A proof of the Gauss-Bonnet-Chern Theorem by the symbol calculus of pseudo-differential operators

Chisato IWASAKI (岩崎 千里)

Department of mathematics, Himeji Institute of Technology

§1. Introduction. The aim of this paper is to give an analytic proof of the Gauss-Bonnet-Chern theorem for a smooth orientable Riemannian manifold with boundary by means of symbol calculus of pseudo-differential operators. The similar attempts for a smooth Riemannian manifold without boundary are found in E.Getzler [6], H.L.Cycon-R.G.Froese-W.Kirsch-B.Simon[5] and N.Berline-E.Getzler-M.Vergne[2].

Let M be a Riemannian manifold and let $\chi(M)$ be the Euler characteristic of M.Let dv and $d\sigma$ be a volume element of M and one of its boundary ∂M respectively.

Analytical proofs are based of the following formula

$$\chi(M) = \int_{M} \sum_{p=0}^{n} (-1)^{p} \operatorname{tre}_{p}(t, x, x) dv,$$

where $e_p(t, x, y)$ is the kernel of the fundamental solution $E_p(t)$ for the Cauchy problem for the heat equation for Δ_p on differental p-forms $A^p(M) = \Gamma(\wedge^p T^*(M))$, that is

$$E_p(t)f(x) = \int_M e_p(t,x,y) \varphi(y) dv_y, \ \ arphi \in A^p(M)$$

satisfies

(1.1)
$$\begin{cases} (\frac{\partial}{\partial t} + \Delta_p) E_p(t) = 0 & \text{in } (0, T) \times M, \\ E_p(0) = I & \text{in } M. \end{cases}$$

If M has boundary ∂M , then $E_p(t)$ satisfies $(1.2)_p$ instean of (1.1).

$$\begin{cases} (\frac{\partial}{\partial t} + \Delta_p) E_p(t) = 0 & \text{in } (0, T) \times M, \\ B_p E_p(t) = 0 & \text{on } (0, T) \times \partial M, \\ E_p(0) = I & \text{in } M, \end{cases}$$

with some boundary condition B_p (See §6).

 (Δ_p, B_p) is an elliptic boundary value problem. So it is well-known that $e_p(t, x, y)$ has singularity only at x = y as follows.

$$tre_p(t,x,x) \sim c_0(x)t^{-\frac{n}{2}} + c_1(x)t^{-\frac{n}{2}+\frac{1}{2}} + \dots + \dots \qquad t \to 0.$$

The vanishing of the singularity of super trace at a point of M defined by

$$stre(t, x, x) = \sum_{p=0}^{n} (-1)^{p} tre_{p}(t, x, x)$$

is due to algebraic theorem in §3 stated in [5] which is owing to V.K.Patodi [15]. The point of this paper is that according to this theorem and the method of construction of the fundamental solution for the mixed problem in C.Iwasaki[11], even if M has boundary, one can prove the Gauss-Bonnet-Chern theorem only by symbol calcuclus of the top term of the asymptotic of the fundamental solution, considering operators acting on $A^*(M) = \sum_{p=0}^n A^p(M)$

Main theorem. We get the Gauss-Bonnet-Chern theorem. Moreover we have that
(1)

$$\lim_{t\to 0} \int_M \sum_{p=0}^n (-1)^p \operatorname{tre}_p(t,x,x) \psi(x) dv = \int_M C_n(x,M) \psi(x) dv + \int_{\partial M} D_{n-1}(x) \psi(x) d\sigma$$

for any $\psi(x) \in C^{\infty}(M)$.

(2) For M without boundary or for x contained in $M \setminus \partial M$

$$\sum_{p=0}^{n} (-1)^p \operatorname{tre}_p(t, x, x) = C_n(x, M) + 0(\sqrt{t}) \quad \text{as } t \to 0.$$

(3) If M has boundary,

$$\sum_{p=0}^{n} (-1)^p \operatorname{tre}_p(t, x, x) = 2D_{n-1}(x) \frac{1}{\sqrt{t}} + 0(1) \quad \text{as } t \to 0$$

for $x \in \partial M$, where

$$C_n(x,M)dv = \begin{cases} the \ Euler \ form, & \text{if } n \text{ is even (See (5.2) for the pricise definition);} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$$

and

$$D_{n-1}(x) = \begin{cases} \frac{1}{2}C_{n-1}(x,\partial M), & \text{if } n \text{ is odd;} \\ \text{See Definition 7,} & \text{if } n \text{ is even.} \end{cases}$$

There are many studies to prove the Gauss-Bonnet-Chern theorem analytically. McKean-Singer [14] proved

$$stre(t, x, x) = C_n(x) + O(t)$$

when M is a closed manifold of dimention 2. V.K.Patodi[15] extended this equation for a manifold of any dimention. Moreover P.B.Gilkey[7],[8] proved the Gauss-Bonnet-Chern theorem by invariant theory in case M has boundary. There are probabilitistic proofs in N.Ikeda-S.Watanabe[9] and I.Shigekawa-N.Ueki-S.Watanabe[16].

