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HAUSDORFF DIMENSION AND FOURIER COEFFICIENTS

BEOKEZK-B B EETF (Fukiko TAKEO)

§1. Introduction

The Weierstrass function W, p(z) = Y a™ cos(b™nz) and the Takagi function
T(z) =Y s=9(2"z) (with 1(z) = 1 —|2z —2[z] — 1|) are well known as nowhere
differentiable continuous functions. The graphs of such a function may be frac-
tal sets. A. S. Besicovitch and H. D. Ursell [2] studied the Hausdorff dimension
of the graph of the function f(z) = Y b7%(b,z) and determined the Haus-
dorff dimension in some special cases. The Hausdorff dimension of Weierstrass-
type curves have been studied by M.V. Breek and Z.V. Lewis [1] and R.D.
Mualdin and S.C. Williams [5]. M. Hata and M. Yamaguchi [3] investigated
the generalized Takagi function f(z) = Y a,1(2" 'z), which is called a Takagi
series. The relation between the coefficients {a,} and non-differentiability of
this Takagi series has been studied by N. Kono [4]. While the upper bound of
Hausdorff dimension of their graphs is known, the exact Hausdorff dimension
has not yet been obtained with few exceptions [2]. On the other hand, there
have been introduced various dimensions of fractal sets, such as packing dimen-
sion, box-counting dimension and so on. The following relation holds among
Hausdorff dimension dimg K, lower box-counting dimension dimg K and upper
box-counting dimension dimgK: dimg K < dimgK < dimgK.

In this paper we shall consider a generalized Takagi series, i.e. f(z) =
Yo 1 anp(2™ 1), where ¢ satisfies some properties (2.1)—(2.4). We shall call
this function a super Takagi function. Some of Weierstrass functions are super
Takagi functions. We investigate the lower and upper box-counting dimensions
of their graphs and show that lower and upper box counting dimensions of the
graph of a super Takagi function depend only on the coefficients {a,} but not
on ¢. In Theorem 1 we give the upper box-counting dimension of its graph. In
general, lower and upper box-counting dimensions are not the same. We shall
show a condition where lower and upper box-counting dimensions of the graph
are the same and hence its box-counting dimension is obtained (Theorem 2).
We also show a condition where the upper bound of lower box-counting dimen-
sion is strictly smaller than upper box-counting dimension (Theorem 3). For a
Takagi series, we obtain the exact lower box-counting dimension of its graph,
which is different from its upper box-counting dimension (Theorem 4). This is
an extension of a result [2, 3.IV] of A. S. Besicovitch and H. D. Ursell.
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In §4, we consider the operator T, depending on the coefficients a = {a,},
since the box-counting dimension of the graph of a super Takagi function depends
only on the coefficients. Since a function f is an infinite series Y . | an@(2" 1),
its Hausdorff dimension may be greater than 1, while if we take finite sum
frn = X peq akp(2¥~1z), its Hausdorff dimension is 1. Though f, converges to
f uniformly, dimyg Gy, does not converge to dimy G¢. So we shall find some
functional which has much relation with box-counting dimension and which is
continuous as f, — f. The Holder exponent has much relation with Hausdorff
dimension. We examine the property of Holder exponents (Proposition 3) and
show that local Holder exponent has the desired property (Proposition 4). The-
orem 5 shows that local Holder exponent of f,, converges to that of f as n — oo.
For p(z) = €**®_ the above {a,} are Fourier coefficients of . So Fourier coeffi-
cients have much relation with box-counting dimension and also with Hausdorff
dimension.

§2. Super Takagi Functions

Let E be the set of continuous functions ¢ defined on R satisfying the fol-
lowing conditions (2.1) — (2.4):
(2.1)  o(z)=p(z+1)=p(l -z)
(2.2) op(z)+ep(l/2—-2)=1
(2.3) ¢(0)=0
(2.4) ¢ is uniformly Lipshitz continuous on R, i.e., there exists K > 0 such
that

lo(z) — ()| < K|z —y|  (for z,y € R).
M. Hata and M. Yamaguti generalized the Takagi function as follows:

fl@) =) anp(2'a),
n=1

where {a,} € l;, ¥(z) = 1 — |2z — 2[z] — 1| and [z] is the Gauss number of z.
They called the generalized Takagi function a Takagi series. We shall generalize
the Takagi series as follows:

(@) = Y anp(2 ),
n=1

where ¢ € F and {an} € I;.
We shall call this generalized function a super Takagi function. Some of
Weierstrass functions are super Takagi functions.
In the study of linear difference equations, M. Hata and M. Yamaguti [3]
noticed that a Takagi series f has the following relation
2i—1 1 1 i —
(25) F(E) = 5 ) + )} =

(1<i<21k=1,2.-).



