<table>
<thead>
<tr>
<th>Title</th>
<th>A GENERALIZED CUNTZ ALGEBRA \mathcal{O}_N^M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KATAYAMA, YOSHIKAZU</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1994), 858: 87-90</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83797</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A GENERALIZED CUNTZ ALGEBRA O_N^M

YOSHIKAZU KATAYAMA (片山良一)

Division of Mathematical Science, Osaka kyoiku University

Dedicated to Professor Masamichi Takesaki on his sixty-th birthday

Let M be a von Neumann algebra with a faithful normal tracial state τ and N be a von Neumann subalgebra of M. We construct a tensor algebra $T_N(M)$ relative to N;

$$\begin{cases}
T_N^p(M) = L^2(M) \otimes L^2(M) \otimes \cdots \otimes L^2(M) \\
T_N^0(M) = L^2(N)
\end{cases}$$

where $L^2(M)$ and $L^2(N)$ are Hilbert spaces with respect to the trace τ and \otimes means the N-relative tensor product \otimes_N and

$$T_N(M) = \sum_{p=0}^{\infty} T_N^p(M).$$

Then $T_N(M)$ is also N-bimodule.

For $x \in M$, a creation operator $o(x)$ is defined by

$$\begin{cases}
o(x)x_1 \otimes \cdots \otimes x_p = x \otimes x_1 \otimes \cdots \otimes x_p, & x_1 \otimes \cdots \otimes x_p \in T_N^p(M) \\
o(x)x_0 = xx_0, & x_0 \in T_N^0(M)
\end{cases}$$

Then an annihilation operator $o(x)$ is the following;

$$\begin{cases}
o(x)^*x_1 \otimes x_2 \otimes \cdots \otimes x_p = E(x^*x_1)x_2 \otimes \cdots \otimes x_p \\
o(x)^*x_0 = 0
\end{cases}$$

where E is the conditional expectation of M onto N with respect to τ.

A N-rank one operator $(x_1 \otimes \cdots \otimes x_p) \otimes (y_1 \otimes \cdots \otimes y_q)$ is defined by

$$\{(x_1 \otimes \cdots \otimes x_p) \otimes (y_1 \otimes \cdots \otimes y_q)\}(z_1 \otimes \cdots \otimes z_r)$$

$$= \delta_{q,r}x_1 \otimes \cdots \otimes x_p < z_1 \otimes \cdots \otimes z_r, y_1 \otimes \cdots \otimes y_q >$$

where

$$< z_1 \otimes \cdots \otimes z_q, y_1 \otimes \cdots \otimes y_q > = E(y_q^* \cdots (E(y_1^*z_1)z_2) \cdots z_q).$$
Let \(\{u_i\}_{i=1}^{n} \) be a Pimsner-Popa bases for \(M \supset N \). Then \(o(u_i) \) are isometries for \(0 \leq i \leq n-1 \) and \(o(u_n) \) may be a partially isometry such that

\[
\sum_{i=1}^{n} o(u_i)o(u_i)^* = 1_{TN(M)} - 1 \otimes 1
\]

A \(N \)-compact operator algebra \(K_N(M) \) is the \(C^* \)-algebra generated by all of \(N \)-rank one operators. A \(C^* \)-algebra \(P_N^M \) is generated by all creation operators and an identity operator. Then the \(N \)-compact operator algebra \(K_N(M) \) turns out to be a closed ideal of \(P_N^M \). A quotient \(C^* \)-algebra \(O_N^M \) of \(P_N^M \) by \(K_N(M) \) is called a generalized Cuntz algebra. The coset of \(o(x) \) in \(O_N^M = P_N^M / K_N(M) \) is also denoted by \(o(x) \) without any confusion. Note that if \(M = C^n \) and \(N = C \), \(O_N^M \) is a Cuntz algebra \(O_n([3]) \). A gauge action \(\alpha \) of the torus \(T \) into \(\text{Aut}(O_N^M) \) can be defined by

\[
\alpha_t(o(x)) = o(e^{it}x), \ t \in T.
\]

By the use fo Pimsner-Popa bases, the fixed point algebra \((O_N^M)^T \) is isomorphic to a inductive limit algebra of a reduced von Neumann algebra of \(M_n(C) \otimes \cdots \otimes M_n(C) \otimes N \).

Theorem 1. If \(M \supset N \) is a factor-subfactor pair with a finite index \([M N]\), then there is a gauge invariant state \(\phi \) on \(O_N^M \) such that

\[
\phi(o(x_1) \cdots o(x_n)o(y_m)^* \cdots o(y_1)^*) = \delta_{n,m}[MN]^{-n} \tau(E(x_1) \cdots E(x_{n-1}E(x_ny_n^*)y_{n-1}^*) \cdots y_1^*)
\]

and \(\phi \) is a unique KMS-state with respect to the gauge action and inverse temperature \(-\log [M N]\).

Let \(G \) be a finite group. We consider the following two cases

\[
M = L^\infty(G) \rtimes_\alpha G, \quad N = L^\infty(G), \quad \text{cannonical trace} \ \tau \text{ on } M
\]

and

\[
M = W^*(G) \rtimes_\delta G, \quad N = W^*(G), \quad \text{cannonical trace} \ \tau \text{ on } M
\]

where \(\alpha \) is translation on \(G \) and \(\delta \) is a canonical co-action of \(G \).

