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Abstract

The h-vector of a simplicial complex is a well-known combinatorial invariant which
has been studied from the points of view of algebraic topology, commutative al-
gebra, and toric varieties. We present main results on h-vectors and generalized
h-vectors (for polyhedral complexes). We also examine local h-vectors, which mea-
sure how h-vectors change under simplicial subdivision.

1 Introduction to H-vectors

The following is a brief introduction to the theory of h-vectors. For a more
complete survey (and references), I highly recommend [Stan85].

We begin with the simplicial case. Let A be a (d —1)-dimensional simpli-
cial complex (e.g., boundary of a simplicial convex polytope), and let f(A)
denote its face-vector (f_i, fo,..., fi_1), where f; denotes the number of ¢-
dimensional faces of A, and by convention, f_; = 1. What can we say about
f(ay

If A is homeomorphic to the sphere S%-!, then the well-known Euler
Formula says that X'(A) = (—1)%"!, where X(A) = £, (~1)' f.

i=-1

£ A is the boundary complex of an octahedon,
then A xS and £AY=(,6,12,3).
So )= -l+6-12+8=1.
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To find out more about f(A), we need to study the h-vector h(A), first
defined by Stanley to be h(A) = (ho, h1,. .., hq), where

d d ‘
z fici(z — l)d'i = E hiz?.
=0

1=0

For the boundary of the octahedron pictured above, we thus have h =
(1,3,3,1). It follows immediately from the definition that for any A, hy =1,
hy = fo—d, ha = (=1)*1X(A), and T; h; = fa1.

One can prove by induction on d that the h-vector is the bottom row of
the difference table with the f-vector written down the right diagonal, as
shown for the boundary of the octahedron:

Q 3 3 D=his

Note also that Y_; hiz' = Y pea 2#F(1 — z)4#F follows easily from the
definition. This is a useful identity as we will see later. ‘

It turns out that the h-vector is in many senses more desirable than the
f-vector, and provides the same information anyway, since if A is the matrix
with entries a;; = (—1) (j:f) for:,7 =0,1,...,d—1, then A. f(A) = h(A).
i.e., since A is an invertible linear transformation, finding linear relations
among the f;’s is equivalent to finding linear relations among the h;’s.

Here are a couple of easy examples of the greater simplicity of the h-
vector:

1. If A = 2V, the simplex with vertex set V = {1,2,...,d}, then f(A) =
(&), (D),..., (D) while h(A) = (1,0,...,0)

2. If A is homoemorphic to $%-!, then Euler’s Formula expressed in terms
of h(A) is simply hy = hy

Unfortunately, the kh-vector lacks combinatorial meaning in general. In
some cases h; < 0, in which case it clearly can not count anything.
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AN ‘F=A<‘»5.6.2-) 3 h= (1,2, o).

‘Lha< 0.

However, when A is the boundary of a simplicial convex polytope, and in
many other cases, it is possible to prove that A(A) > 0 by finding combina-
torial meaning for each h;. The following theorem is due to McMullen and
Brugesser-Mani.

Theorem 1.1 If A is the boundary of a simplicial convez polytope P, then
h(A) > 0.

Proof: Choose a generic line G through the interior of P (i.e., for any two
maximal faces of A, G intersects their affine spans in distinct points). From
the interior of P, walk along G in one direction (it doesn’t matter which), and
label the maximal faces of A in the order in which G intersects their affine
spans. (When you get\to “infinity”, continue along G from the opposite side.)

By [Br-Mal, the ordering F}, ..., F, which results is a shelling of P, i.e., for
each ¢ > 1, the intersection F; N (U;<;F;) is homeomorphic to a (d — 2)-
dimensional ball or sphere. Thus by McMullen (see [Stan?]), h; = #{j :
F; N (Uj«iF;) has exactly 7 faces of dimension d — 2}, so clearly h; > 0. - O

Note that the proof holds for any shellable A, i.e., any simplicial complex
A whose maximal faces have all the same dimension and can be ordered as
a shelling.

