$A \ge B \ge 0$ ensures $(B^r A^p B^r)^{1/q} \ge (B^r B^p B^r)^{1/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1 + 2r)q \ge p + 2r$ and its applications (Linear Operators and Inequalities)

Author(s)
Furuta, Takayuki

Citation
数理解析研究所講究録 860: 41-51

Issue Date
1994-03

URL
http://hdl.handle.net/2433/83825

Type
Departmental Bulletin Paper
$A \geq B \geq 0$ ensures $(B^r A^p B^r)^{1/q} \geq (B^r B^p B^r)^{1/q}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$
with $(1 + 2r)q \geq p + 2r$ and its applications

In what follows, capital letter means a bounded linear operator on a Hilbert space.

An operator T is said to be positive (in symbol: $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in H$. Also an operator T is strictly positive (in symbol: $T > 0$) if T is positive and invertible.

As an extension of the Löwner-Heinz theorem [17][20], we established the Furuta inequality [6] which reads as follows. If $A \geq B \geq 0$, then for each $r \geq 0$ (i) $(B^r A^p B^r)^{1/q} \geq (B^r B^p B^r)^{1/q}$ and (ii) $(A^r A^p A^r)^{1/q} \geq (A^r B^p A^r)^{1/q}$ hold for p and q such that $p \geq 0$ and $q \geq 1$ with $(1 + 2r)q \geq p + 2r$. We remark that the Furuta inequality yields the Löwner-Heinz theorem when we put $r = 0$ in (i) or (ii) stated above: if $A \geq B \geq 0$ ensures $A^\alpha \geq B^\alpha$ for any $\alpha \in [0, 1]$. Alternative proofs of the Furuta inequality are given in [3][8][18] and an elementary proof is shown in [9].

<table>
<thead>
<tr>
<th>Theorem A (Löwner-Heinz 1934). If $A \geq B \geq 0$ ensures $A^\alpha \geq B^\alpha$ for any $\alpha \in [0, 1]$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to Theorem A, the following result is well known.</td>
</tr>
<tr>
<td>Proposition. If $A \geq B \geq 0$ does not always ensure $A^p \geq B^p$ for any $p > 1$.</td>
</tr>
<tr>
<td>As a generalization of Theorem A and related to Proposition, we established the following result.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem B (Furuta 1987). If $A \geq B \geq 0$, then for each $r \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $(B^r A^p B^r)^{1/q} \geq (B^r B^p B^r)^{1/q}$</td>
</tr>
<tr>
<td>and</td>
</tr>
<tr>
<td>(ii) $(A^r A^p A^r)^{1/q} \geq (A^r B^p A^r)^{1/q}$</td>
</tr>
<tr>
<td>hold for each p and q such that $p \geq 0$, $q \geq 1$ and $(1 + 2r)q \geq p + 2r$.</td>
</tr>
</tbody>
</table>

Inequalities (i) and (ii) in Theorem B hold for the points on p, q and r belong to the oblique lines in the following figure.
In this paper, we cite several applications of Theorem B as follows.

Applications of Theorem B

(A) **Operator inequalities**

1. Characterizations of operators satisfying $\log A \geq \log B$
2. Generalizations of Ando's theorem
3. Applications to the relative operator entropy
4. Applications to other operator inequalities
5. Applications to the Log-Majorization by Ando and Hiai
6. Application to p-hyponormal operators for $0 < p < 1$

(B) **Norm inequalities**

1. Several type generalizations of Heinz-Kato theorem
2. Generalizations of some folk theorem on norm

(C) **Operator equations**

1. Generalizations of Pedersen-Takesaki theorem and related results

Among applications of Theorem B states above, we cite [2][4][5][10] and [11] for (A) operator inequalities and also we cite [12][13][14] and [16] for (B) norm inequalities and finally we cite [7] for (C) operator equations.

Ando-Hiai [1] have established a lot of useful and beautiful results on log-majorization and we are really impressed with these beautiful and useful results. The purpose of this paper is to announce new application [15] of Theorem B to the log-majorization by Ando-Hiai [1]. Precisely speaking, we can interpolate Theorem B and this log-majorization.
§1. AN EXTENSION OF THE FURUTA INEQUALITY

First of all, we state the following extension of the Furuta inequality.