§2. The representation of Δ . Let M be a smooth Riemannian manifold with a Riemannian metric g. Set X_1, X_2, \dots, X_n be a local orthonormal frame of T(M) in a local patch of chart U. And let $\omega^1, \omega^2, \dots, \omega^n$ be its dual.

The differential d and its dual ϑ acting on $A^*(M)$ are given as follow, using the Levi-Civita connection ∇ .

$$d = \sum_{j=1}^{n} e(\omega^{j}) \nabla_{X_{j}}, \qquad \vartheta = -\sum_{j=1}^{n} i(X_{j}) \nabla_{X_{j}},$$

where we use the following notations.

Notations.

$$e(\omega^j)\omega = \omega^j \wedge \omega, \ \imath(X_j)\omega(Y_1,\dots,Y_{p-1}) = \omega(X_j,Y_1,\dots,Y_{p-1}).$$

Let $c_{i,j}^k$ be the folloing function and let R(X,Y) be the curvature transformation, that is

$$R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]},$$

$$\nabla_{X_i} X_j = \sum_{\ell=1}^n c_{i,j}^{\ell} X_{\ell}.$$

From the fact that our connection is the Riemannian connection we have

Proposition 1. The coefficients $c_{i,j}^k$ of connection form satisfy

$$c_{i,j}^k = -c_{i,k}^j, \quad [X_i, X_j] = \sum_{k=1}^n (c_{i,j}^k - c_{j,i}^k) X_k.$$

We have the following representation for $\Delta = d\vartheta + \vartheta d$ which is known as Weitzenböck's formula.

Lemma 1. The Laplacian Δ on $A^*(M)$ is given by

$$\Delta = -\{\sum_{j=1}^{n} \nabla_{X_{j}} \nabla_{X_{j}} - \sum_{i,j=1}^{n} c_{i,i}^{j} \nabla_{X_{j}} + \sum_{i,j=1}^{n} e(\omega^{i}) \iota(X_{j}) R(X_{i}, X_{j})\}.$$

We use the following notations in the rest of this paper.

$$e(\omega^{j}) = a_{j}^{*}, \qquad \iota(X_{m}) = a_{m},$$

$$a_{I} = a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}, \qquad a_{I}^{*} = a_{i_{p}}^{*} \cdots a_{i_{1}}^{*} \quad \text{for } I = \{i_{1} < i_{2} < \cdots < i_{p}\},$$

$$\omega^{I} = \omega^{i_{1}} \wedge \omega^{i_{2}} \wedge \cdots \wedge \omega^{i_{p}} \quad \text{for } I = \{i_{1} < i_{2} < \cdots < i_{p}\},$$

$$R(X_{i}, X_{j}) X_{k} = \sum_{\ell=1}^{n} R_{kij}^{\ell} X_{\ell} \quad 1 \le i, j, k, \le n.$$

Then we have

$$\Delta = -\left\{\sum_{j=1}^{n} (X_{j}I - G_{j})^{2} - \sum_{i,j=1}^{n} c_{i,i}^{j} (X_{j}I - G_{j}) - \sum_{i,j,\ell,m=1}^{n} R_{\ell ij}^{m} a_{i}^{*} a_{j} a_{\ell}^{*} a_{m}\right\}$$

on $A^*(M)$. Here

$$G_j = \sum_{\ell,m=1}^n c_{j,\ell}^m a_\ell^* a_m$$

and I is an identity operator on $\wedge^*(T^*(M))$.

Take a local coordinate $\{x_1, \dots, x_n\}$ of U. Let $\{\xi_1, \dots, \xi_n\}$ be its dual. By the above Lemma 1 we have

Lemma 2. The symbol of Δ is given by

$$\sigma(\Delta) = -\{\sum_{j=1}^{n} (\alpha_{j}I - G_{j})^{2} - \sum_{i,j,\ell,m=1}^{n} R_{\ell ij}^{m} a_{i}^{*} a_{j} a_{\ell}^{*} a_{m}\} + r_{1},$$

where

$$r_1 = \sum_{k,j=1}^n i\{(\frac{\partial}{\partial \xi_k})\alpha_j(\frac{\partial}{\partial x_k})\alpha_j - (\frac{\partial}{\partial \xi_k})\alpha_j(\frac{\partial}{\partial x_k})G_j\}I + \sum_{j,k=1}^n c_{k,k}^j(\alpha_j I - G_j)$$

and

$$\sigma(X_j) = \alpha_j.$$

The following proposition is fundamental for a_i, a_j^* .

