A GENERALIZED CUNTZ ALGEBRA \mathcal{O}_N^M

YOSHIKAZU KATAYAMA (片山良一)

Division of Mathematical Science, Osaka kyoiku University

Dedicated to Professor Masamichi Takesaki on his sixty-th birthday

Let M be a von Neumann algebra with a faithful normal tracial state τ and N be a von Neumann subalgebra of M. We construct a tensor algebra $T_N(M)$ relative to N;

$$\left\{ \begin{array}{l} T_N^p(M) = L^2(M) \otimes L^2(M) \otimes \cdots \otimes L^2(M) \\ T_N^0(M) = L^2(N) \end{array} \right.$$

where $L^2(M)$ and $L^2(N)$ are Hilbert spaces with respect to the trace τ and \otimes means the N-relative tensor product \otimes_N and

$$T_N(M) = \sum_{p=0}^{\infty \oplus} T_N^p(M).$$

Then $T_N(M)$ is also N-bimodule.

For $x \in M$, a creation operator o(x) is defined by

$$\begin{cases}
 o(x)x_1 \otimes \cdots \otimes x_p = x \otimes x_1 \otimes \cdots \otimes x_p, & x_1 \otimes \cdots \otimes x_p \in T_N^p(M) \\
 o(x)x_0 = xx_0, & x_0 \in T_N^0(M).
\end{cases}$$

Then an annihilation operator o(x) is the following;

$$\begin{cases}
 o(x)^*x_1 \otimes x_2 \otimes \cdots \otimes x_p = E(x^*x_1)x_2 \otimes \cdots \otimes x_p \\
 o(x)^*x_0 = 0.
\end{cases}$$

where E is the conditional expectation of M onto N with respect to τ .

A N-rank one operator $(x_1 \otimes \cdots \otimes x_p) \boxtimes (y_1 \otimes \cdots \otimes y_q)$ is defined by

$$\{(x_1\otimes\cdots\otimes x_p)\boxtimes(y_1\otimes\cdots\otimes y_q)\}(z_1\otimes\cdots\otimes z_r)$$

$$= \delta_{q,r} x_1 \otimes \cdots \otimes x_p < z_1 \otimes \cdots \otimes z_r, y_1 \otimes \cdots \otimes y_q >_N$$

where

$$\langle z_1 \otimes \cdots \otimes z_q, y_1 \otimes \cdots \otimes y_q \rangle_N = E(y_q^* \cdots (E(y_2^*(E(y_1^*z_1)z_2) \cdots z_q)).$$

Typeset by AMS-TEX

Let $\{u_i\}_{i=1}^n$ be a Pimsner-Popa bases for $M \supset N$. Then $o(u_i)$ are isometries for $0 \le i \le n-1$ and $o(u_n)$ may be a partially isometry such that

$$\sum_{i=1}^{n} o(u_i)o(u_i)^* = 1_{T_N(M)} - 1 \boxtimes 1$$

A N-compact operator algebra $K_N(M)$ is the C^* -algebra generated by all of N-rank one operators. A C^* -algebra \mathcal{P}_N^M is generated by all creation operators and an identity operator. Then the N-compact operator algebra $K_N(M)$ turns out to be a closed ideal of \mathcal{P}_N^M . A quotient C^* -algebra \mathcal{O}_N^M of \mathcal{P}_N^M by $K_N(M)$ is called a generalized Cuntz algebra. The coset of o(x) in $\mathcal{O}_N^M = \mathcal{P}_N^M/K_N(M)$ is also denoted by o(x) without any confusion. Note that if $M = \mathbb{C}^n$ and $N = \mathbb{C}$, \mathcal{O}_N^M is a Cuntz algebra $\mathcal{O}_n([3])$. A guage action α of the torus T into $Aut(\mathcal{O}_N^M)$ can be defined by $\alpha_t(o(x)) = o(e^{it}x), t \in T$.

By the use fo Pimsner-Popa bases, the fixed point algebra $(\mathcal{O}_N^M)^T$ is isomorphic to a inductive limit algebra of a reduced von Neumann algebra of $M_n(\mathbf{C}) \otimes \cdots \otimes M_n(\mathbf{C}) \otimes N$.

Theorem 1. If $M \supset N$ is a factor-subfactor pair with a finite index $[M \ N]$, then there is a guage invariant state ϕ on \mathcal{O}_N^M such that

$$\phi(o(x_1)\cdots o(x_n)o(y_m)^*\cdots o(y_1)^*)$$

$$= \delta_{n,m}[MN]^{-n}\tau(E(x_1\cdots E(x_{n-1}E(x_ny_n^*)y_{n-1}^*)\cdots y_1^*)$$

and ϕ is a unique KMS-state with respect to the guage action and inverse temperature $-\log [M N]$.

Let G be a finite group. We consider the two following cases

$$M = L^{\infty}(G) \rtimes_{\alpha} G$$
, $N = L^{\infty}(G)$, cannonical trace τ on M

and

$$M = W^*(G) \rtimes_{\delta} G$$
, $N = W^*(G)$, cannonical trace τ on M

where α is translation on G and δ is a canonical co-action of G.