Nor-examples ®

NO ordexing of #2 Moxwol €aceo 15 a shelling. '
for e.xom?ple, if the foces are ordexed clockuise (startuny
with any face) then F N (FURUVEUR) = '/ 95
g gé Clearly no ordening ic ashetlug, due 1o verex X.

However; not€ +Hhat h=(1,3,0,0) s nonnegoctive anyway.
X
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b Example:
¢ The boundary of Hus octaledron has shelling
obe, alod, bde, ecb, aef, odf, £fdc, ecf.
0 1 \ 7 \ 2 2 3
™me numiers shaon axe -Hwe numler o6 edgeo uv e
Intersection oh eoch face with previous faces in MSk.dlz};g.
s by Thm 4.1, K@= (4,3,3,1) .

Notice that (1,3,3,1) is symmetric. This is true for all Fulerian com-
plexes, which are defined as follows: For any F € A, the link of F'in A is the
subcomplex lkaF ={S€A:SNF =0,SUF € A}, where SU F denotes
the face of A with the vertices of S and F'. If all the maximal faces of A are
the same dimension and X (lkyF) = (—1)4™(kaF) for all F € A, then A is
an Eulerian complex. For example, if A is homeomorphic to S9!, then A
is Eulerian. All Eulerian complexes satisfy the Dehn-Sommerville Equations
(proved in greater generality in [Stan87)):

Theorem 1.2 If A is Eulerian, then h; = hq_; for allz.

Proof:
Yhat = 3 a#F(1 - g)i#F
i Fea
= 3 T (o - )FFES(1 gyt #r
FeA SCF
= T(a-1)# T (-1)i#F
Sea FeA,SCF '
— Z (.’L‘ _ 1)d—#S(_l)dim(lkAS)/{;(lkAS)
SeA
= Y (e-1)"* = Zf,_l(x-l d-i thd“.
Sea

so h; = hq_; for all 7, as desired. O
The Dehn-Sommerville Equations represent the most general linear rela-
tions to hold among h-vectors (hence also f-vectors) of Eulerian complexes.



It is not true, however, that a symmetric h-vector must belong to an Eulerian
complex:

f hiay= (1,2,1) symmette , buf

X A notr Euwlertart (becawuse & vertexr X ).

2 H-vectors in Commutative Algebra

Now let us move on to the connection to commutative algebra. (See [Stan83,
Chapter 2] for background.)

Let K be any field, and let {1,2,...,n} denote the vertices of a (d — 1)-
dimensional simplicial complex A. Form the polynomial ring K|[z,,...,z,]
and the ideal I(A) C Klzy,...,z,] generated by monomials of the form
2% = Il;cgz; where G € A. Then K[A] := -&W is the Stanley-Reisner
ring of A over K, with the standard grading from K|z, ...,z.].

Let 6,,...,0, be homogeneous elements of K[A], and let (#) denote the
ideal generated by the 6;’s. Then 6;,...,0, is a homogeneous system of pa-
rameters (h.s.0.p.) for K[A] if f%—A-l is finite-dimensional as a K-vector space.
From now on we assume that K 1s infinite, so that by the Noether Normal-
ization Lemma, K [A ] must have an h.s.o.p. of degree 1.

Exam Ele— Le‘r 2 XQ, &= X2 =%y, 933 xa"xq
<o) Epparaal oud K. g kwgr Kt

K[A] is a Cohen-Macaulay ring if for some (hence every) h.s.o.p. 6y,...,0,,
each 0; is a non-zero-divisor on (%fﬁe_l)' In this case we say that A is
a Cohen-Macaulay complex. (e.g., the example shown above is Cohen-
Macaulay.)

The following theorem of Reisner simplifies the question of when A is

Cohen-Macaulay (see [Reis]):
Theorem 2.1 A is Cohen-Macaulay if and only if H;(lkaF;K) =0 for all
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i < dim(lkaF) and all F € A.

Corollary 2.2 If A is homeomorphic to a sphere or ball, or if A is shellable,
then A is Cohen-Macaulay.

Non-exoumple: &y Reisner's theorem, Hus Sunplicol complex s

gé not Coun-Macauwlay, becouse & verdex X .

x

Since we already know that shellable A have h(A) > 0, it is natural to
ask if the same is true for Cohen-Macaulay A. The following theorem of
Stanley answers our question.