Proposition 2.

$$a_i a_j + a_j a_i = 0,$$

 $a_i^* a_j^* + a_j^* a_i^* = 0,$
 $a_i a_j^* + a_j^* a_i = \delta_{ij}.$

§3. Berezin-Patodi formula. Let V be a vector space of dimention n with inner product and let $\wedge^p(V)$ be its anti-symmetric p tensors. Set $\wedge^*(V) = \sum_{p=0}^n \wedge^p(V)$. Let $\{v_1, \dots, v_n\}$ be an orthograml basis for V. Set a_i^* be a linear transformation on $\wedge^*(V)$ defined by $a_i^*v = v_i \wedge v$ and set a_i be an adjoint operator of a_i^* on $\wedge^*(V)$. Then $\{a_i^*, a_j\}$ satisfy Proposition 2. The following Theorem 1 was shown in [5] under the above assumptions.

Theorem 1(Berezin-Patodi[5]). For any linear operator A on $\wedge^*(V)$, we can write uniquely in the form $A = \sum_{I,J} \alpha_{I,J} a_I^* a_J$ and

$$\sum_{p=0}^{n} \operatorname{tr}[(-1)^{p} A_{p}] = (-1)^{n} \alpha_{\{1,2,\cdots,n\}\{1,2,\cdots,n\}},$$

where $A_p = A|_{\wedge^p(V)}$.

§4. Construction of the asymptotics of the fundamental solution for the Cauchy problem.

Now let us cosider the Cauchy problem on \mathbb{R}^n .

(4.1)
$$\begin{cases} (\frac{\partial}{\partial t} + R(x, D))U(t) = 0 & \text{in } (0, T) \times \mathbf{R}^n, \\ U(0) = I & \text{in } \mathbf{R}^n, \end{cases}$$

where R(x,D) is a differential operator of which symbol $r(x,\xi)=p_2(x,\xi)I+p_1(x,\xi)$ satisfies $p_j\in S^j_{1,0}$ and $p_2\geq \delta|\xi|^2$.

Definition 1. (1)Let $(A)_{ij} = a_i^* a_j$ $1 \le i, j \le n$. (2)Let K^m be a subset of $S_{1,0}^m$ as follows.

 $K^m = \{p(x, \xi : \mathcal{A}); \text{polynomial with respect to } \xi \text{ and } \mathcal{A} \text{ of order } m \text{ with coefficients } \mathcal{B}(\mathbf{R}^n)\}.$ (3) We define a pseudo-differential operator action on $A^*(M)$ by $P = p(x, D : \mathcal{A})$ of a symbol $\sigma(P) = p(x, \xi : \mathcal{A}) = \sum_{I,J} p_{I,J}(x, \xi) a_I^* a_J \in K^m$ as follows.

$$p(x,D:\mathcal{A})(\varphi_K\omega^K) = \sum_{I,J} p_{I,J}(x,D) \varphi_K a_I^* a_J(\omega^K)$$

Definition 2. (1) For a real mumber m, K_m is the set of all polynomials with respect to t of degree d with cefficient of K^{m+2d} .

(2) For a real number ℓ , R_{ℓ} is the subset of $\bigcup_{m} B_{\ell}(S_{1,0}^{m})$ which satisfies the following enequality for nonnegative constants $C_{\alpha,\beta}$, C and $\ell_{\alpha,\beta}$

$$\|(\frac{\partial}{\partial t})^k(\frac{\partial}{\partial \xi})^{\alpha}(\frac{\partial}{\partial x})^{\beta}q(t,x,\xi)\| \leq C_{\alpha,\beta}e^{-p_2t+C<\xi>t}(t<\xi>^2+1)^{\ell_{\alpha,\beta}}(\frac{1}{\sqrt{t}}+<\xi>)^{\ell+2k-|\alpha|}.$$

Now assume (4.2) for the symbol $r(x,\xi)$ of R(x,D) in (4.1)

(4.2)
$$r(x,\xi:A) = r_2(x,\xi:A) + r_1(x,\xi:A), \quad r_j \in K^j \ (j=1,2),$$

 $r_2(x,\xi:\mathcal{A}) - p_2(x,\xi)I \in S^1_{1,0}.$

Let

$$u_0 = e^{-tr_2(x,\xi:A)}.$$

Theorem 2. For any non negative integer N we have the asymptotics u^N of the fundamental solution for (4.1) of the form $u^N = \sum_{j=0}^N u_j$, $u_j = v_j u_0$ with $v_j \in K_{-j}$ in the sense

$$\begin{cases} \left(\frac{\partial}{\partial t} + r\right) \circ u^N = 0 \mod R_{-N+1}, \\ u^N(0) = I. \end{cases}$$

§5. The proof of the Gauss-Bonnet-Chern theorem without boundary.

