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A proof of the Gauss-Bonnet-Chern Theorem
by the symbol calculus of pseudo-differential operators

Chisato INASAKI (& TH)
Department of mathematics, Himeji Institute of Technology

§1. Introduction. The aim of this paper is to give an analytic proof of the
Gauss-Bonnet-Chern theorem for a smooth orientable Riemannian manifold with boundary
by means of symbol calculus of pseudo-differential operators. The similar attempts for a

smooth Riemannian manifold without boundary are found in E.Getzler [6], H.L.Cycon-
R.G.Froese-W .Kirsch-B.Simon[5] and N.Berline-E.Getzler-M.Vergne|[2] .

Let M be a Riemannian manifold and let x(M) be the Euler characteristic of M.Let
dv and do be a volume element of M and one of its boundary OM respectively.

Analytical proofs are based of the following formula
x(M) = / Z(—l)p trey(t, z, z)dv,
M,

where ep(t, :c,,y) is the kernel of the fundamental solution E,(t) for the Cauchy problem
for the heat equation for A, on differental p-forms A?(M) = I'(APT*(M)), that is

Ey()f(z) = /M ep(t 2 9)p(v)dvy, @ € AP(M)

satisfies

(1.1) { (-6- +8p)Ep(t) =0 in (0,T) x M,

ot
E,(0)=I in M.
If M has boundary M, then E,(t) satisfies (1.2), instean of (1.1).

g—t +ANE,(H)=0 in(0,T) x M,

(12), B,E,(t)=0 on (0,T) x &M,
E,(0)=1 inM,

with some boundary condition B, (See §6 ). -

(Ap, Bp) is an elliptic boundary value problem. So it is well-known that e,(t,z,y) has
singularity only at z = y as follows.

trey(t,z,z) ~ co(z)t™% + cl(x)t";%'% e t— 0.
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The vanishing of the singularity of super trace at a point of M defined by

stre(t,z,z) = Z(—l)”trep(t, z,z)
p=0

is due to algebraic theorem in §3 stated in [5] which is owing to V.K.Patodi [15]. The
point of this paper is that according to this theorem and the method of construction of the
fundamental solution for the mixed problem in C.Iwasaki[l11], even if M has boundary ,
one can prove the Gauss-Bonnet-Chern theorem only by symbol calcuclus of the top term
of the asymptotic of the fundamental solution, considering operators acting on A*(M) =

2 p=0 AP(M)

Main theorem . We get the Gauss-Bonnet-Chern theorem. Moreover we have
that

1)

lim /M ;(—1)” trey,(t,z,z)Y(z)dv = /M Cn(z, M)p(z)dv + LM D, _1(2)¥(z)do

t—0

for any (z) € C>(M).

(2)For M without boundary or for z contained in M\OM

i(—l)l’ trep(t,x,a:) = Cp(z, M) + 0(\/2) as t — 0.

p=0
(3) If M has boundary,

n

(=1)Ptrep(t,z,z) =2Dp—1(z)—=+0(1) ast—0
0

1
Vi

P=

for x € OM ,where

Cinl(z, M)dv = the Euler form, 1:fn 1:s even (See (5.2) for the pricise definition);
0, if n is odd.

and
.Dn__l(:L') = { %Cn_l(x7aM), ifn js Odd;

See Definition 7, if n is even.
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There are many studies to prove the Gauss- Bonnet-Chern theorem analytically.
McKean-Singer [14] proved

stre(t,z,z) = Cp(z) + 0(2)

when M is a closed manifold of dimention 2. V.K.Patodi[15] extendedthis equation for
a manifold of any dimention. Moreover P.B.Gilkey[7],[8] proved the Gauss-Bonnet-Chern

theorem by invariant theory in case M has boundary. There are probabilitistic proofs in
N.Ikeda-S.Watanabe[9] and I.Shigekawa-N.Ueki-S.Watanabe[16].

§2. The representation of A. Let M be a smooth Riemannian manifold with
a Riemannian metric g. Set X1, Xs,-+-, X, be a local orthonormal frame of T(M) in a
local patch of chart U. And let w!,w?,---,w"™ be its dual.

The differential d and its dual ¥ acting on A*(M) are given as follow, using the
Levi-Civita connection V .

n

d=) eW)Vx;, 9=-3 1X;)Vx,
Jj=1

i=1

where we use the following notations.