Theorem 2.3 If A is Cohen-Macaulay, then 0 < h; < ({°'d+i’1) for allz.

Proof: Let 0y,...,04 € K[A] be an h.s.o.p. of degree 1. Since A is Cohen-

. P . K[A . .
Macaulay, each 6; is a non-zero-divisor in OT%]T)’ so the Poincare series
peeeVi—

F(%5,2) = (1 - @)*F(K[A),z). Since F(K[A],z) = Trea(7%)#F, it
follows that F(%%l,m) =¥, hia'.

Thus h; > 0 and k; < the number of distinct monomials of degree ¢ in A,
variables, so h; < ({°"d+"l), as desired. O

This theorem is sometimes called the “Upper Bound Conjecture” because
(thanks to McMullen), it implies the following result for f-vectors of spheres:

Theorem 2.4 IfA is homeomorphic to S and P is a convex polytope with
fo(Q) distinct vertices of the form (t;,t%,...,t3) € R%, then fi(A) < fi(P)
for allz.

3 Intersection Homology and Generalized H-
vectors

Now let us consider an application of intersection homology theory to h-
vectors. (See [Stan87] for background and references.)

If A is the boundary of a rational convex d-dimensional polytope P with
0 in its interior, then A defines a fan of rational cones in R? which in turn



defines a complex toric variety X (see [Dan]) such that THz11(X;Q) = 0
and dimglHy(X;Q) = hi(A) for all i. Thus, as noticed by Stanley, not
only is h(A) symmetric (Dehn-Sommerville, or Poincare Duality), but A(A)
is also unimodal, i.e.,

hOShIS"-ShLd Z...Zhd,

by the Hard Lefschetz Theorem for Intersection Homology.

Since every simplicial convex polytope is combinatorially equivalent to
a rational polytope, this means that the boundary of any simplicial convex
polytope has unimodal h-vector.

It is now natural to ask whether or not the definition of h-vector gener-
alizes to polyhedral complexes so that it still corresponds to the Intersection
Homology betti numbers in the case of rational convex polytopes. The an-
swer is yes. (Note that the old definition doesn’t work, for example, for the
boundary of a 3-dimensional cube, the old h-vector would be (1,5,—1,1),
which is not unimodal, symmetric, nor nonnegative!)

Let T be a (d — 1)-dimensional polyhedral complex. If T' is simplicial,
then the old definition says that A(T') = (ho, ..., hs) such that 3; h;z¢~t =
Yser(z — 1) #F. Let h(T,z) denote ¥_; h;z?~. For general T', Stanley
defined the generalized h-vector A(T') as follows:

L. h(0,z) = g(0,z) =1
2. h(T,z) = Tser g(0f, z)(z — 1)), where r(f) = 1 + dim(f), and
Of ={f eT:f C# f}

d . et .
3. g(T,z) = $2 (ki — ki_1)a', where h(T, ) = ¥; kiz’

Proposition 3.1 If T = 92V, then g(T',z) = 1. (Hence the generalized
h-vector agrees with the old definition, in the simplicial case.)

Proof: By induction on the dimension of I'. Let d = 1 + dimI’. (so # V
= d+1.) Then A(T,z) = T jer 9(0f, z)(z — 1)4"Y) | but g(df,z) = 1 for all
f € T, by inductive hypothesis. So A(T,z) = ¥ er(z — 1)&#/ = %—'—1— =
1+ 2z +...+ 2% by an application of the binomial theorem. So ¢(T,z) = 1,
as claimed. O
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Let’s compute the generalized h-vector of the square:

WA X) = 9030 c-Vr 49(0-, x-1"+ 49(3}, x)(x-1) + 9B, x)

S (k1P GO U =D+ Clry) = X34 X2
Note +hat (U, %)= I+x since
h(oM,x) = h(TT,x) = (x-2%+ 4lx-)+4 = x%2x+] >

So WYZQ) = (1,1,0,0)

The generalized h-vector has the following properties:

1. (Stanley) If T' is the boundary of a rational convex polytope then
h(T') is unimodal (by the same argument as in the simplicial case). However,
it is not true that every convex polytope is combinatorially equivalent to a
rational one in the non-simplicial case. (An 8-dimensional example is due to
Perles.)

