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Golden-Thompson Type Inequalities and Their Equality Cases
Ibaraki Univ. Fumio Hial (% KE HAEXH)

In this paper we state some log-majorization results for matrices and their applications
to matrix norm inequalities. The equality cases in these inequalities are characterized.
Full details of Section 2 are presented in [2], [9].

1. Preliminaries

Let @ = (a1,...,a,) and b= (b1,...,b,) be vectors in R™. The weak majorization (or

the submajorization) d <, b means that

k k
doar<y b, 1<k<n,
i=1 i=1
where (a},...,a}) and (b3,...,b}) are the decreasing rearrangements of (a1,...,a,) and

(b1,...,bn), respectively. The majorization a < b means that @ <, b and the equality holds
for k = n in the above, i.e. Y 7, a; = 3 [, b;; in other words, @ is a convex combination
of the vectors obtained by permuting the components of b (see [1, Theorem 1.3]). When
@b>0 (i.e. a; > 0, b; > 0 for 1 < i < n), we define the weak log-majorization &'(141)0 b if
og
k
o <[5, 1<k<n,

1 i=1

t

and the log-majorization @ (-<) bif @ <u b and [T-;ai = 1=, b. When @b>0, it is
log (log) - -

obvious that @ ( -<) b [resp. @ <y, b ] is equivalent to logd < log b [resp. log @ <, log b].
log (log) .
In this paper we consider n x n complex matrices. For a Hermitian matrix H let

X(H) = (AM(H),...,An(H)) denote the vector of eigenvalues of H in decreasing order
(with multiplicities). When H and K are Hermitian matrices, the majorization H < K
[resp. the weak majorization H <, K] is defined as X(H) < X(K) [resp. X(H) <y A(K)].
We write A > 0 if a matrix A is positive semidefinite, and A > 0 if A > 0 is positive definite

(or invertible). For A, B > 0 the log-majorization A (1-<) B is defined as X(A) (-<) X(B).
og log

See [1], [13] for majorization theory for vectors and matrices. In particular, we remark
that if A,B > 0and A < B, then A <, B and hence ||4]| < ||B|| for any unitarily

(log)
invariant norm || - ||.
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Let || - || be a unitarily invariant norm on n x n matrices. We say that || - || is strictly
increasing if 0 < A < B and ||4|| = ||B|| imply A = B. Let & : R® — [0,00) be the
symmetric gauge function (see [5], [14]) corresponding to || - ||, so that ||A]| = ®(X(A)) for

(
A > 0. Then it is easy to see that || - || is strictly increasing if and only if 0 < @ < b and

b
®(ad) = Q)(I_;) imply @ = b. For instance, the Schatten p-norms X1, = 0o, Xi(| X |)?)H/e
are strictly increasing when 1 < p < oo, while the Ky Fan norms || X||x) = S (X))
are not so when 1 < k < n. Note that ||A[|z) for A > 0 is nothing but the kth partial

trace TryA = Ele Ai(4).

2. Golden-Thompson type inequalities

For every A, B > 0 the log-majorization (A'/2BA'/?)" (<) A™12B" A2 for r > 1 was
: log
proved by Araki [3], which is equivalent to say that

(AP/2 Br AP/2)1/P (4) (A4/2B1At?) e, 0<p<gq. (2.1)
log

This shows the following:

Proposition 2.1. If A/B > 0 and || - || is a unitarily invariant norm, then

||(A?/2B? A?/2)1/?|| is an increasing function of p > 0.

This implies norm inequalities of Golden-Thompson type. In fact, if H and K are

Hermitian matrices, then

lleTHE|| < [[(PT/2ePK epHIZ)MPY, - p >0,

for any unitarily invariant norm, and the above right-hand side decreases to the left-hand
as p | 0. The above inequality in case of p = 1 was formerly given by Lenard [12] and
Thompson [18]. Moreover the specialization to the trace norm is the famous Golden-
Thompson trace inequality ([8], [17]).

The next theorem characterizes the equality case in the Golden-Thompson type inequai-

ity given by Proposition 2.1.
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Theorem 2.2. Let A,B > 0 and || - || be a strictly increasing unitarily invariant norm.
Then the following conditions are equivalent:
(i) ||(AP/2BP AP/2)/?|| is not strictly increasing in p > 0;
(i) ||(A?/2B? AP/2)!/?|| is constant for p > 0;
(iii) (A?/2BP AP/2)UP = (A9/2B1BII2) 4 for some 0 < p < g;
(iv) (AP/2B? AP/2)1I? js constant for p > 0; |
(v) AB = BA.