The Cuntz algebra $\mathcal{O}_{|G|}$ is generated by isometries $S_g, g \in G$. A canonical coaction δ_1 of G on $\mathcal{O}_{|G|}$ is defined by $\delta_1(S_g) = S_g \otimes \lambda(g)([1])$. A canonical action α^1 of G on $\mathcal{O}_{|G|}$ is defined by $\alpha_h^1(S_g) = S_{hg}$.

Proposition 2. The generalized Cuntz algebras $\mathcal{O}_{L^{\infty}(G)}^{L^{\infty}(G)\rtimes_{\alpha}G}$ and $\mathcal{O}_{W^{*}(G)}^{W^{*}(G)\rtimes_{\delta}G}$ are isomorphic to $\mathcal{O}_{|G|}\rtimes_{\delta_{1}}G$ and $\mathcal{O}_{|G|}\rtimes_{\alpha^{1}}G$ respectively.

Proposition 3. ([2]) The two crossed products $\mathcal{O}_{|G|} \rtimes_{\delta_1} G$ and $\mathcal{O}_{|G|} \rtimes_{\alpha^1} G$ are isomorphic to $\mathcal{O}_{|G|}$.

For Coxeter graph A_l , we construct finite dimensional von Neumann algebras M and N as follows. For l=2m+1 (resp. l=2m) let N be the m-direct sum of \mathbb{C} and M be m+1-direct sum $\mathbb{C}\oplus M_2\oplus\cdots\oplus M_2\oplus\mathbb{C}$ (resp. M be m-direct sum $\mathbb{C}\oplus M_2\oplus\cdots\oplus M_2$). The inclusion of $M\supset N$ is given by the bicolored graph of A_l and a trace τ on M is defined by Perron-Frobenius eigen vector. An element of N with only i-th component 1 and otherwise 0 is denoted by e_i .

Proposition 4. Let M and N be finite dimensional algebras associated with Coxeter graph A_l . Thenwe have

(1) for odd l,(resp even l), we obtain quasi Pimsner-Popa base $\{u_i\}_{i=1}^{m+1}$ such that

$$(a) \quad E(u_i^*u_j) = \begin{cases} \delta_{i,j}1, & i{=}1, m{+}1 \text{ (resp. } 1-e_m \text{ only for } i{=}m{+}1) \\ \delta_{i,j}(e_{i-1}+e_i), \in N, & otherwise \end{cases}$$

$$M = \sum_{i=1}^{m+1} u_i N, \quad and \quad \sum_{i=1}^{m+1} u_i u_i^* = \lambda 1$$

where λ is the Perron-Frobenius eigen value of X^tX where X is adjacent matrix of A_l

$$(b) \quad \left\{ \begin{array}{l} e_j u_i = u_i e_j, \quad \text{for } i=1,\cdots,m+1, j=1,\cdots,m \\ e_{i-1} u_i = u_i e_i, \quad i=2,\cdots,m. \end{array} \right.$$
 (2) all non zero elements of $\{e_j o(u_i)\}_{i=1,j=1}^{m+1,m}$ are non zero partially isometries

- which generate \mathcal{O}_N^M .
- (3) $(\mathcal{O}_N^M)^T$ is AF-algebra which Bratteli diagram is the repetition of labelled bicolored graph associated with X^tX
- (4) \mathcal{O}_N^M is isomorphic to Cuntz-Krieger algebra O_A ([4]) where A is the adjacent matrix of the line graph $\ell(A_l)$ of A_l .
- C. Sutherland pointed out to us the above relation between the line graph of A_l and the matrix A

In the case of A_5 , we define the base $\{u_i\}$ by

$$\begin{cases} u_1 = \sqrt{3} \oplus \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{3/2} \end{pmatrix} \oplus 0 \\ u_2 = 0 \oplus \begin{pmatrix} 0 & \sqrt{3/2} \\ \sqrt{3/2} & 0 \end{pmatrix} \oplus 0 \\ u_3 = 0 \oplus \begin{pmatrix} \sqrt{3/2} & 0 \\ 0 & 0 \end{pmatrix} \oplus \sqrt{3}. \end{cases}$$

Bratteli diagram of the fixed point algebra $(\mathcal{O}_N^M)^T$ with unique tracial state is

and $\mathcal{O}_N^M = O_A$ is as follows

$$\begin{array}{c|c}
1 & 3 & 4 & 5 & 6 \\
1 & 2 & 5 & 6
\end{array}$$

the line graph $\ell(A_5)$ the adjacent matrix of $\ell(A_5)$.

The K-group $K_0(\mathcal{O}_N^M)$ for A_5 is integer which show that it is different from Cuntz algebras .

Remark 5. When von Neumann algebras $M \supset N$ have quasi-Pimzner-Popa base $(E(u_i^*u_i))$ may be a projection in N instead of $E(u_i^*u_i) = 1$) Theorem 1 holds true even for non-factor N if the fixed point algebra has a unique tracial state.

REFERENCES

- 1. J. Cuntz, Regular action of Hopf algebras on the C^* -algebras generated by a Hilbert space, Preprint Heidelberg 1991.
- 2. J. Cuntz and D. E. Evans, Some remarks on the C*-algebras associated with certain topological Markov chain, Math. Scand. 48 (1981), 235-240.
- 3. D. E. Evans, On On, Publ. Res. Inst. Math. 16 (1980), 915-927.
- 4. J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chain, Invention Math. 56 (1980), 251-268.