x,\xi) \in C^{\infty}(T^*\mathbf{R}^n \setminus 0)$ is positively homogeneous of degree 0, $\psi(x,\xi) = 1$ in a conic neighborhood of z^0 , $a \geq 1$, $b \in \Omega$ and $h \geq 1$. Roughly speaking, by virtue of results in [10], in order to prove Theorem 1.2 it suffices to obtain uniform microlocal a priori estimates in $\gamma \geq \gamma_0$ for $P_{\Lambda}^w(x, D - i\gamma \vartheta) \equiv (e^{-\Lambda})^w(x, D) P^w(x, D - i\gamma \vartheta)(e^{\Lambda})^w(x, D)$, where $h = K\gamma$, and γ_0 and K are positive constants. In doing so, we put

$$Q_{\Lambda}^{w}(y, D; \gamma) = F_{2} P_{\Lambda}^{w}(x, D - i \gamma \vartheta) F_{1},$$

where F_1 and F_2 are the Fourier integral operators given in the assumptions. In order to get a priori estimates for $Q_{\Lambda}^w(y, D; \gamma)$ we use norms $\|(\widetilde{\Phi}^{-M})^w(x, D)u\|_{L^2}$, i.e., we study $Q^w(y, D; \gamma) \equiv (\widetilde{\Phi}^{-M})^w(x, D)Q_{\Lambda}^w(y, D; \gamma)(\widetilde{\Phi}^{M})^w(x, D)$. Then Proposition 2.2 admits us to calculate the symbol $Q(y, \eta; \gamma)$ of $Q^w(y, D; \gamma)$. After the calculation the procedure to prove Theorem 1.2 is almost the same as in [9] and [11]. However, the

symbols appearing in the proof are not so good as in [9] and [11]. To apply Fefferman-Phong's inequality [1] we need more complicate discussions. For a detail of the proof we refer to [12].

3. Some remarks

We remarked that C^{∞} well-posedness of the Cauchy problem for hyperbolic operators can be proved if microlocal *a priori* estimates are proved (see [10]). So, one can also prove well-posedness of the Cauchy problem if one can prove microlocal *a priori* estimates under other microlocal assumptions. For example, the Cauchy problem for $P^{w}(x, D)$ is C^{∞} well-posed if $P^{w}(x, D)$ satisfies at least one of the conditions given in [11], [13] and here for every $z^{0} = (x^{0}, \xi^{0}) \in \mathbb{R}^{n} \times S^{n-1}$ with $dp(z^{0}) = 0$.

For every $z^0=(x^0,\xi^0)\in \mathbf{R}^n\times S^{n-1}$ with $dp(z^0)=0$, choosing a suitable homogeneous canonical transformation χ from a conic neighborhood $\widetilde{\mathcal{C}}$ of $(y^0,\eta^0)=(0,0,\cdots,0,1)$ to a conic neighborhood \mathcal{C} of z^0 and representing $p(\chi(y,\eta))$ in the form of (1.1), we shall give some examples which satisfy the condition $(P-2)_{z^0}$ when χ satisfies $d\chi_{(y^0,\eta^0)}(0,\vartheta)\in\Gamma(p_{z^0},(0,\vartheta))$. We note that $dp(z^0)=0$ implies that $\lambda(y^0,\eta^{0\prime})=\alpha(y^0,\eta^{0\prime})=0$.

Example 3.1. Let f(s) be a function in $C^{\infty}(\mathbf{R}^d)$ such that f(0) = 0 and $f(s) \geq 0$, $\partial f/\partial s_j(s) \geq 0$ and $\sum_{j=1}^d s_j \partial f/\partial s_j(s) \leq Cf(s)$ if $0 \leq s_j \leq 1$ ($1 \leq j \leq d$), where $s = (s_1, s_2, \dots, s_d)$ and $C \geq 0$. If f(s) is a polynomial of s with non-negative coefficient, then f(s) satisfies the above conditions. Let $t_j(y, \eta)$ ($1 \leq j \leq d$) be real-valued functions in $C^{\infty}(\mathbf{R}^n \times (\mathbf{R}^n \setminus \{0\}))$ which are positively homogeneous of degree 0 and satisfy $t_j(y^0, \eta^0) = 0$. Choose symbols $\alpha_j(y', \eta')$, $q_j(y, \eta')$ and $r_j(y, \eta')$ ($1 \leq j \leq d$) so that these are positively homogeneous of degree 0, $\alpha_j(y', \eta') \geq 0$, $q_j(y, \eta') > 0$, $r_j(y, \eta') \geq 0$ and $\alpha_j(y^{0'}, \eta^{0'})r_j(y^0, \eta^{0'}) = 0$. Put

$$s_j(y, \eta') = \alpha_j(y', \eta')(q_j(y, \eta')t_j(y, 0, \eta')^2 + r_j(y, \eta')),$$