We will construct the asymptotics of the fundamental solution for the Cauchy problem on ${\cal M}$, that is,

$$\begin{cases} (\frac{\partial}{\partial t} + \Delta)U(t) = 0 & \text{in } (0, T) \times M, \\ U(0) = I & \text{in } M, \end{cases}$$

where the operator U(t) is cosidered acting on $A^*(M) = \sum_{p=0}^n A^p(M)$. Owing to the fact that the fundamental solution has the pseudo-local property, it is sufficient to consider the fundamental solution in a local chart. We have

$$\operatorname{str} e(t, x, x) = \operatorname{str} \tilde{u}^{N}(t, x, x) + 0(t^{-\frac{n}{2} + \frac{N}{2}}),$$

where

$$\tilde{u}^N(t,x,y) = (2\pi)^{-n} \int_{\mathbf{R}^n} e^{i(x-y)\cdot \xi} u^N(t,x,\xi) d\xi.$$

In our case $r = r_2 + r_1$, where r_1 is given in Lemma 2 and

$$r_2 = -\sum_{j=1}^{n} (\alpha_j I - G_j)^2 + R.$$

Here

(5.1)
$$R = \sum_{i,j,\ell,m=1}^{n} R^{m}_{\ell ij} a_{i}^{*} a_{j} a_{\ell}^{*} a_{m}.$$

The principal symbol of Δ is equal to $p_2 = -\sum_{j=1}^n (\alpha_j)^2 I$.

By Theorem 1, we have

$$\operatorname{str} \tilde{u}_0(t, x, x) = \begin{cases} \left(\frac{1}{2\sqrt{\pi t}}\right)^n \sqrt{\det g} \operatorname{str}\left\{\frac{(-1)^m}{m!} R^m t^m\right\} + 0(t), & \text{if } n = 2m ;\\ 0(\sqrt{t}), & \text{if } n \text{ is odd.} \end{cases}$$

$$\operatorname{str} \tilde{u}_{j}(t, x, x) = 0(\sqrt{t}^{j}).$$

Noting (5.1), we have

Lemma 3. If n=2m,

$$\left(\frac{1}{2\sqrt{\pi}}\right)^n \operatorname{str}\left\{\frac{(-1)^m}{m!}R^m\right\} = C_n(x, M),$$

where

(5.2)
$$C_n(x,M) = \left(\frac{1}{2\sqrt{\pi}}\right)^n \frac{1}{m!} \sum_{\pi,\sigma \in S_n} \left(\frac{1}{2}\right)^m sign(\pi) sign(\sigma)$$

$$\times R_{\pi(1)\pi(2)\sigma(1)\sigma(2)}\cdots R_{\pi(n-1)\pi(n)\sigma(n-1)\sigma(n)}$$

 $\S 6$. Asymptotics of the fundamental solution for intial-boundary value problems. The study in [11] is applicable for the construction of the fundamental solution for our intial-boundary value problem. But as we have studied in $\S 5$, the lower parts of the asymptotics of the fundamental solution play the important part for the proof of Gauss-Bonnet-Chern theorem. So in this case we introduce new class \mathcal{J}_s instead of

 \mathcal{H}_s in [11], as we used K^m instead of $S_{1,0}^m$ in §4. The main part of the construction of the fundamental solution or its asymptotics is how to construct these ones in a local chart (cf.[11]).

We will write down the boundary operator B_p in a local coordinate. Take a local patch Ω near ∂M such that ∂M is defined by $\{\rho=0\}$ in Ω and $M\cap\Omega\subset\{\rho\geq0\}$. Assume that $\omega^n=cd\rho$ with some function c on M.

Choose a local coordinate $\{x_1,\cdots,x_n\}$ in Ω such that $M\cap\Omega=\{(x',x_n);x'\in\mathcal{U},x_n\geq0\},\Gamma=\partial M\cap\Omega=\{(x',0);x'\in\mathcal{U}\}$ and

$$X_n|_{\Gamma} = \frac{\partial}{\partial x_n}.$$

The boundary operator B_p is as follows.

$$\varphi \in Dom(\vartheta), \qquad d\varphi \in Dom(\vartheta),$$

where $Dom(\vartheta) = \{\varphi = \sum_J \varphi_J \omega^J, \varphi_J|_{\Gamma} = 0 \text{ for } n \in J\}$. So we obtain the equation for the boundary condition

$$\frac{\partial}{\partial x_n}\varphi|_{\Gamma}=0$$

for $\varphi \in A^0(M)$ and for $\sum_J \varphi_J \omega^J \in A^p(M), \ p \ge 1$

$$\begin{cases} \varphi_J|_{\Gamma} = 0 \text{ if } n \in J, \\ \{(\frac{\partial}{\partial x_n} - \gamma + b) \sum_{n \notin J} \varphi_J \omega^J\}|_{\Gamma} = 0, \end{cases}$$

where γ and b are given in the following (6.1).

Definition 3. (1) We define $h^* = h^*(t, x', \xi) = h(t, x', 0, \xi)$ for a function $h(t, x, \xi)$ given in \mathbf{R}^{2n+1} . (2)Set

(6.1)
$$\gamma = \gamma(x': \mathcal{A}) = \sum_{1 \leq j,k \leq n} (c_{n,k}^j)^* a_k^* a_j,$$

$$b = b(x' : \mathcal{A}) = -\sum_{1 \le j,k \le n-1} (c_{j,k}^n)^* a_j^* a_k + \sum_{j=n \text{ or } k=n} (c_{n,k}^j)^* a_k^* a_j.$$

(3)
$$\mathcal{P} = a_n^* a_n$$
, $\mathcal{Q} = a_n a_n^* = I - \mathcal{Q}$, $B = \frac{\partial}{\partial x_n} - \gamma + b$.