Super Takagi functions do not necessarily satisfy the relation (2.5), but satisfy
the following relation (2.6) as shown in the following lemma.

Lemma 1. For a super Takagi function f(z) = Y oo, anp(2" 1z),

211—-1

(26) S {2 (L) - 1) - S} = 2

2

Proof. Since Y00, {20(3%72) — ¢(5r) — 0(4=45)} = 0 (n > 2) and 2¢(}) —
©(0) — ¢(1) = 2 holds, we have

2n——1

2j — 1 ; i1
> A2f() - f) - F)
i=1
._zn:azk—12"—k 2j—-1y 3 v g1
- k E {2S0( 2n_k+1 ) (p( 2n_k) (p( 2n_ )}
k=1 7j=1
= 2"a,. O

§3. Box-counting dimension

Let F be a non-empty bounded subset of [0,1] x R. Consider the collection
of squares in the 27 ™-coordinate mesh of [0,1] X R, i.e. squares of the form

[ml m1+1] o [mg m2+1]

gn> gn PIAT
where m; and mg are integers. Let N, (F') be the numbers of such 27 ™-squares

that intersect F. Then the lower and upper box-counting dimensions of F
respectively are defined as

@BF =1imw and mBF’:mlogNn(F)'
-—;l_ log 217, n 10g 2n

If they are equal, their common value is called the box-counting dimension
dimpF of F. Let Gy be the graph of f on [0,1], i.e.

Gr={(z,y)|0<z <1, y= f(z)}.

Then the following shows an estimate of N, (Gy).
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Lemma 2.

2"(max (2lacl) V1) < N 61) <P@+EY. Plaal + el 3 )
! k=1 k=n+1
where [[¢l|os = sup{|e(z)| : 7 € R}.

Proof. The number of 2~ "-squares that intersect Gy N [2,, , 2,,1] x R is more
than 2"|f(J+Tl) f(3 L) V1. So

Nn(Gy) 2 E 2" f(= 2n

I=1
2k—1 92 9
on T A T
1@3}“2 (2f (2 2,c )= IGR) — f(55 )Ivy.
By using lemma 1, we have
>2n k :
Nn(Gy) 2 27( max 2%|ax| V1)
On the other hand, by virtue of the relation
|f(z+h) = f@)| <KD 25 Har|lhl + 20olle Y ol
k=1 k=n+1
we have
n oo
Na(Gy) <272+ Ky 25 Mar] + [lplloo2™t D faxl)- O
k=1 k=n+1 ’

By using Lemma 2, a formula for dimpG f is obtained, which shows that
dimpGy depends only on {a,} but not on ¢.

Theorem 1. Let f(z) =Y o> | anp(2™ 1z) be a super Takagi function. Then
dimpGy =1V (2 + limlog, |a|'/™).
Proof. By using lemma 2, we get for any € > 0
No(Gy) < 2*{M; + My(2Tim|a,|*/™ + €)™}
n

for sufficiently large n, where M; and M, are positive numbers which are inde-
pendent of n. So we get the conclusion. O

As for the lower box-counting dimension, it is not so easy to get its value.
We shall show the region of its value.



Proposition 1. For a super Takagi function f(z) = Y o7, anp(2™ 'z), we
have

1+ (0Vlim max logy(2"|ax|)'/") < dim Gy

n

n 0
<1+{0Vlimlog, (Y 2¢lax| +2™ > |ax])/™
n k=1 k=n+1

Proof. By using Lemma 2 and the relation

hmlog(2 + K Y pg 28lar] 4 llelleo2™t! 3002 11 lakl)
Y log 2"

n 0o
=0V limlogy (D 2%|ak| +2" > lak)'/™,
n k=1 k=n+1

we get the conclusion. O

In general, the upper and lower box-counting dimensions are not the same.
The following shows a case where the box-counting dimension exists.