Theorem 1.1. If $A \geq B \geq 0$ with $A > 0$, then for each $t \in [0,1]$ and $p \geq 1$,

$$F_{p,t}(A, B, r, s) = A^{-r/2} \{A^{r/2}(A^{-t/2}B^pA^{-t/2})^sA^{r/2}\}^{1-(1+t-2p)\alpha}A^{-r/2}$$

is a decreasing function of both r and s for any $s \geq 1$ and $r \geq t$ and the following inequality holds

(1.10)

$$A^{1-t} = F_{p,t}(A, A, r, s) \geq F_{p,t}(A, B, r, s)$$

for any $s \geq 1, p \geq 1$ and r such that $r \geq t \geq 0$.

Corollary 1.2. If $A \geq B \geq 0$ with $A > 0$, then for each $t \in [0,1]$,

$$\{A^{r/2}(A^{-t/2}A^pA^{-t/2})^sA^{r/2}\}^\alpha \geq \{A^{r/2}(A^{-t/2}B^pA^{-t/2})^sA^{r/2}\}^\alpha$$

holds for any $s \geq 0, p \geq 0, 0 \leq \alpha \leq 1$ and $r \geq t$ with $(s-1)(p-1) \geq 0$ and

$$1 - t + r \geq ((p-t)s + r)\alpha.$$

Remark 1.1. In the case $t = 0$ in Corollary 1.2, we may not assume $A > 0$. Putting $t = 0$ and $s = 1$ in Corollary 1.2, we have (ii) of Theorem B. Hence Corollary 1.2 can be considered as an extension of Theorem B since (i) is equivalent to (ii) in Theorem B.

Corollary 1.2 easily implies the following result when we put $t = 1$.

Corollary 1.3. If $A \geq B \geq 0$ with $A > 0$, then

$$A^r \geq \{A^{r/2}(A^{-1/2}B^pA^{-1/2})^sA^{r/2}\}^{1-(1+t-2p)\alpha}$$

holds for any $s \geq 1, p \geq 1$ and $r \geq 1$.

When we put $s = r$ in Corollary 1.3, we have the following Theorem C obtained by Ando and Hiai [1, Theorem 3.5].
Theorem C [1]. If $A \geq B \geq 0$ with $A > 0$, then

$$A^r \geq \{A^{r/2}(A^{-1/2}B^pA^{-1/2})^rA^{r/2}\}^{1/p}$$

holds for any $p \geq 1$ and $r \geq 1$.

Corollary 1.4. If $A \geq B \geq 0$ with $A > 0$, then for each $t \in [0,1]$

(i) $A^{1+t} \geq (A^{t/2}B^{2p-t}A^{t/2})^{1/t} \geq |A^{-t/2}B^{p}A^{t/2}|^{1/t}$

and

(ii) $A^2 \geq (A^{1/2}B^{2p-t}A^{1/2})^{2/(2p+1-t)} \geq |A^{-t/2}B^{p}A^{1/2}|^{2/(2p+1-t)}$

hold for any $2p \geq 1 + t$.

Corollary 1.5. If $A \geq B \geq 0$ with $A > 0$, then

$$A^2 \geq (A^{1/2}B^{2p-1}A^{1/2})^{1/p} \geq |A^{-1/2}B^{p}A^{1/2}|^{2/p}$$

for any $p \geq 1$.

Corollary 1.6 [4][10][11]. If $A \geq B \geq 0$, then

$$G(p,r) = A^{-r/2}(A^{r/2}B^pA^{r/2})^{(1+r)/(p+r)}A^{-r/2}$$

is a decreasing function of both p and r for $p \geq 1$ and $r \geq 0$.

§2. THE LOG-MAJORIZATION EQUIVALENT TO AN EXTENSION OF THE FURUTA INEQUALITY

Throughout this section, a capital letter means $n \times n$ matrix.