2. (Stanley) If I' is homeomorphic to S?-! then h(T') is symmetric. (the
Dehn-Sommerville Equations for generalized h-vectors.) The proof is similar
to that for the simplicial case, but uses Mobius inversion on the face poset
of T.

3. (Chan) If I is shellable and each face of T' is combinatorially equivalent
to a geometric cube, then A(T') > 0. In particular, if F,..., F, is a shelling
of I' and d = 1 4+ dim(T'), let s;; denote the number of Fi’s such that Fi N
(Um<kF) has exactly ¢ unpaired and j antipodal pairs of (d —2)-dimensional
faces, and define fy(i,4,z) = Sb_q ca(s, 7, k)* as follows:

1. if 7 < d — 1, then ¢4(¢, 7, k) is the number of d-vertex plane-trees with
exactly k nonforks which arenot 1’,...,7 nor 1”,..., 7", where i’ means
i** in preorder, with exactly one child; and ;” means (d — j)** in pre-
order, followed by a root, only, or inner child. (See [Chan91] for more
detail.)

2. ¢4(0,d—1, k) is the number of d-vertex plane-trees with exactly k forks
Then T; hiz®™* = ¥, 8i; f4(3, 4, T).
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For example, let I' be the boundary complex of a 3-dimensional cube:
shelling: font, fop, right, \eft, bottom, back..

(LYY = (0)0), (oY, (2,0), (2,0), (1, 1), (0,2).

9 Spe=ly S=l,8,2, 5,21, 5,21,

\I
7.‘ }‘H VA 'FS(O,O}X): X3+x7' ) -P3C\)O;X3= 2)(7', ‘Pg (2,017()'; X"'xi,
$3 (\)\)X)-‘: 2x ’ 'P‘(D)Q)x).: ""X.

Turs »ch’,'ﬁ = (%4 YR+ (2% + 20040%) 4 (25) + (I+ X)= X4 5x%Ex+] |
So h(M= (,5,51) .

A natural open question is: If I' is any shellable polyhedral complex then
is h(T") > 07

4 Subdivisions and Local H-vectors

The theory of local h-vectors (conceived by Stanley) was motivated by the
question: If A’ is a simplicial subdivision of a Cohen-Macaulay complex A,
then is h(A’) > h(A)? For non-Cohen-Macaulay complexes the answer can
be no, for example:

A= two tehzhedro. which shore one edge, and whuch
ore each divided by on inderior vertex.

heay= 1,4 1,2,0),
% A'=mr25uiko€a,dd«h%o~mwvex4ex+omfnﬁex{or

the shoved 2dge, and dividin acent faces .,
h(A'S)F: (,s,s,1, 0). e 9 adjacent Fac

Let us begin with a formal definition of subdivision. See [Stan92, Sections
1-3] for background and proofs of the results in this section.

A simplicial complex I’ with a simplicial map o : T — 2V (i.e., o(F) C
o(G) if F C G) is called a subdivision of 2V if for all W C V:
1. Tw := 071(2") is homeomorphic to 2"; and
2. 071 (W) is the set of interior faces of T'y.

If o(F) C W, we say F lies on W.

Nmexmmgl_z: W=12
& §CP)=d , §(a)=1, 6(b3=’2-,}vxot.mss
o v ¢ 1 2 S = alak): (b)= 12 Gy,
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E"mg“i:' ! S(p)= & ,slar=1, 6(Q=2, o(e)=3, 6(ae)= 13,
BPre, /5_, 6(b)z 6lab)= ¢(bA) =12,
c d 2 3 §(d= ¢lcd)=o(d ) =23,
€(F)z 123 Hr o\l other F.
wWe. And i+ convenient to picdture § as shoan,
o
v

(o e

We are interested in three basic types of subdivisions:

1. Quasigeometric: No face F € T has all its vertices lying on a face of
W €2V of dimension less than dimF'.

d o- . .
V. S/ N\t e
. 77PN . . /! becouse of ce

(X olod .,

2. Geometric: I can be realized so that all of its faces are convex.

/ﬁ& geomedre See [Ehan2] for  3-dumorsined
\ nonaeometic  bud quasigeometnc [,
Z/A A ZlN (d.t.g, 40 Jungreis) 3

3. Regular: T’ can be realized as the projection of a strictly convex polyhedral

surface. , ({n )
‘ °§‘§ ™~
u &_ (in )

Clearly, regular implies geometric, but the converse is false ([Rud]).

Now let .us define the local h-vector of I' with respect to V, denoted



by Iv([) = (lo,lh,...,1a), where d = #V. Let h([,z) = ¥; iz’ if A(T) =
(ho,...,hq), and define

lv(F,w) = il{l‘i = Z (—1)#V‘#Wh(I‘W,m).

Wwcv
Ezample: f V = {1,2,3} and T is as shown below, then

lv(T,z) = h(T,z)— h(T12,2) — h(T13,2) — (T3, )
+h(Ty,z) + h(T2, z) + A(T3, z) — A(Ty, z)
= (I4z+2)-1-1-141+1+1-1
= z+z?

so ly(T") = (0,1,1,0).

Alternatively, if e(G) = #0(G) — #G for all G € T, then

y(T,2) = 3 (~1)* #9240 (g — 1)4©)
Gel’

follows from the identity h(A,z) = Y pea 2#F(1 — z)4-#F (see [Stan92)).

Ezample: For V and I' as above,

y(F,z) = 323z —1)° =124, 1,234
-3z%(z-1)° @=12,13,23
~3z%(z-1)!  @= W, 24,34
+3z3%(z - 1)° 6= 12,3
+zt(z —1)? G =H
—zi(z —1)° G= ¢

= x2+x
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Notes:

1. If T = 2Y and o is the identity map, then Iy(I',z) = 0 unless V = 0,
in which case ly(T',z) =1

2. Using the above formula for Iy(T', ) in terms of G € T, it’s easy to see
that lp = 0, [; = the number of interior vertices of I'; and I[; = X'(I’') = 0
(since I' is homeomorphic to a ball)

If A is any simplicial complex, then a subdivision of A is another simpli-
cial complex A’ with a simplicial map o : A’ — A such that for every F' € A,
the restriction of o to A’ is a subdivision of the simplex 2F. The following
theorem justifies the name “local” h-vector:

Theorem 4.1 If A’ s a subdivision of a pure simplicial complex A, then

= 3 Ip(Ap, z)h(lks F, ).

Fea

This theorem is crucial in proving that A(A’,z) > (A, z) in the case when A’
is a quasigeometric subdivision of a Cohen-Macaulay complex A. Its proof

relies on a technical lemma which follows from h(A,z) = Ypea o#F(1 -
z)d-#F,

Note that if A is not pure (i.e., not all maximal faces have the same
dimension) then the theorem may not hold. For example:

A~ A

h(a,x)= 1+X- * hasx)= 14 3x-x2
D Zeoa Qe (0, W F, x) = | +3x £ bl x).

Another important result on local h-vectors is

Theorem 4.2 For any subdivision T’ of the simplez 2V, the local h-vector
y(T) = (lp, L1, ..., 1g) satisfies l; = ly_; for alls.

The proof depends on the fact that h(Int(T'),z) = z*h(T,1), which can be
proved along the same lines as the proof given for the Dehn- Sommerville
Equations.



5 Quasigeometric Subdivisions and Commu-
tative Algebra

We now come to a main result of Stanley on local A-vectors in the quasigeo-
metric case:

Theorem 5.1 If T is a quasigeometric subdivision of the simplex 2V, then
lv(T) 2 0.

The proof depends on a commutative algebra technique ([Stan92, Section
4]), which we summarize below.

Recall that 6;,0,,...,0; is an h.s.o.p. for K[I'] if it’s a set of homo-
geneous elements such that K[I'] is finitely generated as a K|[6,,...,04)-
module, Moreover, since I is homeomorphic to a ball, it’s Cohen-Macaulay,

so h(I',z) = F(%%l,ac).