Notations.

6(wj)w = wj /\wa Z(Xj)w(}/l” o 7}/;’—1) = w(Xj’Yla e ',Y;'—l)'

Let cf’ ; be the folloing function and let R(X,Y’) be the curvature transformation, that
is

R(X,Y)=[Vx,Vy]- Vix ],
n
VxiXj=) Xy
=1
From the fact that our connection is the Riemannian connection we have
Proposition 1. The coefficients cf, ; of connection form satisfy

n

Cf,] : —"Cg,k, [XnXJ] = Z(cf,J - Cf;i)Xk'
k=1

We have the following representation for A = d+9d which is known as Weitzenbock’s
formula. :
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Lemma 1. The Laplacian A on A*(M) is given by

A= —{ivxjvxj ~ N x + Z e(w)(X,)R(X:, X )}

,7=1 1,J=1

We use the following notations in the rest of this paper.
ew)=a}, UXm)=am,

" " " T . .
ay = @, iy "+ Ay, aI=aiP"'°ai1 fOI‘I—{21<Z2<"°<Zp},

Wl =wiB Aw2 A AW for T = {i; <ig<---<ip},

R(X, X;)X = ZR,“,X@ 1<14,5,k < n
=1

Then we have

n

A== (X1-G)? =Y (X I-Gj)— ), Rjaiajaian}
j=1

i)j=l i,jil)m=1

on A*(M). Here

n

_ E: m . *x
GJ = Cj’latam

{,m=1
and I is an identity operator on A*(T*(M)).

Take a local coordinate {z;,--,z,} of U. Let {£1,- -, €n} be its dual. By the above
Lemma 1 we have '

Lemma 2. The symbol of A is given by

o(B) = _{Z(O‘jI -Gj)’ - E R;aiaja5am} + 11,
i=1 -

i,7,,m=1

where

= Z Z{((% )C“J( ) aj — (35 )O‘J( )G H+ Z Ck (oI = Gj)

k,j=1 7,k=1"
O’(Xj)-——'aj.

The following proposition is fundamental for a;, a}.
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Proposition 2. ‘
a;a; +aja; = 0,

* % * %
a,-aj +ajaz' = 0,

* *
a;a; + a;a; = 6ij-

§3. Berezin-Patodi formula. Let V be a vector space of dimention n with
inner product and let A?(V) be its anti-symmetric p tensors. Set A*(V) = Z;::O NP(V).
Let {v1,---,vn} be an orthnormal basis for V. Set a! be a linear transformation on
A*(V') defined by afv = v; A v and set a; be an adjoint operator of a} on A*(V'). Then
{a¥,a;} satisfy Proposition 2. The following Theorem 1 was shown in [5] under the above

assumptions.

Theorem 1(Berezin-Patodi[5]). For any linear operator A on A*(V'), we can
write uniquely in the form A = ZI,JOII’JCL;GJ and

Z tr[(—l)”AP] = (—-1)”0{{1’2,...’,,,}{1,2’...,“},
p=0

where Ap = Al e (vy-

§4. Construction of the asymptotics of the fundamental solution for the
Cauchy problem.

Now let us cosider the Cauchy problem on R™.

(4.1) { 2+ R(z,D))U(t)=0 in (0,T) xR",

ot
U)=I inR"

where R(z,D) is a differential operator of which symbol r(z,€¢) = py(z,&)I + pi(z,§)
satisfies p; € 51 5 and p2 > 6[¢|* .

Definition 1. (1)Let (A)ij = afaj 1<4,5<n.
(2)Let K™ be a subset of ST as follows.
K™ = {p(z,¢ : A);polynomial with respect to £ and A of order m with coefficients B(R")}.
(3)We define a pseudo-differential operator action on A*(M) by P = p(z,D : A) of a
symbol 0(P) = p(z,¢ : A) = X1, pr,s(z, E)atay € K™ as follows.

p(z,D : .A)(L,DKWK) = ZPI,J(% D)‘PKGI'GJ(WK)
I,J
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Definition 2. (1) For a real munber m, K, is the set of all polynomials with
respect to ¢ of degree d with cefficient of K™+24.
(2)For a real number £, Ry is the subset of Uy, B¢(S77) which satisfies the following enequal-
ity for nonnegative constants Cy 3,C and £, g