Theorem 2. Let f(z) =Y - | an(2" 1z) be a super Takagi function. If there
exists a subsequence {a,, } of {a,} satisfying

MNk41

. 1/n —T 1/ng — : —
llﬁnlanl h’£n|ank| v and hlrcn m— 1
then 2+1 1/2 1
+ <7<
dimBsz{ ogzy (1/2<v<1)
1 (0<y<1/2).
Proof. By using Proposition 1 and the relation
li IaNY" > 14 3 kg, T
%@asxnlogz@ lasl) _hTmOSKg:fl_nk log; (2™ |an,|)™*
> 1+ logyy

for v > %, we get the conclusion. 0O

Remark. If a, = t™ with 1/2 < [t| < 1, that is, f(z) = Y .0, t™p(2" 1z),
then dimp G5 = 2 + log, [t].
Accordingly, the box-counting dimension dimp G5 of the Takagi function

fe) = T, (2" 1a) s 1.

The following gives a case where upper and lower box-counting dimensions
are different.
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Theorem 3. For a super Takagi function f(z) =Y oo, anp(2" " 1z), let {a,,}
and {am,} be disjoint subsequences of {a,} such that {a,,} U {am,} = {an}.
Put vy = lim,, |a,|'/™, d = img |am, |'/™ and p = limg g4y /0.

If limg |an, /™ =5, d<1/2<7y<1andp>1, then

uo

. i L A —

(< 2—6= MBGf),

where 6 = —log, 7.

Proof. Let {ni,} be a subsequence of {n;} such that lim; ,c Nk, +1/7k; = p.
For any € (0 < ¢ < min{y — 1,1 —v,1/2 — d}) and for sufficiently large j, put
lj = [(4 — € — 1)dny,]. Then by using d < 1/2 < v, we have

(3.2) Ng; + lj < nkj(l + (u — € — 1)5) < Mkj+1
and

S 2Mag| 27t DT g

k=1 kznkj +1;+1

< My + My(2y +26)™5 4+ M2™i T (y 4 g)™ i+t

where M;, M, and M3 are independent of j. So by using Proposition 1 and
(3.2), we have '

dimpGy < 1+limlogy( D 2¥|ag| +275+5 " Jax)™ "
J k=1 k=ng;+1;+1
1—6+ep
<1 .
S 1+ (p—e—1)5
Since € > 0 is arbitraly, we have
1-46 1) :

dm,Gf<l4+ —8M =2 — "~ O
e A Ny YRS LY 1+ (p—1)

The inequality in (3.1) can be replaced by equality in a special case of Takagi
series as follows. In order to show this equality, we will show a lemma concerning
the lower estimate of N,,(Gy), which is more precise than in Lemma 2 in a special
case of Takagi series.



Lemma 3. Let f be a Takagi series, i.e.
flz)=> anp(@"'z)  where t(z)=1-|2z—2[z] 1]
n=1

Let {an, } and {am, } be disjoint subsequences of {a,} such that {a,, }U{am,} =
{an}. If

Tim |a,|Y/™ = li£n|ank|1/"’° =y and im |am, |V/™ =d < v

are satisfied, then for any ¥ (d—;’z <4< 7)andd (d—gl >d > d),

_ . Can+1
Ny, 41(Gy) > 22™ 1570 {1 4 2bgmeer =m0k (1 — (ngeqy — ng)

)}

Zynk+1
for sufficiently large k and 1 < | < ngyq — ng.
Proof. Put

Js1—1  j2-—1 J1—1 J2
M;, ;, = sup{|f(z) — f(y)| : e T Te <z,y< g T 2nk+,}

for 1 <j; < 2™ and 1 < jo < 2!. Then

J1 ji—1, 27+ —3=mn
Mjl7j2 Zlfnk('z_n,:) _fnk( ok )l o—nr

- 2(?’Lk+1 - nk)Jnk+1

+ ,‘)',nlc+1

holds for sufficiently large k. By using Lemma 1, we have
2"k 2! —(n
Nn“'H(Gf) 2 EJ'1=1 ij:l Mjl -J2 /2 (ri+1)
> {(1 — 2 m+rtmeth)one|q | 4 2met Ak — Q(np g — nk)d'nk+1)}2nk+l