 $\alpha(y, \eta') = f(s_1(y, \eta'), \dots, s_d(y, \eta'))\eta_n^2.$

Then $(P-2)_{z^0}$ is satisfied if

(3.1)
$$\frac{\partial t_j}{\partial y_1}(y^0, \eta^0) > 0 \quad \text{and} \quad q_{(y^0, \eta^0)}(-H_{t_j}(y^0, \eta^0)) > 0 \quad (1 \le j \le d),$$

where

$$\begin{split} q_{(y^{0},\eta^{0})}(\delta y,\delta \eta) &= \delta \eta_{1}(\delta \eta_{1} - \nabla_{y}\lambda(y^{0},\eta^{0\prime}) \cdot \delta y - \nabla_{\eta^{\prime}}\lambda(y^{0},\eta^{0\prime}) \cdot \delta \eta^{\prime}) \\ &- \sum_{j=1}^{d} \frac{\partial f}{\partial s_{j}}(0) \{\alpha_{j}(y^{0\prime},\eta^{0\prime})q_{j}(y^{0},\eta^{0\prime})(\nabla_{y}t_{j}(y^{0},\eta^{0}) \cdot \delta y + \nabla_{\eta^{\prime}}t_{j}(y^{0},\eta^{0}) \cdot \delta \eta^{\prime})^{2} \\ &+ r_{j}(y^{0},\eta^{0\prime})(Hess\ \alpha_{j}(y^{0\prime},\eta^{0\prime}))(\delta y^{\prime},\delta \eta^{\prime})/2 \\ &+ \alpha_{j}(y^{0},\eta^{0\prime})(Hess\ r_{j}(y^{0},\eta^{0\prime}))(\delta y,\delta \eta^{\prime})/2\}, \end{split}$$

$$(Hess\ r_{j}(y^{0},\eta^{0\prime}))(\delta y,\delta \eta^{\prime}) = \sum_{k,\ell=1}^{n} \frac{\partial^{2} r_{j}}{\partial y_{k}\partial y_{\ell}}(y^{0},\eta^{0\prime})\delta y_{k}\delta y_{\ell} \\ &+ 2\sum_{k=1}^{n} \sum_{\ell=2}^{n} \frac{\partial^{2} r_{j}}{\partial y_{k}\partial \eta_{\ell}}(y^{0},\eta^{0\prime})\delta y_{k}\delta \eta_{\ell} + \sum_{k,\ell=2}^{n} \frac{\partial^{2} r_{j}}{\partial \eta_{k}\partial \eta_{\ell}}(y^{0},\eta^{0\prime})\delta \eta_{k}\delta \eta_{\ell}. \end{split}$$

Here (3.1) implies that $t_j(y,\eta)$ ($1 \le j \le d$) are time functions for $p \circ \chi$ with respect to $(0,\vartheta)$ at (y^0,η^0) .

Example 3.2. Let $n \geq 3$, and put

$$\alpha(y,\eta') = \left(y_1 + \sqrt{y_2^2 + y_n^2}\right)^2 \left(y_1 - \sqrt{y_2^2 + y_n^2}\right)^2 \eta_n^2 \ (= (y_1^2 - y_2^2 - y_n^2)^2 \eta_n^2).$$

Then $(P-2)_{z^0}$ is satisfied if

$$\left|\frac{\partial \lambda}{\partial \eta_2}(y^0, \eta^{0\prime})\right|^2 + \left|\frac{\partial \lambda}{\partial \eta_n}(y^0, \eta^{0\prime})\right|^2 < 1.$$

Here we have chosen $t_1(y,\eta)=(y_1+\sqrt{y_2^2+y_n^2})\eta_n$ and $t_2(y,\eta)=(y_1-\sqrt{y_2^2+y_n^2})\eta_n$ which are Lipschitz continuous, and (3.2) implies that $t_j(y,\eta)$ (j=1,2) are time functions for $p \circ \chi$ with respect to $(0,\vartheta)$ at (y^0,η^0) .