Remark. In case of A, B > 0 Friedland and So [7, Theorem 3.1] characterized the situation
when Try,(A?P/2B? AP/2)1/P is not stricly increasing in p > 0. This characterization is a bit

complicated because of the non-strict increasingness of Try.

Theorem 2.2 reads as follows when A; B > 0 and || - || is the trace norm. This corollary
was already stated in [7]. The equivalence between (iil) and (iv) below determines the
equality case in the original Golden-Thompson trace inequality. A proof of this equivalence

is found also in [15].

Corollary 2.3. Let H and K be Hermitian. Then the following conditions are equivalent:
(i) Tr(e?H/2epK ePHI2)1P s not strictly increasing;
(ii) Tr(ePH/2ePK pHI2)/P 5 constant;
(iii) TreH K = TreH+K;

(iv) HK = KH.
For 0 < a <1 and A, B > 0 the a-power mean A#qB 1s defined by
AdoB = AV (A~ B A2y 412
which can be extended to A, B > 0 as
A#,B = leiﬁ)l,(A + e)#a(B +€l).

This a-power mean is the operatoi' mean (see [11]) corresponding to the operator monotone
function ¢*. In particular when o =1/ 2, A, ;2B = A#B is called the geometric mean.
Moreover A#oB = A and A#,B = B. For every A, B > 0 and 0 < o < 1 we proved in [2]
that (A#,B)" (g—g) A" #,B" holds for r > 1; or equivalently

(4B > (A4aBYV1,  0<p<y
og

So we have:
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Proposition 2.4. If A,B > 0,0 < a <1, and || - || is a unitarily invariant norm, then
||(AP#4BP)!/?|| is a decreasing function of p > 0.

Particularly when A = e and B = eX with Hermitian matrices H, K and || - || is the

trace norm, we have for p,q¢ > 0

rI\r(epH#aepK)I/p < Tre(l—a)H+aK < Tr(e(l—a)qH/2eaqKe(l—a)qH/Z)l/q

(see [2, Corollary 2.3] and also [10, Theorem 3.4]). The above second inequality for ¢ = 1
becomes the Golden-Thompson trace inequality, and it is fairly reasonable to consider the
first inequality as complementary to the Golden-Thompson one. So the norm inequality
given by Proposition 2.4 are considered as the complementary counterpart of the Golden-
Thompson type one.

Let us here characterize, in parallel to Theorem 2.2, the situation when equality occurs

in this inequality in case of A, B > 0.

Theorem 2.5. Let A/B > 0,0 < o < 1, and || - || be a strictly increasing unitarily
invariant norm. Then the following conditions are equivalent:
(i) ||(AP#,BP)'/?|| is not strictly decreasing in p > 0;
(i) ||(AP#,B?)'/?|| = || exp{(1 — @) log A + alog B}|| for all p > 0;
(iii) (AP#oBP)YP = (A%4,B9)'1 for some 0 < p < ¢;
(iv) (AP#4B?)/? = exp{(1 — a)log A + alog B} for all p > 0;
(v) AB = BA.

Remark. In contrast with Theorem 2.2 we cannot extend Theorem 2.5 to A, B > 0; in
fact, if P and @ are any orthoprojections and 0 < « < 1, then we have (PP#,Q?)!/? =
P A Q (independently of p > 0) by [11, Theorem 3.7].

The following was shown in [2] (see also [10]) by differentiating Tr(e?® 4 ,e?%)'/? by o

at a = 0.

Proposition 2.6. For every A,B > 0, :—,TrAlog(AP/ 2B? A?/?) is an increasing function
of p > 0 and decreases to Tr A(log A + log B) as p | 0.

In the following we characterize the situation when equality occurs in the logarithmic

trace inequality given by Proposition 2.6.
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Theorem 2.7. Let A > 0 and B > 0. Then the following conditions are equivalent:
(i) %T‘rA log(AP/2 B? AP/?) is not strictly increasing in p > 0;
(11) :—)TrAlog(Ap/zBPAp/Z) = Tr A(log A + log B) for all p > 0;
(iii) AB = BA.

Remark. When A, B > 0 (instead of B > 0), Tr Alog(A?/2B? A?/?) can be —co for all
p > 0, while of course Theorem 2.7 holds if the support projection of A is dominated by
that of B.

Furthermore, we have for an arbitrary matrix T’

IeT' (_<) eReT S 6|R6T| _<w eITI, (2.2)
log

where | X| = (X*X)'/? and Re X = (X + X*)/2 for a matrix X. The log-majorization in
(2.2) was proved by Cohen [6] (see also [2]), generalizing the trace inequality of Bernstein
[4]. The latter in (2.2) follows from the well-known weak majorization |[ReT| <, |T'| (see

[13, p. 240, p. 244]) and the preservation of weak majorization under an increasing convex

function (see [1, Corollary 2.2], [13, p.116]). So we have:

Proposition 2.8. IfT is an arbitrary matrix and ||-|| is a unitarily invariant norm, then
eI < e < [l < [lef).