By relations ng41 — ng — 1 > 1, d/7 < 1 and |an,| > 3™, we get the conclu-
sion. [

Theorem 4. Let f be a Takagi series and let {a,,} and {an,,} be disjoint
subsequences of {a,} such that {a,,} U {am,} = {an}. Put

v =Tlim|a,|'/™ and dzﬁ;r}l-[amkll/m“.
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Iflimg =22 =p>1, 7> 1 and d <min{%,v*}, then
impGy=2- — M
dimpGs =2~ T =15

where § = —log, 7.

Proof. By using Lemma 3 and the relation limg (ng4; — ng)d™ /y™+! = 0 under
the assumption, we have

2ng + 1 + log, Y™ (1 + 2Ly k+1—m
dimpGy > lim  inf  oretlitlog ™ (1427 ).
k 051<nk+1—"nk nk + l

Let { and chatisfy the relation ng + 1 = ng(1 + l~) and d = 2=, Then 0 <l<
p+e—1,d>épu and

ni(2 + 1 — 8) + logy (1 + 20—8m=1)ns)

dimzGy > li_mirllf
k

_{1+11—:f- I<8(p—1)
2- £ I>6u-1),
which implies dimpGy > 2 — mﬁ(—s—_lﬁ" Since the opposite inequality is obtained
in Theorem 3, we have dimpGy = 2 — l_-k(l;té—w‘ O

Remark. In [2] A.S. Besicovitch and H.D. Ursell gave the Hausdorff dimension
dimg Gy of the function f(z) =Y oo, b7%%(bnz) as follows:

(*)  Ifbnpr = bt and by > 1, then dimp Gy = 2 — ;.

Ifb,, = 2t~ witht, € N (Vn € N), then the Besicovitch’s result (*) is obtained
as a special case of Theorem 4, by putting ay = 2~%» for k = t,, with some
n €N and ax =0 for k € N\ U2, {t,}.

§4. Holder exponent

From the result in §3, we see that the box-counting dimension dimyg G for a
super Takagi function f(z) =) oo, anp(2"1z) depends only on {a,} but not
on ¢ € E. So we shall consider the relation between the box counting dimension
and the property of an operator. Let an operator S on Cy(R) be defined by

Sg(z) = g(2z) for geCy(R) and z € R.



For ¢ = {an} € l1, define T, ., and T, by
Ton=)» axS*' and To=) apS*
k=1 k=1

Then the function f(z) = Y o> | an@(2" ') in §3 is T,¢. The Hausdorff dimen-
sion and box-counting dimension of the graph Gr, ., of Tg npis 1 for any a € [;
and ¢ € E, while those of Gr,, become greater than 1 for some a € /;. Though
Ta,np converges to Typ as n — oo in Cy(R), these dimensions of Gz, ., do not
converge to those of Gr,,. So we shall find some functional which has much
relation with box-counting dimension and which is continuous as Tan = T4 in

some sense.
Let H(f) be the Holder exponent of a function f on [0, 1], that is,

H(f) =sup{a;3dc> 0 s.t. |f(z) — f(y)|] < |z — y|* for any z,y € [0, 1]}.

Then the following relation between the Hausdorff dimension dimy Gy and H(f)
is obtained by A.S. Besicovitch and H.D. Ursell [2]:

dimpGy < 2 — H(f).

If f is not a constant function, then H(f) < 1. For ¢ € E, H(Tynp) = 1 for
any n € N and H(T,p) < 1 for some g € l;. So H(T, »¢) does not converge to

H(Typ) as the same as Hausdorff dimension. As for the Holder exponent of f,
the following is obtained.

Proposition 3. For ¢ € E and {a,} € 1, we have the following
()H(Tgnp) =1
(2)(=logy sup |an|*/™) A1 < H(Typ) < (~log, Tim|an|'/™) A1
(3)lim H(Tgp — To ntp) = (—logy lim|aa|'/") A1 (= 2 — dimpGr,,)
n - - n L
(4)if an =" with1/2 <y <1, then H(T,p) = —log, .
Proof. (1) is easily obtained.