As the argument in [11], it is enough to construct the fundamental solution in \mathbb{R}^n_+ . Suppose that the fundamental solution is in the form $U_B(t) = U(t) + V(t)$, where U(t) is

the fundamental solution for the Cauchy problem. Then we consider the following problem in \mathbb{R}^n_+ .

$$\begin{cases} (\frac{d}{dt} + R(x,D))V(t) = 0 & \text{in } I \times \mathbf{R}_+^n, \\ \mathcal{P}V(t) = -\mathcal{P}U(t) & \text{on } I \times \mathbf{R}^{n-1} \times \{x_n = 0\}, \\ B\mathcal{Q}V(t) = -B\mathcal{Q}U(t) & \text{on } I \times \mathbf{R}^{n-1} \times \{x_n = 0\}, \\ \lim_{t \to 0} V(t) = 0 & \text{in } \mathbf{R}_+^n. \end{cases}$$

Definition 4. Let $\{q_j\}_{j\leq 2}$ be defined as

$$\begin{split} q_2 &= r_2(x', 0, \xi', \xi_n : \mathcal{A}) = r_2^{\star}, \\ q_{2-j} &= \sum_{\ell+k=j, 0 < k < 2} ((\frac{\partial}{\partial x_n})^{\ell} r_{2-k})^{\star} \frac{x_n^{\ell}}{\ell!}, \quad j \ge 1. \end{split}$$

For any fixed N we set

$$\hat{q} = \sum_{j=2}^{-N+1} q_j.$$

We have by Definition 3 and 4

$$q_2 = (\xi_n + i\gamma)^2 + \beta(x', \xi' : \mathcal{A}),$$

where

$$\beta = -\sum_{j=1}^{n-1} ((\alpha_j)^* I - (G_j)^*)^2 + R^* \in K^2.$$

Let $\{\tilde{w}_{j,k}\}$ be symbols defined in Definition 7 of [11] and let $\{W_{j,k}\}$ be operators defined by $\{\tilde{w}_{j,k}\}$.

Definition 5. For a pair (j,k) of integer j and nonpositive integer k we define a function

$$\{\tilde{v}_{j,k}(t,x_n,y_n;b,\gamma)\}_{j,k} = e^{\gamma(x_n-y_n)}\tilde{w}_{j,k}(t,x_n+y_n;b).$$

An operator $V_{j,k}(t;b,\gamma)$ corresponding to $\tilde{v}_{j,k}$ is defined as follows for a function $\varphi(y_n)$ defined on \mathbf{R}^1_+ .

$$(V_{j,k}(t;b,\gamma)\varphi)(x_n) = \int_0^\infty \tilde{v}_{j,k}(t,x_n,y_n;b,\gamma)\varphi(y_n)dy_n.$$

Here

$$w_{0,0}(t,\xi_n) = \exp(-t\xi_n^2)$$

$$\begin{split} w_{j,0}(t,\xi_n) &= (i\xi_n)^j w_{0,0}(t,\xi_n), j \geq 0, \\ \tilde{w}_{j,0}(t,\omega) &= (2\pi)^{-1} \int_{-\infty}^{\infty} e^{i\omega \cdot \xi_n} \tilde{w}_{j,0}(t,\xi_n) d\xi_n, \ j \geq 0, \\ \tilde{w}_{j,0}(t,\omega;b) &= -\frac{1}{\sqrt{\pi}} (\frac{1}{2\sqrt{t}})^{j+1} \int_{0}^{\infty} e^{-(\sigma + \frac{\omega}{2\sqrt{t}})^2} \frac{(-\sigma)^{-j-1}}{(-j-1)!} d\sigma, \ j \leq -1, \\ \text{for } k \leq -1 \qquad \tilde{w}_{j,k}(t,\omega;b) &= \\ \begin{cases} -\frac{1}{\sqrt{\pi}} (\frac{1}{2\sqrt{t}})^{j+k+1} \int_{0}^{\infty} e^{-(\sigma + \frac{\omega}{2\sqrt{t}})^2 + 2b\sqrt{t}\sigma} \frac{(-\sigma)^{-k-1}}{(-k-1)!} h_j(\sigma + \frac{\omega}{2\sqrt{t}}) d\sigma, \ \text{if } j \geq 0; \\ \frac{1}{\sqrt{\pi}} (\frac{1}{2\sqrt{t}})^{j+k+1} \int_{0}^{\infty} \frac{(-\tau)^{-j-1}}{(-j-1)!} d\tau \int_{0}^{\infty} e^{-(\sigma + \tau + \frac{\omega}{2\sqrt{t}})^2 + 2b\sqrt{t}\sigma} \frac{(-\sigma)^{-k-1}}{(-k-1)!} d\sigma, \ \text{if } j \leq -1, \end{cases} \\ \text{where } h_j(\sigma) = \{(\frac{\partial}{\partial \sigma})^j e^{-\sigma^2}\} e^{\sigma^2}. \end{split}$$

Definition 6.