Following after Ando and Hiai [1], let us write $A \prec B$ for positive semidefinite matrices $A, B \geq 0$ and call the log-majorization if

$$\prod_{i=1}^{k} \lambda_i(A) \leq \prod_{i=1}^{k} \lambda_i(B), \quad k = 1, 2, \ldots, n - 1,$$

and
\[
\prod_{i=1}^{n} \lambda_i(A) = \prod_{i=1}^{n} \lambda_i(B), \quad \text{i.e.} \ det \ A = det \ B,
\]
where \(\lambda_1(A) \geq \lambda_2(A) \geq \ldots \geq \lambda_n(A)\) and \(\lambda_1(B) \geq \lambda_2(B) \geq \ldots \geq \lambda_n(B)\) are the eigenvalues of \(A\) and \(B\) respectively arranged in decreasing order. Note that when \(A, B > 0\) (strictly positive) the log-majorization \(A \prec B\) is equivalent to \(log A \prec log B\). Also \(A \prec B\) ensures \(\|A\| \leq \|B\|\) holds for any unitarily invariant norm.

Definition 1. When \(0 \leq \alpha \leq 1\), the \(\alpha\)-power mean of \(A, B > 0\) is defined by

\[
A \#_\alpha B = A^{1/2}(A^{-1/2}BA^{-1/2})^\alpha A^{1/2}.
\]

Further \(A \#_\alpha B\) for \(A, B \geq 0\) is defined by

\[
A \#_\alpha B = \lim_{\epsilon \downarrow 0}(A + \epsilon I) \#_\alpha (B + \epsilon I).
\]

This \(\alpha\)-power mean is the operator mean corresponding to the operator monotone function \(t^\alpha\). We can see [19] for general theory of operator means.

For the sake of convenience for symbolic expression, we define \(A \mathfrak{h}_s B\) for any \(s \geq 0\) and for \(A > 0\) and \(B \geq 0\) by the following

\[
A \mathfrak{h}_s B = A^{1/2}(A^{-1/2}BA^{-1/2})^s A^{1/2}.
\]

\(A \mathfrak{h}_\alpha B\) in the case \(0 \leq \alpha \leq 1\) just coincides with the usual \(\alpha\)-power mean denoted by \(A \#_\alpha B\).

We can transform (1.10) of Theorem 1.1 into the following log-majorization inequality by using the method by Ando and Hiai [1].

Theorem 2.1. For every \(A > 0\), \(B \geq 0\), \(0 \leq \alpha \leq 1\) and each \(t \in [0, 1]\)

\[
(A \#_\alpha B)^h \succ_{(log)} A^{1-t+r} \#_\beta (A^{1-t} \mathfrak{h}_s B)
\]
holds for \(s \geq 1\), and \(r \geq t \geq 0\), where \(\beta = \frac{\alpha(1 - t + r)}{(1 - \alpha t)s + \alpha r}\) and \(h = \frac{(1 - t + r)s}{(1 - \alpha t)s + \alpha r}\).
Corollary 2.2. For every $A, B \geq 0$ and $0 \leq \alpha \leq 1$,

\[(A \#_{\alpha} B)^h \succ (A^r \#_{\alpha^r} B^s) \quad \text{for } r \geq 1 \text{ and } s \geq 1\]

where $h = [\alpha s^{-1} + (1 - \alpha)r^{-1}]^{-1}$.

The above log-majorization is equivalent to any one of the following (2.4), (2.5) and (2.6):

\[(2.4) \quad (A^r \#_{\alpha} B^q)^{1/r} \succ (A^q \#_{\alpha^q} B^p)^{1/k} \quad \text{for } 0 < r \leq q \text{ and } 0 < r \leq p,\]

where $k = [\alpha p^{-1} + (1 - \alpha)q^{-1}]^{-1}$.

\[(2.5) \quad (A^r \#_{\alpha} B^q)^{1/s} \succ (A^p \#_{\alpha^p} B^p)^{1/l} \quad \text{for } 0 < r \leq p \text{ and } 0 < q \leq p,\]

where $s = \alpha q + (1 - \alpha)r$ and $l = [\alpha r^{-1} + (1 - \alpha)q^{-1}]^{-1}$.

\[(2.6) \quad (A^r \#_{\alpha} B^q)^{1/u} \succ (A^q \#_{\alpha^q} B^p)^{1/\beta} \quad \text{for } 0 < r \leq q \leq p,\]

where $u = \frac{\alpha q^2 + (1 - \alpha)pr}{q}$ and $\beta = \frac{\alpha q^2}{\alpha q^2 + (1 - \alpha)pr}$.