M (2 alt 2,0 S Cape POt < 58 41)0a (b < € 5yl

L

Vi
Now assume (4.2) for the symbol r(z, §) of R(z, D) in (4.1)

(4.2) r(z,6: A) =ro(z,6: A +ri(z,6: A), 1 €K (j=1,2),

ro(z, € : A) — pa(z, €)1 € Sll,O'

Let
ug = e—tr2(z,6:A4)
Theorem 2. For any non negative integer N we have the asymptotics u¥ of the
fundamental solution for (4.1) of the form uV = E;V:o uj, uj =vjuy withv; € K_; in
the sense

(% +r)oud =0 mod R_yyi,
uN(0) = I.

§5. The proof of the Gauss-Bonnet-Chern theorem without boundary. |

We will construct the asymptotics of the fundamental solution for the Cauchy problem
on M , that is, 4

where the operator U(t) is cosidered acting on A*(M) = > p=o AP(M). Owing to the fact
that the fundamental solution has the pseudo-local property, it is sufficient to consider the
fundamental solution in a local chart. We have

stre(t,z,z) = stri™(t,z,z) + O(t_%+%),
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where

N (t,z,y) = (21)" / DN (1 o £)de.

n

In our case r = rq + r1, where r; is given in Lemma 2 and

T = — Z(ajI - G;)*+R.

i=1
Here
(5.1) Z Rl:] jajagam.
i,5,8,m=1

The principal symbol of A is equal to p; = — 337, (@;)?I.

By Theorem 1 , we have

1 \n D™ pmym : —
striio(t, 7, ) = (2ﬁt) Vdetg str{*——R™t™} + 0(t), if n=2m ;
0(\/{), if n 1s odd.

strii(t, z, ) = 0(VZ).

- Noting (5.1), we have

Lemma 3. If n = 2m,

(572" stel g~ R"} = Cula, M),

where

(5.2) Cn(z, M)—( \/_ z ( )" sign(n)sign(o)

T,0€ES,

X Rr(1)n(2)0(1)0(2) " * - Br(n—1)x(n)o(n—1)a(n)-

§6. Asymptotics of the fundamental solution for intial-boundary value
problems. The study in [11] is applicable for the construction of the fundamental
solution for our intial-boundary value problem . But as we have studied in §5 , the lower
parts of the asymptotics of the fundamental solution play the important part for the proof
of Gauss-Bonnet-Chern theorem . So in this case we introduce new class J, instead of
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H, in [11], as we used K™ instead of S7% in §4. The main part of the construction of
the fundamental solution or its asymptotics is how to construct these ones in a local chart

(cf.[11]).

We will write down the boundary operator B, in a local coordinate. Take a local
patch Q near OM such that OM is defined by {p = 0} inQand MNQ C {p > 0}. Assume
that w™ = cdp with some function ¢ on M.

Choose a local coordinate {z, -+, z,} in Q such that MNQ = {(2',z,);z' e U,z, >
0}, T =0MnQ={(z',0);z' €U} and ’

0

an]_" = 5;1:—”

The boundary operator B, is as follows.
¢ € Dom(d), dy € Dom(9),

where Dom(9) = {¢ = 3 ;psw’,pslr =0 for n € J}. So we obtain the éqation for the
boundary condition

0
3:1:,,(PIF =0

for ¢ € A°(M) and for 3 ;o qw”’ € AP(M), p>1

pslr=0if n € J,

9 J
(5 e =0,
n¢J
where v and b are given in the following (6.1).
Definition 3. (1) We define h* = h*(t,2',€) = h(t,z',0,£) for a function

h(t,z,£) given in R2"+1,
(2)Set
(6.1) | y=q@" )= Y (c ) atay,

1<5,k<n

b=b(z': A== > (F)gax+ D, (c] ) ata;.

1<j,k<n—-1 j=n or k=n

(3) P =ajan, Q=anay=1-Q, B= 52 —y+b.

As the argument in [11], it is enough to construct the fundamental solution in RZ.
Suppose that the fundamental solution is in the form Ug(t) = U(t) + V(t), where U(t) is
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the fumdamental solution for the Cauchy problem. Then we consider the following problem
in RY.
( d

(E + R(z,D))V(t)=0 inIxRE,

PV(t)=-PU(t) onlIxR"!x{z,=0},
BQV(t)=-BQU(t) onIxR" ! x{z, =0},
}irr(l) V(t)=0 inRJ.