(1) \mathcal{J}_s is the set of all finite sum of the following functions

$$\{g(t, x_n, y_n, x', \xi' : \mathcal{A}) = t^d(x_n)^{\ell} q(x', \xi' : \mathcal{A}) \tilde{v}_{j,k}(t, x_n, y_n; b(x' : \mathcal{A}), \gamma(x' : \mathcal{A})) e^{-\beta(x', \xi' : \mathcal{A})t};$$

$$q \in K^m(\mathbf{R}^{n-1}), d \ge 0, \ell \ge 0, k \le 0, m = s + 2d + \ell - j - k\}.$$

 $(2)\tilde{R}_{\ell}$ is the set of all matrices which belong to $B([0,T]\times[0,\infty)\times[0,\infty);S_{1,0}^m(\mathbf{R}^{n-1}))$ and satify for any α,β,a,b,k

$$\|(\frac{\partial}{\partial \xi'})^{\alpha} (\frac{\partial}{\partial x'})^{\beta} (\frac{\partial}{\partial x_n})^a (\frac{\partial}{\partial y_n})^b (\frac{\partial}{\partial t})^k g\|$$

$$\leq C_{\alpha,\beta} \min(|\xi'|^{-|\alpha|}, \sqrt{t}^{|\alpha|}) (\frac{1}{\sqrt{t}})^{\ell+1+2k+a+b} \exp(-\delta \frac{(x_n+y_n)^2}{4t} - c_0 |\xi'|^2 t)$$

for any $\delta < 1$ and some $c_0 > 0$.

(3) For a symbol $g(t, x_n, y_n, x', \xi', A) \in \mathcal{J}_s$ we define a integral-pseudodifferential operator as follows.

$$(G\varphi)(t,x',x_n:\mathcal{A})=\int_0^\infty g(t,x_n,y_n,x',D':\mathcal{A})\varphi(\cdot,y_n)dy_n.$$

Theorem 3. (1)For any $g(t) \in \mathcal{J}_s$ and $h(t) \in \mathcal{J}_{s-1}$ there exists $v(t) \in \mathcal{J}_{s-2}$ such that $\begin{cases} (\frac{\partial}{\partial t} + \hat{q}) \circ v(t) = g(t) \mod \mathcal{J}_{s-1} + \tilde{R}_{-N} & \text{in } I \times \mathbf{R}_+^n, \\ Bv(t)|_{x_n=0} = h(t) \mod \mathcal{J}_{s-2} + \tilde{R}_{-N-1} & \text{in } I \times \mathbf{R}^{n-1}. \end{cases}$

(2) For any $g(t) \in \mathcal{J}_s$ and $h(t) \in \mathcal{J}_{s-2}$ there exists $v(t) \in \mathcal{J}_{s-2}$ such that

$$\begin{cases} (\frac{\partial}{\partial t} + \hat{q}) \circ v(t) = g(t) \mod \mathcal{J}_{s-1} + \tilde{R}_{-N} & \text{in } I \times \mathbf{R}_+^n, \\ v(t)|_{x_n=0} = h(t) \mod \mathcal{J}_{s-3} + \tilde{R}_{-N-2} & \text{in } I \times \mathbf{R}^{n-1}. \end{cases}$$

Now we discuss our boundary value problem .

For a function h(x) defined in $\bar{\mathbf{R}}_{+}^{n}$, we set a function $h^{+}(x)$ defined in \mathbf{R}^{n} as follows.

$$h^{+}(x) = \begin{cases} h(x', x_n), & \text{if } x_n \ge 0; \\ 0, & \text{if } x_n < 0. \end{cases}$$

Also we set

$$\varphi^+ = \sum_{J} \varphi^+ \omega^J \text{ for } \varphi = \sum_{J} \varphi_J \omega^J.$$

Theorem 4. For any N the asymptotics of the fundamental solution $U_B(t)$ for the boundary problem (7.2) in the sense

$$\begin{cases} (\frac{\partial}{\partial t} + \hat{q}) \circ v(t) = -(\frac{\partial}{\partial t} + \hat{q}) \circ u(t) \mod \tilde{R}_{-N+2} & \text{in } I \times \mathbf{R}_+^n, \\ \mathcal{P}(u(t) + v(t))|_{x_n = 0} = 0 \mod \tilde{R}_{-N} & \text{in } I \times \mathbf{R}^{n-1}, \\ B\mathcal{Q}(u(t) + v(t))|_{x_n = 0} = 0 \mod \tilde{R}_{-N+1} & \text{in } I \times \mathbf{R}^{n-1}. \end{cases}$$

is obtained in the form $U_B(t)\varphi = U(t)\varphi^+ + V(t)\varphi$, where V(t) is the operator defined by a symbol $v(t) \in \mathcal{J}_1$ such that $v(t) = \sum_{j=0}^N v_{1-j}(t), \ v_j(t) \in \mathcal{J}_{-j}, \ v_1(t) = 2\mathcal{Q}\tilde{v}_{1,-1}e^{-t\beta}$.