Remark 2.1. We remark that $h = [\alpha s^{-1} + (1 - \alpha)r^{-1}]^{-1}$ in Corollary 2.2 is a generalized harmonic mean of r and s and when $\alpha = 1/2$, h is the usual harmonic mean of r and s. Also l in (2.5) is a generalized harmonic one of r and q, while s in (2.5) is a generalized arithmetic mean of q and r.

Corollary 2.2 yields the following result [1, Theorem 2.1].

Theorem D [1]. For every $A, B \geq 0$ and $0 \leq \alpha \leq 1$,

\[(A \#_{\alpha} B)^r \succ (A^r \#_{\alpha^r} B^r) \quad \text{for } r \geq 1\]

or equivalently

\[(A^q \#_{\alpha} B^q)^{1/q} \succ (A^p \#_{\alpha^p} B^p)^{1/p} \quad \text{for } 0 < q \leq p.\]

Also we can transform Corollary 1.2 into the following log-majorization.
Theorem 2.3. If $A > 0$ and $B \geq 0$, then for each $t \in [0,1]$ and $0 \leq \alpha \leq 1$

$$(A^{1/2}BA^{1/2})^{\alpha ps} \succ \log A^\frac{1}{2}\alpha((p-t)s+r)(A^{-\frac{(r-t)}{2}}(A^{t}\mathfrak{h}_{s}B^{p})A^{-\frac{(r-t)}{2}})^{\alpha}A^{\frac{1}{2}\alpha((p-t)s+r)}$$

holds for any nonnegative numbers s, p and r such that $r \geq t$ and $(s-1)(p-1) \geq 0$ with $1-t+r \geq ((p-t)s+r)\alpha$ where $q = \alpha(p-t)s + ar - r + t$.

Theorem 2.4. If $A > 0$ and $B \geq 0$, then for each $t \in [0,1]$ and $0 \leq \alpha \leq 1$

$$A^{1/2}(A^{p}\#_{\alpha}B^{p})^{q/p}A^{1/2} \succ \log A^{\frac{1}{2}(1+\frac{rq}{ps})}\{A^{-r/2}(A^{p}\#_{\alpha}B^{p})^{s}A^{-r/2}\}^{\frac{q}{sp}}A^{\frac{1}{2}(1+\frac{rq}{ps})}$$

holds for every $p \geq q > 0$, $r \geq t$ and $s \geq 1$.

When $t = 0$ Theorem 2.4 becomes the following result.

Corollary 2.5. If $A > 0$ and $B \geq 0$, then for every $0 \leq \alpha \leq 1$

$$A^{1/2}(A^{p}\#_{\alpha}B^{p})^{q/p}A^{1/2} \succ \log A^{\frac{1}{2}(1+\frac{q}{p})}\{A^{-r/2}(A^{p}\#_{\alpha}B^{p})^{s}A^{-r/2}\}^{\frac{q}{sp}}A^{\frac{1}{2}(1+\frac{q}{p})}$$

holds for every $p \geq q > 0$, $r \geq 0$ and $s \geq 1$.

When $s = 1$ and $r = p$ Corollary 2.5 yields the following Theorem E [1, Theorem 3.3].

Theorem E [1]. If $A > 0$ and $B \geq 0$, then

$$A^{1/2}(A^{p}\#_{\alpha}B^{p})^{q/p}A^{1/2} \succ \log A^{\frac{1}{2}}(A^{-p/2}B^{p}A^{-p/2})^{\alpha q/p}A^{\frac{1}{2}q}$$

for every $0 \leq \alpha \leq 1$ and $0 < q \leq p$.