(2) Put 7o = sup |ax|'/* and § = —log, Y. For any h > 0 find n € N such
that 2=("*t1) < b < 27", Then by the relation

n o0
Tap(z +h) — Tap(z)| S K Y 925 h+2l0lle Y. 16

| k=1 k=n+1
_ { (525 + 2{@? Yade  ifl1/2 <y <1
ClaEg e dden wo<w <y,
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we have H(Tgp) > (d) A1
On the other hand,

] 1 —lo an, |1/"
ITgp(zj—n)—Tﬁw( 5 )|_[a,,,1—( =) 0g |an|

for some j (1 < j < 2"). So we have H(Tgp) < § A1 by putting v = lim,, |a,|*/™
and § = —log, v and by using the fact H(T,p) < 1.
(3) and (4) are obtained from (2). O

Since we considered global Holder exponent H, H(Tg np) is independent of n
as the case of Hausdorff dimension. So we shall consider local Holder exponent
and the following functional H,, H,, on Cp(R). For f € Cy(R), define

Hy(f) =sup{a:|f(z+ h)— f(z)] < |h|* for any z, |h| < 1/2"}
Hoo(f) = lim Hy,(f) (= sup Hn(f))
H,(T,,n) = sup{H,(Tanp); ¢ € E} and
Hoo(Ta) = sup{Hoo(Tap); ¢ € E}-
Then H,(T,,) depends on n as follows.

Proposition 4.
(1) For ¢ € E,

n

(~10g3 [anl") A1 2 Ho(Tanp) = (1~ logy (5 3 2]axl) ")

k=1
where K is the Lipschitz constant of .
(2) (—logy [an|'/™) A1 > Ha(Tam) 2 (1 —logy (D 25|ax)/™) A 1.
k=1

Proof. (1) For h with (|h| < 1/27),
K k nc
|Tanp(z + h) = Tanp(z)] < 322 |ak||h] = 27" |h),

where ¢, = logy(& S0 ; 2%[ax])/™. So Hn(Tane) > (1 —ca) Al. On the
other hand for some = = j/2" (0 < j < 2" — 1), [Ty nep(x + 2%) — Tanp(z)] >
()~ lo82 lanl"" implies that (—logs |an|t/™) > Hy(Tynp).

(2) follows from (1) and the fact that K > 2 for p € E. O

By using the estimate of H,(T,,,) in Proposition 4, we show that inferior
limit of Hy(Tgn) is 2 — dimpGr, .



Theorem 5.

(1) Hoo(Ty) = (~logylim|an|'/") A1 (=2 —dimpGr,,)
(2) lim H,, (Tg,n) = Hoo(Tg)-

Proof. (1) Put vy = lim,, |a,|'/™. Suppose 1> v >1/2.
For any 4 > 7,

~n+1

e
_ <gEV" -

for sufficiently large n € N and h with 2=("*1) < |p| < 27™. By putting
6 = —log, 7, we have |T,p(x + k) — Typ(z)| < M!h,|5 where M depends only on
¥, K and ||¢||oo, not onn. If M <1, ]ngo(a:—l-h)— Tap(z)| < |h|5. If M > 1, put
By, = tlogy, M. Then 8> 0, |T,p(z + h) — Typ(z)] < |h|‘~s"3", and 6§ — G, >0
for sufficiently large n. For any y with |y| < 27", there exists m such that
m > n, 27D < Jy| < 27, So |Tup(z + y) — Tap(e)| < |y>=Fm < |y|3=F»,
which implies H,(Tgqp) > 6 — By Since lim, B, = 0, we have H, (Tap) > 5. So
Hoo(T,) > (—log, lim,, |ay,|). In case of 0 < v < 1/2, Hy, (T ) > 1 is obtained
in the same way. The opposite inequality Ho(T,) < (— 1og2 lim, |a, /") Al is
proved in a similar way to the proof of Proposition 4.
(2) follows from (1) and Proposition 4. O
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