Finally we shall give meaning of time functions. Applying the same arguments as in [9], we have the following

Theorem 3.3. Let $z^0 = (x^0, \xi^0) \in \mathbb{R}^n \times S^{n-1}$, and let $P(x, \xi)$ be a symbol in S^m such that $p(x, \xi)$ is microhyperbolic with respect to $(0, \vartheta) \in \mathbb{R}^{2n}$ at z^0 , where $p(x, \xi)$ denotes the principal symbol of $P(x, \xi)$. Assume that $(P-2)_{z^0}$, $(P-3)_{z^0}$ and at least one of the conditions $(P-4-1)_{z^0}$ and $(P-4-2)_{z^0}$ are satisfied. If $t(x, \xi)$ is a smooth time function for $p(x, \xi)$ with respect to $(0, \vartheta)$ at z^0 , $z^0 \notin WF(P^w(x, D)u)$ and $WF(u) \cap \{t(x, \xi) < 0\} \cap C = \emptyset$ with some conic neighborhood C of z^0 , then $z^0 \notin WF(u)$.

Remark. (i) Theorem 3.3 is a microlocal version of Hölmgren's uniqueness theorem. (ii) $(0, \vartheta)$ can be replaced by any non-zero vector in \mathbb{R}^{2n} . (iii) We can give the theorem in the form of Theorem 1.3 in [9].

Assume that the hypothese of Theorem 3.3 are satisfied for z^0 replaced by $z=(x,\xi)\in\Omega\cap\{|\xi|=1\}$, where Ω is an open conic set in $T^*\mathbf{R}^n\setminus 0$ and contains z^0 . Let $t(x,\xi)$ be a smooth time function for $p(x,\xi)$ with respect to $\widetilde{\vartheta}\in\mathbf{R}^{2n}$ in Ω , i.e., $t(x,\xi)$ is a real-valued smooth function in $T^*\mathbf{R}^n\setminus 0$ and positively homogeneous of degree 0 and $-H_t(z)\in\Gamma(p_z,\widetilde{\vartheta})$ for $z\in\Omega$. If $WF(P^w(x,D)u)\cap\Omega=\emptyset$, and if u is not smooth at the present time (i.e., $WF(u)\cap\{t(x,\xi)=0\}\cap\Omega\neq\emptyset$), then u was not smooth in the past (i.e., $WF(u)\cap\{t(x,\xi)<0\}\cap\Omega\neq\emptyset$). So time functions give measure of time concerning propagation of singularities.

REFERENCES

- 1. C. Fefferman and D. H. Phong, On positivity of pseudodifferential operators, Proc. Nat. Acad. Sc. 75 (1978), 4673-4674.
- 2. L. Hörmander, The Cauchy problem for differential equations with double characteristics, J. Analyse Math. 32 (1977), 118-196.
- 3. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.
- 4. L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, Berlin-Heidelberg-New York-Tokyo, 1985.
- N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case),
 J. Math. Kyoto Univ. 25 (1985), 727-743.
- 6. V. Ja. Ivrii, Sufficiet conditions for regular and completely regular hyperbolicity, Trudy Moskov. Mat. Obšč. 33 (1976), 3-66; Moscow Math. Soc. 33 (1978), 1-65.
- 7. V. Ja. Ivrii, The well-posedness of the Cauchy problem for nonstrictly hyperbolic operators. III. The energy integral, Trudy Moskov. Mat. Obšč. 34 (1977), 151-170; Moscow Math. Soc. 34 (1978), 149-168.
- 8. K. Kajitani and S. Wakabayashi, Microhyperbolic operators in Gevrey classes, Publ. RIMS, Kyoto Univ. 25 (1989), 169-221.
- 9. K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sc. math., 2^e série 115 (1991), 397-449.
- 10. K. Kajitani and S. Wakabayashi, Microlocal a priori estimates and the Cauchy problem I, to appear.
- 11. K. Kajitani and S. Wakabayashi, Microlocal a priori estimates and the Cauchy

- problem II, to appear.
- 12. K. Kajitani and S. Wakabayashi, The Cauchy problem for a class of hyperbolic operators with double characteristics, in preparation.
- 13. K. Kajitani, S. Wakabayashi and T. Nishitani, The Cauchy problem for hyperbolic operators of strong type, to appear.
- 14. T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, J. Math. Kyoto Univ. 24 (1984), 623-658.
- 15. T. Nishitani, Local energy integrals for effectively hyperbolic operators, II, J. Math. Kyoto Univ. 24 (1984), 659-666.
- 16. O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586.
- 17. S. Wakabayashi, Generalized Hamilton flows and singularities of solutions of hyperbolic Cauchy problem, Proc. Hyperbolic Equations and Related Topics, Taniguchi Symposium, Kinokuniya, Tokyo, 1984, pp. 415-423.