Now let us consider a special class of h.s.0.p.’s for K[I']. By relabelling,
we may assume that z,, ...,z correspond to the vertices of 2¥. An h.s.o.p.
01,...,0, for K[I'] is special if each 6; is a linear combination of vertices of
I’ which do not lie on the face V — z; of the simplex 2¥. For example:

2

&k 9'= X["Y\.‘ "'Xs
" 83,'7 xz'x‘{
: 5

O3 X3-%yq-Xg

The following useful lemma is due to Kind & Kleinschmidt:

Lemma 5.2 For any (d — 1)-dimensional simplicial complez A, 6y,...,0,
is an h.s.o.p. of degree one in K[A] if and only if for all F € A and all
1 € F, z; is a linear combination of O1|F,...,04|F, where 0;|F denotes 6; with
all vertices not in F set to 0.

In the example shown above, if F = {1,2,4}, then 0| = 21 — 24, O2|F =
Ty — T4, and 03|p = —a4, which clearly span z1, 22, 4. The same holds for
all F' € T for this example, which verifies that 6,, 8,, 65 is an h.s.o.p.

93

The lemma also shows that some subdivisions can not have special h.s.0.p.’s.

For example if 6,,0,,0; were a special h.s.o.p. for the I' shown below,
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03l = 0 for F = {1,2,4}, which violates the condition in the lemma.
2+

V&= 3

It is not hard to show from the lemma that

Corollary 5.3 IfT' is a subdivision of 2V,' then K[I'| has a special h.s.o.p.
if and only if T’ is quasigeometric.

From now on we assume I" quasigeometric and 64,. .., 64 special. Then we

can define the local face module Ly(T') to be the image of the ideal (IntI') in

%[%‘l,'with the standard grading. Let L; denote the i** graded piece of Ly (T').

For example:

! Xere
‘ B X=Xy , 822 Xg-Xy, O3= X3=Xy ) ‘c—é'ig“-'-' K+ Ko+ Kot
LN, (I M= ) > L r) = KXy + KX

D Loz O, L= KXy, Ly= K xg- ,L3=O .

Recall that in this case, Iy ([') = (0,1, 1,0), so I; = dimg L; for each .
Theorem 5.4 For any quasigeometric I', we have l; = dimg L; for all 1.

Proof: The proof is based on a technical lemma, which says that if K is the
complex

K[T] K[ K[T]

L g o _ 0
N, OGN IN, T TN AN

where N; is the ideal generated by monomials of the form z¥ where F € T

does not lie on V — z;, and the maps are the usual coboundary maps, then
K

7.5 1s exact.
Now note that N'—l-f-[l—l]\,— = IX’[FV—{il,,,_,i,}] and also that the kernel of the
map %I):l — 69"@1%1'\1/7 is simply Ly (T). So since 2= is exact,
K|l K| KIT]
F(Ly(T),z) = F(—*,z) = F(®———,7)...4 (=1)*F ,

)



95

= > (e iel

wev (9)
= > (-1)*""#*"h(lw,z)
7%

since the I'yy’s are Cohen-Macaulay and 6, .. ., 8, is special. Thus F(Ly(T),z) =
L,(T,z), as desired. O

Theorem 5.1 follows immediately. We also have the following corollary,
which partially answers the motivating question:

Corollary 5.5 h(A’) > h(A) for any quasigeometric subdivision A' of a
Cohen-Macaulay complez A.

Proof: h(A',z) = Lrea IF(AF, 2)h(lkaF,z) = h(A, 2)+ Lozrea IF(AF, 2)h(lkaF, z) 2
h(A,z), since for all F € A, A’ quasigeometric implies that lp(Af,z) > 0
and A Cohen-Macaulay implies that ks F Cohen-Macaulay, hence h(lkp F,z) >
0. O

Conjecture: If A is Cohen-Macaulay, then h(A’) > h(A) for any subdi-
vision A’ of A.

An interesting question to consider is when Iy(T") = 0.