The next theorem clarifies when the equality cases occur in the norm inequalities of

Proposition 2.8.

Theorem 2.9. Let T' be a matrix and || - || be a strictly increasing unitarily invariant

norm. Then:

(1) ||€7|| = ||eReT|| if and only if T is normal.

(2) ||elReTl|| = ||e/T!|| if and only if T is Hermitian.

(3) ||eT|| = ||elReTl|| if and only if T' is normal and Re T' > 0.

4) |1e®eT|| = 1], 1l€T]] = ||e!T!|], and T > 0 are all equivalent.

Remarks. (1) When || - || is the Frobenius (or Hilbert-Schmidt) norm, Theorem 2.9(1)
reads as follows: TreT e = TreT *7 if and only if T is normal. This was already proved
in [15]. |

(2) It is well known (see [1, Theorem 6.7], [13, p.240]) that Ax(ReT) < Ax(|T]) for
1 < k < n. The equality case Ay(ReT) = Ax(|T]) for fixed k was characterized by So
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and Thompson [16]. Further it was shown in [16] that X(Re T) = X(|T)), A(|T]) = AT

TrleT| = Tr elTl and T > 0 are all equivalent. Theorem 2.9 considerably refines this result.

3. Golden-Thompson type inequalities for three or four matrices

In this section we discuss norm inequalities of Golden-Thompson type for three or four

matrices which are commuting except one. Also the equality cases are characterized.

Proposition 3.1. If Ay, Ay, B> 0 and A; Ay = A3 A, then

A1BAs| = (A1A42)Y2B(A145)Y2% ~ BY24,4,BY2 3.1
(log)
og

where ~ dentes the unitary equivalence.

Proof. By a technique of compound matrices used in [2], it suffices to show that |4; BA,| <
I implies (A1 A2)Y/2B(A;A2)Y/? < I. We may assume Ag > 0. Then since Ay BA?BA, < I,
we get BA?B < A;? and so (A4;BA;)? < (414512, which implies A; BA; < A AL,
 Hence (A1 A3)Y/2B(AyA3)Y/? < I and the first part is proved. The second part is obvi-

ous. O

By the log-majorization (2.1), the above (3.1) further implies that

|A; BA| o (BP2(A AP BP/H)P . o< p<i.
og

Corollary 3.2. Let A1, A; > 0 with AjA; = A2A;, and || - || be a unitarily invariant
norm. If B > 0 then

||A1BAs|| > ||BY? 414, B?|. (3.2)
Moreover for any B

|41 B* BA|| > ||BA1 A2 B*||. (3.3)

Proof. (3.2) is a consequence of (3.1). When B is replaced by B*B in (3.1), we have
|A; B* BA,| o (A1 A7) /?B*B(A1 A3)'? ~ BA, Ay B*,
og

showing (3.3). O
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Proposition 3.3. If Ay, Ay, A3, B > 0 and A;A; = A; A;, then

|A1BA23A3I (1>-) (B1/2(A1A2A3)1/231/2)2.
og

Proof. We have
|A; BA; BAs| o (A1A3) /2 BA, B(A; A3)'/?

= 47" B(4143)"?)"
(l>_) (BI/Z(A1A2A3)1/2BI/2)2,
og

using (3.1) twice.
The following corollary is a generalization of the Golden-Thompson inequality.

Corollary 3.4. If H,, Hs, Hs, K are Hermitian and H; H; = H; H;, then
ek | > || HitHn | (3.4)

and
e X Mg s » [| ot st (35)

for any unitarily invariant norm.

Proof. Propositions 3.1 and 3.3 together with (2.1) imply that

|6H1€K6H2| (l>_) (epK/2ep(H1+H2)epK/2)1/p’ 0<p<1,
og

|eH1 K eH2eK o Hs) (>—) (epKep(H1+H2+H3)e”K)1/”, 0<p<1/2
log

Taking the limits of the right-hand sides as p | 0, we have

H]eKeHzl - €H1+H2+K,

le
(log)

|€H1€K€H26K6H3| - 6H1+H2+H3+2K
(log) ’
showing (3.4) and (3.5). O

Question. If Hy,..., H,, K are Hermitian and H;H; = H; H;, then

eKeH”I b

(log)

|ef1eK oHa . cHit +Hn+(n-1)K o
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In the sequel let us characterize the equality cases in the norm inequalities (3.2), (3.4),
and (3.5). First note [9, Lemma 2.2] that if A;B > 0 and || - || is a stricly increasing
unitarily invariant norm, then A > B and ||A]| = ||B|| imply A ~ B.