For a function h(x) defined in $\mathbf{\bar{R}}_{+}^{n}$, we set a function $h^{+}(x)$ defined in \mathbf{R}^{n} as follows.

$$h^{+}(x) = \begin{cases} h(x', x_n), & \text{if } x_n \ge 0; \\ 0, & \text{if } x_n < 0. \end{cases}$$

Also we set

$$\varphi^+ = \sum_{J} \varphi^+ \omega^{J}$$
 for $\varphi = \sum_{J} \varphi_{J} \omega^{J}$.

Theorem 4. For any N the asymptotics of the fundamental solution $U_B(t)$ for the boundary problem (7.2) in the sense

$$\begin{cases} (\frac{\partial}{\partial t} + \hat{q}) \circ v(t) = -(\frac{\partial}{\partial t} + \hat{q}) \circ u(t) \mod \tilde{R}_{-N+2} & \text{in } I \times \mathbf{R}_+^n, \\ \mathcal{P}(u(t) + v(t))|_{x_n = 0} = 0 \mod \tilde{R}_{-N} & \text{in } I \times \mathbf{R}^{n-1}, \\ B\mathcal{Q}(u(t) + v(t))|_{x_n = 0} = 0 \mod \tilde{R}_{-N+1} & \text{in } I \times \mathbf{R}^{n-1}. \end{cases}$$

is obtained in the form $U_B(t)\varphi = U(t)\varphi^+ + V(t)\varphi$, where V(t) is the operator defined by a symbol $v(t) \in \mathcal{J}_1$ such that $v(t) = \sum_{j=0}^N v_{1-j}(t), \ v_j(t) \in \mathcal{J}_{-j}, \ v_1(t) = 2\mathcal{Q}\tilde{v}_{1,-1}e^{-t\beta}$.

§7. The proof of Gauss-Bonnet-Chern theorem with boundary. Let $\hat{R}(W, Z, X, Y)$ be the Riemannnian curvature tensors induced on Γ . From Equation of Gauss we have

$$R(X_{i}, X_{j}, X_{k}, X_{\ell}) = \hat{R}(X_{i}, X_{j}, X_{k}, X_{\ell}) + c_{k,j}^{n} c_{\ell,i}^{n} - c_{\ell,j}^{n} c_{k,i}^{n},$$

$$1 \le i, j, k, \ell \le n - 1 \text{ on } \Gamma.$$

Definition 7.

$$D_{n-1}(x) = (\frac{1}{2})(\frac{1}{2\sqrt{\pi}})^{n-1}\frac{1}{m!}\sum_{\pi,\sigma\in S_{n-1}}(\frac{1}{2})^{m}sign(\pi)sign(\sigma)\hat{R}_{\pi(1)\pi(2)\sigma(1)\sigma(2)}\cdots$$

$$\cdots \hat{R}_{\pi(n-2)\pi(n-1)\sigma(n-2)\sigma(n-1)}$$

if n is odd (n-1=2m).

$$D_{n-1}(x) = \sum_{k=0}^{m-1} \frac{1}{2^{m+k} \pi^m k! 1 \cdot 3 \cdot 5 \cdots (2m-2k-1)} (\frac{1}{2})^k \sum_{\pi, \sigma \in S_{n-1}} sign(\pi) sign(\sigma)$$

$$\times R_{\pi(1)\pi(2)\sigma(1)\sigma(2)}^{\star} \cdots R_{\pi(2k-1)\pi(2k)\sigma(2k-1)\sigma(2k)}^{\star}$$

$$\times c^{n}_{\pi(2k+1),\sigma(2k+1)}c^{n}_{\pi(2k+2),\sigma(2k+2)}\cdots c^{n}_{\pi(n-1),\sigma(n-1)}$$

if n even (n=2m).

By Theorem 4 asymptotic of the fundamental solution for the mixed problem is given by $U_0 + U_1 + \cdots + U_N + V_1 + V_0 + \cdots + V_{-N}$, $v_j \in \mathcal{J}_j$, $v_j = g_j e^{-t\beta}$, $g_1 = 2\mathcal{Q}\tilde{v}_{1,-1}$.

For the supertrace of kernel $\tilde{v}_j(t,x,y)$ of operator V_j , we have the following lemma.