The Cuntz algebra \(O_{|G|} \) is generated by isometries \(S_g, g \in G \). A canonical co-action \(\delta_1 \) of \(G \) on \(O_{|G|} \) is defined by \(\delta_1(S_g) = S_g \otimes \lambda(g)([1]) \). A canonical action \(\alpha_1 \) of \(G \) on \(O_{|G|} \) is defined by \(\alpha_1^g(S_g) = S_h \).

Proposition 2. The generalized Cuntz algebras \(O_{L^\infty(G)}^{\infty(G)} \rtimes_\alpha G \) and \(O_{W^*(G)}^{W^*(G)} \rtimes_\delta G \) are isomorphic to \(O_{|G|} \rtimes_{\delta_1} G \) and \(O_{|G|} \rtimes_{\alpha_1} G \) respectively.

Proposition 3. ([2]) The two crossed products \(O_{|G|} \rtimes_{\delta_1} G \) and \(O_{|G|} \rtimes_{\alpha_1} G \) are isomorphic to \(O_{|G|} \).

For Coxeter graph \(A_l \), we construct finite dimensional von Neumann algebras \(M \) and \(N \) as follows. For \(l = 2m+1 \) (resp. \(l = 2m \)) let \(N \) be the \(m \)-direct sum of \(C \) and \(M \) be \(m+1 \)-direct sum \(C \oplus M_2 \oplus \cdots \oplus M_2 \oplus C \) (resp. \(M \) be \(m \)-direct sum \(C \oplus M_2 \oplus \cdots \oplus M_2 \)). The inclusion of \(M \supset N \) is given by the bicolored graph of \(A_l \) and a trace \(\tau \) on \(M \) is defined by Perron-Frobenius eigen vector. An element of \(N \) with only \(i \)-th component \(1 \) and otherwise \(0 \) is denoted by \(e_i \).
Proposition 4. Let M and N be finite dimensional algebras associated with Coxeter graph A_l. Then we have

(1) for odd l (resp even l), we obtain quasi Pimsner-Popa base $\{u_i\}_{i=1}^{m+1}$ such that

\[
E(u_i^*u_j) = \begin{cases}
\delta_{i,j}, & i=1,m+1 \text{ (resp. } 1-e_m \text{ only for } i=m+1) \\
\delta_{i,j}(e_{i-1} + e_i), & i \in N, \quad \text{otherwise}
\end{cases}
\]

\[
M = \sum_{i=1}^{m+1} u_i N, \quad \text{and} \quad \sum_{i=1}^{m+1} u_i u_i^* = \lambda 1
\]

where λ is the Perron-Frobenius eigen value of $X^t X$ where X is adjacent matrix of A_l

(a) \[
\begin{aligned}
e_j u_i &= u_i e_j, \quad \text{for } i=1,\ldots,m+1, j=1,\ldots,m \\
e_{i-1} u_i &= u_i e_i, \quad i=2,\ldots,m
\end{aligned}
\]

(b) \[
\begin{aligned}
e_j u_i &= u_i e_j, \quad \text{for } i=1,\ldots,m+1, j=1,\ldots,m \\
e_{i-1} u_i &= u_i e_i, \quad i=2,\ldots,m
\end{aligned}
\]

(2) all non zero elements of $\{e_j o(u_i)\}_{i=1}^{m+1}$ are non zero partially isometries which generate O_N^M.

(3) $(O_N^M)^T$ is AF-algebra which Bratteli diagram is the repetition of labelled bicolored graph associated with $X^t X$

(4) O_N^M is isomorphic to Cuntz-Krieger algebra O_A ([4]) where A is the adjacent matrix of the line graph $\ell(A_l)$ of A_l.

C. Sutherland pointed out to us the above relation between the line graph of A_l and the matrix A.

In the case of A_5, we define the base $\{u_i\}$ by

\[
\begin{align*}
u_1 &= \sqrt{3} \oplus \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{3/2} \end{pmatrix} \oplus 0 \\
u_2 &= 0 \oplus \begin{pmatrix} 0 & \sqrt{3/2} \\ \sqrt{3/2} & 0 \end{pmatrix} \oplus 0 \\
u_3 &= 0 \oplus \begin{pmatrix} \sqrt{3/2} & 0 \\ 0 & 0 \end{pmatrix} \oplus \sqrt{3}.
\end{align*}
\]

Bratteli diagram of the fixed point algebra $(O_N^M)^T$ with unique tracial state is

and $O_N^M = O_A$ is as follows

\[
\begin{align*}
\ell(A_5) & \quad \text{the line graph } \ell(A_5) \\
\ell(A_5) & \quad \text{the adjacent matrix of } \ell(A_5).
\end{align*}
\]
The K-group $K_0(O^M_N)$ for A_5 is integer which show that it is different from Cuntz algebras.

Remark 5. When von Neumann algebras $M \supset N$ have quasi-Pimzner-Popa base $(E(u_i^*u_i)\text{ may be a projection in } N \text{ instead of } E(u_i^*u_i) = 1)$ Theorem 1 holds true even for non-factor N if the fixed point algebra has a unique tracial state.

REFERENCES