For commuting A4;, A3 > 0, let(ég{)e the join of the support projections of Ay, A;. Then
both sides of (3.2) are determined by @ BQ); in fact we have

[|A1 BAs|| = ||A1Q@BQA||,

1B1/24, 4, BY2|| = ||(4142)"/7 B(4142)' %] = [|(A142) *QBQ(4142)?]].
So to characterize the equality case of (3.2), we may assume without loss of generality that

QII, l.e. A1+A2>0.

Theorem 3.5. Let Ay, A, B > 0 with AjA; = A3 A; and A; + A > 0, and P be the
support projection of A;. Assume that ||-|| is a strictly increasing unitarily invariant norm.
Then ||AyBAs|| = ||BY/2 A, A B'/?|| if and only if B commutes with P and PAT' A,.

Proof. Suppose that B commute with P and PAl—lAz. Let PAl"lAz =Y req ap Py be the
spectral decomposition of PA7'A,, where P = Yorey Pr and oy are all distinct. Then
Ay, Az, B commute with all P and P, 1 < k < m. Since (I — P)A; =0, we get

(I — P)|A1BAy|* = A2 B(I — P)AIBA, =0,
so that
(I — P)|A1BAy| = 0= (I — P)B'/24,4,B'/?.
For 1 <k < m, since Py As = o Py A;, we get

PklAlBAzl = OlkPkAleh
~ oy Py B2 A2B/?
= P,BY?24,A,B?.

Therefore |A; BAg| ~ B1/2A; A3 B'/?, which implies ||A; BA,|| = ||B1/2 A, A, BY/?||.
Conversely suppose ||A;BA;|| = ||BY24;4;B'Y?||. 1t follows from (3.1) that
|AyBAy| ~ BY/2A; A, BY/? and hence

Tr A BAZBA; = Tr(BY/?2 A, A, BY?)? = Tr A| A, BA, A, B. (3.6)
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Now we may assume that A; = diag(sy,...,8,) and A, = diag(?y,...,t,). Let B = [b;;].
Then

n

Tr Ay BA3BA; = Y sit]|b;|7, (3.7)
i,j=1

’I‘I'A1A2BA1A23 = Z S,'Sjt,‘tjlb,'jp. (38)
i,j=1

By (3.6)~(3.8) we get

n

Y (sity — 55t:)°|b > = 0,

=1
so that b;; = 0 unless s;¢; = s;t;. If s; =0 and s; > 0, then t; > 0 due to A; + A3 > 0, so
b;; = 0. Hence BP = PB. If s;,5; > 0 and t;/s; # t;/s;, then b;; = 0. This implies that
B commutes with PAT'4,. O

Theorem 3.6. Let Hy, Hy, H3, K be Hermitian with H; H; = H; H;. Assume that ||-|| is
a strictly increasing unitarily invariant norm. Then:
(1) ||efreK eH2|| = ||ef1+H2+K|| if and only if K commutes with H;, Hs.

(2) ||eHreK eHz2eK eHs|| = ||eHr+Ha+Ha+K|| if and only if K commutes with Hy, Hy, Hs.

Proof. We show “only if” parts (the converse parts are obvious).
(1) Suppose ||ef1eK eH2|| = ||eH1+H2+K|| Since
Hi K Ha| o oK[2Hi+Ha K/ >_ eHiHHa+K.

le
(log) (log)

we get
|eH1eK eHa| n KI2H1+Ha K2 | JHi+Ha+K

By Theorem 3.5, the first equivalence implies that X commutes with e#2~H#1 je. K(H,—
H,) = (Hy — H;)K. The second implies the equality case of the Golden-Thompson in-
equality, so K(H; + H,) = (H,+ H3)K by Corollary 2.3. Hence K commutes with Hy, H.

(2) Suppose ||ef1eK eflzeK Hs|| = ||eH1+H2+H3+2K || Gince

|6H16K€H26KCH3‘ - C(H1+H3)/26K6H2eKe(H1+H3)/2
(log)

— |6H2/26K6(H1+Ha)/2|

eHl +Ha+Hs3+2K

(log) ’
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ef2¢K commutes with e~ H1,

these terms are all unitarily equivalent. By Theorem 3.5, eX
Furthermore by (1), K commutes with H, and H; + Hs. Hence K commutes with

H.,H,,H;. O
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