Definition 4. Let {g;};<2 be defined as
q2 = r2(xla 01£,>£n : A) = 7‘;,

9 oTH
wi= Y (G g P21

L+k=37,0<k<2

For any fixed N we set

We have by Definition 3 and 4
g2 = (én +i7)" + B(z', €' : A),

where
n—1

B ==Y ((a;)*I - (G;)")* +R* € K.

j=1
Let {@; s} be symbbls defined in Definition 7 of [11] and let {W;} be operators
defined by {; r}-

Definition 5. For a pair (7, k) of integer j and nonpositive integer k we define
a function

{5 k(t, TnyYn; b,7)} 5 = €7 _yn)"])j,k(t, Tp + Yn;b).

An operator Vj i(t;b,7) corresponding to ¥;; is defined as follows for a function ¢(y,)
defined on R}.

(V',k(t; b, ’)’)<P)($n) = /(; ﬁj,k(ta Tn,Yn; b, 7)90(yn)dyn-

Here
wo,0(t, €n) = exp(—t£2)
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wjyo(t’ €ﬂ) = (ign)jWO,O(tafn)aj >0,

ot w) = (2) / e n s, (2, En)dEny § 2 0,

[o o] w _ _]_.1
Wjo(t,w; b) = \/_(2\/_)]4-1/ o~ ota) f((:%)?ﬁda, o

B 0 .

forES—1  yu(twsh) =
—k—1

\/_(2\/_)J+k+1/ —(a+'7=)2+2b\/'a(( 2_1)' hj(o + —wf)da, ifj > 0;
0 | ‘
( )]+k+1 ( T)—] ldT /ooe (a+r+ )2+2b\/ia( 0’) k-1
\/_2\/— o (=5-1) : (—k—1)!

where hj(0) = {(a—i)je“" }eo

do, ifj < -1,

Definition 6.
(1) Js is the set of all finite sum of the following functions
{9t 2n,ymr 2", €'+ A) = tH(2n)q(a", € A)B; 4t Zns Ymi ba" 2 A), (2" 2 A))e P4,
g€ K™MR"1),d>0,6>0,k<0,m=s+2d+£—j—k}.

(2)Ry is the set of all matrices which belong to B([O T] x [0,00) x [0,00); ST%(R™™1)) and
satify for any «, 3,a,b,k

() () ) ) ()l

. P a 1 a Tn+ Yn 2
< Copmin(e' 717, VA Tyt akebexp( - T U] _ gy

for any é < 1 and some ¢y > 0.
(3) For a symbol ¢(t, zn,yn,z', €', A) € J,; we define a integral-pseudodifferential operator
as follows.

(Go)(t, 2!, 2 A) = / 9t Ty Y @', D' = A)p(-, y)dyn.

Theorem 3. (1)For any ¢(t) € Js and h(t) € Js_1 there exists v(t) € J,_2 such
that

68t+q)0v(t)-g(t) mod Je_1 + R_N in I x RY,
Bo(t)|z,=0 = h(t) mod J,_s+R_y_; inIxR"™1,
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(2)For any g(t) € J, and h(t) € J,_2 there exists v(t) € J,—2 such that

(2 + Do) =gt) mod Jos+ By inIxRI,
0(t)]snm0 = h(t) mod Jo_s +R_y_p inIxR™L

Now we discuss our boundary value problem .

For a function h(z) defined in R7, we set a function h*(z) defined in R™ as follows.

h(z',zy,), if z, > 0;
+ — s n )y n Y
h (w)‘{o, if z,, < 0.

Also we set
=Y ot forp= Y e
J J

Theorem 4. For any N the asymptotics of the fundamental solution Up(t) for
the boundary problem (7.2) in the sense
o . g . - . n
(E—}—q)ov(t):—(-a—i—q)ou(t) mod R_n4o in I xRE,
P(u(t) + v(t))|z,=0 =0 mod R_y inIxR"1,
BO(u(t) + v(t))|z,=0 =0 mod R_n4; in I xR

is obtained in the form Ug(t)p = U(t)pt + V(t)p, where V(t) is the operator defined by
a symbol v(t) € Jy such that v(t) = Z;{V:O v1-;(t), v;i(t) € T—j, vi(t) = 2Q%;,_1e7*A.