Lemma 4. For any integer N we have

$$\operatorname{str} \tilde{v}_{j}(t, x, x) = \begin{cases} 0(\sqrt{t}^{N}), & \text{if } x_{n} \neq 0; \\ 0((\sqrt{t})^{-j}), & \text{if } x_{n} = 0. \end{cases}$$

$$\int_0^\varepsilon \operatorname{str} \tilde{v}_j(t,x,x) \psi(x) dx_n = 0((\sqrt{t})^{-j+1}).$$

Moreover we have

$$\operatorname{str} \tilde{v}_1(t,x',0,x',0) = \frac{2}{\sqrt{t}} D_{n-1}(x') \sqrt{\det g} + 0(1).$$

$$\int_0^{\varepsilon} \operatorname{str} \tilde{v}_1(t,x,x) \psi(x) dx_n = \psi(x',0) D_{n-1}(x') \sqrt{\det \hat{g}} + 0(\sqrt{t}),$$

where \hat{g} is the Riemannain metric induced on ∂M .

Theorem 5. For any N we have

$$\operatorname{str} \tilde{v}(t, x, x) = \begin{cases} 0(\sqrt{t}^{N}) & \text{if } x_{n} > 0\\ \frac{2}{\sqrt{t}} D_{n-1}(x') \sqrt{\det g} + 0(1) & \text{if } x_{n} = 0. \end{cases}$$

$$\int_0^\varepsilon \operatorname{str} \tilde{v}(t,x,x) \psi(x) dx_n = D_{n-1}(x') \sqrt{\operatorname{det} \hat{g}} \psi(x',0) + O(\sqrt{t}).$$

Proof of Main Theorem. It is sufficient to consider the fundamental solution locally if we study the asymptotic behavior of the fundamental solution. In a local patch we have

$$e(t,x,x)dv = \tilde{u}(t,x,x)dx + \tilde{v}(t,x,x)dx.$$

Then for any N we get by Theorem 5

$$\operatorname{str} e(t, x, x) = \operatorname{str} \tilde{u}(t, x, x) + 0(t^{N}), \ x \in M \setminus \partial M$$
$$\operatorname{str} e(t, x, x) = C_{n}(x) + 0(\sqrt{t}), \ x \in M \setminus \partial M$$
$$\operatorname{str} e(t, x, x) = \frac{2}{\sqrt{t}} D_{n-1}(x) + 0(1), \ x \in \partial M.$$

We remakt that the induced volume element of ∂M is defined by $d\sigma = (-1)^n \sqrt{\det \hat{g}} dx_1 dx_2 \cdots dx_n$ in a local chart. In our case $D_{n-1}(x')d\sigma$ is independent of orientation of M. So we have

$$\int_{M} \operatorname{str} e(t, x, x) \psi(x) dv = \int_{M} C_{n}(x) \psi(x) dv + \int_{\partial M} D_{n-1}(x') \psi(x') d\sigma + O(\sqrt{t}).$$

The proof is complete.

q. e. d.

REFERENCES

- [1] M.F.Atiyah, R.Bott and V.K.Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973),279-330.
- [2] N.Berline, E.Getzler and M.Vergne, Heat Kernels and Dirac Operators, 1991, Springer-Verlag.
- [3] S.Chern, A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944),747-752.
- [4] S.Chern, On the curvatura integra in a rimannian manifold, Ann. of Math. 45 (1944), 747-752.
- [5] H.L.Cycon, R.G.Froese, W.Kirsch and B.Simon, Schrödinger operators, Texts and Monographics in Physics, 1987, Springer.
- [6] E.Getzler, The local Atiyah-Singer index theorem, Critical phenomena, radom systems, gauge theories, K.Osterwalder and R.Stora, eds. Les Houches, Sessin XLIII, (1984), 967-974, Noth-Holland.
- [7] P.B.Gilkey, The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary, Adv.in Math., 15 (1975),334-360.
- [8] P.B.Gilkey, Invariance Theory, The Heat Equation, and the Atiyah-Singer Index Theorem, 1984, Publish or Perish, Inc..
- [9] N.Ikeda and S.Watanabe, Stochastic differential equations and diffusion process, Kodansha/North-Holland, Tokyo/Amsterdam, 1981, Second Ed. 1989.
- [10] C.Iwasaki, The fundamental solution for pseudo-differential operators of parabolic type, Osaka J.Math.14 (1977),569-592.
- [11] C.Iwasaki, The asymptotic expansion of the fundamental solution for intial-boundary value problems and its application, preprint.
- [12] I.Iwasaki, A proof of the Gauss-Bonnet-Chern Theorem by the symbol calculus of pseudo- differential operators, preprint.
- [13] S.Kobayashi-K.Nomizu, Foundations of Differential Geometry I, II, 1963, John Wiley & Sons.

- [14] H.P.McKean and I.M.Singer, Curvature and the eigenvalues of the Laplacian, J.Differential Geometry 1 (1967),43-69.
- [15] V.K.Patodi, Curvature and the eigenforms of the Laplace operator, J.Differential Geometry 5 (1971), 233-249.
- [16] I.Shigekawa, N. Ueki and S. Watanabe, A probabilitic proof of the Gauss-Bonnet-Chern Theorem for manifolds with boundary, Osaka J. Math. 26 (1989),897-930
- [17] C.Tsutsumi, The Fundamental Solution for a Degenerate Parabolic Pseudo- Differential Operator. Proc. Japan Acad. 50 (1974),11-15.