Proposition 5.6 If ly(I') = 0 and I is any quasigeometric subdivision of
2V which restricts to the same subdivision of the boundary of 2V, then h(I') >
h(T).

Proof: By the principle of Inclusion-Exclusion, the definition of local h-
vectors implies that h(I",z) = Lwcv Iv(Ty,z). But since I and I' agree
on the boundary of 2, we have I'}, = I'y for all proper faces W C V.
Thus A(I",z) — (T, z) = ly(I",z) — Iy (T, z). But I'" is quasigeometric, so
ly(I",z) > 0, and we are given that Iy (T, z) = 0. Thus A(I",z)—h(T,z) > 0,
as desired. O

6 Regular Subdivisions and Intersection Ho-
mology

Now let us consider the connection between local h-vectors and intersection
homology theory. Let X denote the complex toric variety associated with
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the fan ¥ x of cones on the faces of the simplex 2. If I is a subdivision
of 2V, let Y denote the complex toric variety associated with the fan £y of
cones on the faces of I'. Then by [Danilov], there exists a proper morphism
of toric varieties Y — X, induced by the subdivision map ¥y — ¥x. From
this fact, Stanley deduced the following ({Stan92, Theorem 5.2]):

Theorem 6.1 IfT is a reqular subdivision of 2V, then ly(T) is unimodal.

The idea of the proof is as follows:
Because of the existence of a proper morphism from Y to X, the inter-
section homology of Y decomposes into direct summands, each of which
corresponds to the “fiber” of Y over some strata of X. If we use the strat-
ification X = Uwcv X" (where X" denotes the inverse image under the
moment map, of the face dual to W), then we get the Poincare series
F(IH(Y;Q),z) = Swecy ¢ (z), where the ¢"’s correspond to the direct
summands mentioned above. Since F(IH(Y;Q);z) = h(T,z?), we can as-
sume the ¢"’s are polynomials in z2 as well. i.e., A(T,2%) = Swev 7 (2?).
Thus by Inclusion-Exclusion we have Iy (T, z) = ¢¥(z). B

Now since I' is regular, Y — X is projective, so by the Hard Lefschetz
property of the decomposition theorem, each ¢ (z) is unimodal. Thus Iy/(T')
is unimodal. D

A consequence of this theorem is that if A is the boundary of a convex
simplicial polytope, and A’ is a regular subdivision of A, then g(A’) > ¢g(A),
where g(A) := (ho,hy — ho,.- hygy - h[g_‘_l) and h; = hy(A) for all :.
([Stan92, Corollary 5.3))

Up to this point we have defined local h-vectors only for simplicial sub-
divisions of simplices. It is possible to generalize the definition for arbitrary
polyhedral subdivisions of arbitrary polytopes, so that the connection to in-
tersection homology holds for rational subdivisions, but in other cases not
much is known other than symmetry. See [Stan92, Part II] for the definition
of generalized local h-vectors (in terms of the incidence algebra of the face
poset of the polytope) and related results.

In conclusion we give the following theorems of Chan, which characterize
local h- vectors in two main cases:



Theorem 6.2 Let | = (lo,ly,...,1lq) € Z%*. Then | = Iy(T) for some
subdivision T' of 2V (where #V = d) if and only if lo = 0, I > 0, and
l,' = ld__,' fOT‘ all 7.

The “only if” direction follows from results mentioned earlier (due to Stan-
ley), and the “if” direction depends on three basic constructions which appear
in [Chan92]. If | is unimodal in addition to satisfying the other conditions,
the constructions yield a regular subdivision, so we have the following result
as well.

Theorem 6.3 Let | = (lo,b,...,la) € Z%*t. Then | = ly(T') for some
reqular subdivision T' of 2V (where #V = d) if and only if lo =0, I; = l4_;
fOT’ alli, and lo S Zl S SN S l[%] 2 N 2 ld.

Conjecture (Stanley): If T' is quasigeometric, then Iy (I') is unimodal.
If the conjecture is true, then Theorem 6.3 also characterizes local A-
vectors of quasigeometric subdivisions, since regular implies quasigeometric.
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