For a function h(z) defined in R?, we set a function h*(z) defined in R™ as follows.

h(z',zy,), ifz,>0;
+ —_ »v¥n)y n Z Y
h (‘”)”{0, if 2, < 0.

Also we set
ot = Z(p+wJ for ¢ = ZcprJ.
J J



64

Theorem 4. For any N the asymptotics of the fundamental solution Up(t) for
the boundary problem (7.2) in the sense

g 0 ~ .
(E +§)ov(t) = —(5; +§)ou(t) mod R_n4p inlxRY,
P(u(t) + v(t))|zs,=0 =0 mod R_y inIxR"7},
BQ(u(t) + v(t))|z,=0 =0 mod R_y4; inI xR

is obtained in the form Ug(t)p = U(t)pt + V(t)p, where V(t) is the operator defined by
a symbol v(t) € J1 such that v(t) = Zf:o vi_;(t), vi(t) € T—j, vi(t) = 2Q%; e~ P

_ §7. The proof of Gauss-Bonnet-Chern theorem with boundary. Let
R(W,Z,X,Y) be the Riemannnian curvature tensors induced on I'. From Equation of
Gauss we have

R(Xi’Xj’ Xk,XZ) = ]%(XhXjanaXl) + Cz,jc?,i - C?,jc;cl,i,

1<14,5,k,4<n—1 onl.

Definition 7.

1., 1 ,;1 1., . . A
Dn-1($)=(§)(2_\7—;) lf_n.! Z (5) sign(m)sign(o) Re1)x(2)o(1)0(2) "

T,06€Sn -1

e Rw(n—2)w(n—l)a(n—Z)a(n—l)

if nisodd (n —1=2m).

m-—1

_ 1 1. ' ,
Dp_i(z) = g omtkrmkl] . 3.5...(2m — 2k — 1)(2) i UEZS sign(m)sign(o)

XR:r(l)w(2)a(1)o(2) U R:r(2k-l)7r(2k)o(2k—1)a'(2k)
xC:(2k+l),a(2k+1)c:(2k+2),a(2k+2) e 'c:(n—l),a(n—l)
if n even (n=2m).

By Theorem 4 asymptotic of the fundamental solution for the mixed problem is given
by Up+ Ui+ +Un+Vi+Vo+ -+ V_n, v; € Tj, v; =gje ", gy =2Q%; _;.

For the supertrace of kernel (¢, z,y) of operator V;, we have the following lemma.
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Lemma 4. For any integer N we have

stri(to )= JOWVE), iz, #0;
rdj(t,,2) {0((\/5))—1), ifz, =0.

/ str 3;(t, 2, ) ()dz, = 0((VE)~I+Y).
0
Moreover we have

2

stro,(¢,2',0,2',0) = \/ZDn_l(m')\/detg +0(1).

/05 str01(t, 2, 2)Y(z)dz, = P(a’,0)D,_1(z")y/detg + 0(\/1),

where § is the Riemannain metric induced on OM.

- Theorem 5. For any N we have
N
N _Jo(vE) ifz, >0
strv(t,w, 513) - { %Dn—l(x‘,) /]etg + 0(1) IfIIIn = 0.

_/: stro(t, z, z)y(z)dzn = D,_1(2')\/detgp(z',0) + 0(V2).

Proof of Main Theorem. It is sufficient to consider the fundamental solution locally
if we study the asymptotic behavior of the fundamental solution. In a local patch we have

e(t,z,z)dv = u(t,z, z)dz + 0(t,z, z)dz.
Then for any N we get by Theorem 5
stre(t,z,z) = stri(t, z,z) + 0(tV), ¢ € M\OM
stre(t,z,z) = Cn(z) 4+ 0(v1), = € M\OM

stre(t, z,z) = %Dn_l(m) +0(1), = € OM.
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We remakt that the induced volume element of M is defined by
do = (—1)*y/detgdz dz; - - - dz, in a local chart. In our case D,_1(z')do is independet of

orientation of M. So we have
/ str e(t, z, z)(z)dv =/ Cun(z)y(z)dv +/ Dy_1(z" Y (z")do + 0(V/2).
M M ) oM

The proof is complete. q. e. d.
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