Taking $s = 2$ and $r = p$ in Corollary 2.5 we have
Corollary 2.6. If $A > 0$ and $B \geq 0$, then for every $0 \leq \alpha \leq 1$

$$A^{1/2}(A^p \#_\alpha B^p)^{q/p}A^{1/2}$$

$$> A^{\frac{1}{2}(1+\frac{q}{p})}\{(A^{-p/2}B^p A^{-p/2})^\alpha A^p(A^{-p/2}B^p A^{-p/2})^\alpha\}^{\frac{q}{p}}A^{\frac{1}{2}(1+\frac{q}{p})}$$

holds for any $0 < q \leq p$.

Corollary 2.7. If $A > 0$ and $B \geq 0$, then for every $0 \leq r \leq 1$

$$A^{r/2}B^r A^{r/2} > A^{r(1+\alpha)}(A^{-1/2}B A^{-1/2})^\alpha A^{r(1+\alpha)}$$

holds for every $0 < \alpha \leq 1$.

Corollary 2.8. If $A > 0$ and $B \geq 0$, then for every $0 \leq r \leq 1$

$$(A^{1/2}BA^{1/2})^r > A^{r(1+\alpha)}(A^{-u/2}B^r A^{-u/2})^\alpha A^{r(1+\alpha)}$$

holds for every $0 < \alpha \leq 1$ and $u \geq 0$.

Corollary 2.7 and Corollary 2.8 imply the following known result [1, Corollary 3.4].

Corollary F [1]. If $A > 0$ and $B \geq 0$, then for every $0 \leq r \leq 1$

$$(A^{1/2}BA^{1/2})^r > A^{r/2}B^r A^{r/2} > A^r(A^{-1/2}BA^{-1/2})^r A^r$$

§3. LOGARITHMIC TRACE INEQUALITIES AS AN APPLICATION OF LOG-MAJORIZATION IN §2

Throughout this section, a capital letter means $n \times n$ matrix.

Theorem 3.1. If $A > 0$ and $B \geq 0$, then for every $0 \leq \alpha \leq 1$ and $t \in [0,1]$

$$s\text{TrLog}(A^p \#_\alpha B^p) - \text{TrLog}\{A^{-r/2}[A^{t/2}(A^p \#_\alpha B^p)A^{t/2}]^s A^{-r/2}\}$$

$$\geq (r - st)\text{TrLog}A$$

holds for any $s \geq 1$, $r \geq t$ and $p \geq 0$.

When $t = 0$ Theorem 3.1 yields the following result.
Corollary 3.2. If $A > 0$ and $B \geq 0$, then for every $0 \leq \alpha \leq 1$

$$s\text{Tr}A\log(A^p \#_\alpha B^p) - \text{Tr}A\log\{A^{-r/2}[A^p \#_\alpha B^p]^sA^{-r/2}\}$$

$$\geq r\text{Tr}A\log A$$

holds for any $s \geq 1$, $r \geq 0$ and $p \geq 0$.

Taking $s = 1$ and $r = p > 0$ in Corollary 3.2 we have the following result [1, Theorem 5.3].

Theorem G [1]. If $A \geq 0$ and $B > 0$, then for every $0 \leq \alpha \leq 1$ and $p > 0$

$$\frac{1}{p}\text{Tr}A\log(A^p \#_\alpha B^p) + \frac{\alpha}{p}\text{Tr}A\log(A^{p/2}B^{-p}A^{p/2})$$

$$\geq \text{Tr}A\log A.$$
At the end of this early announcement, we summarize the following implication relations among results in this paper.

\[
\begin{align*}
(1.10) \text{ in Theorem 1.1} & \iff \text{Theorem 2.1} \\
& \iff \text{Theorem 2.1} \\
& \iff \text{Corollary 2.2}
\end{align*}
\]

\[
\begin{align*}
t = 0 & \iff \text{Corollary 1.6} \\
t = 1 & \iff \text{Corollary 1.3} \\
t = 1 & \iff \text{Corollary 2.2}
\end{align*}
\]

\[
\begin{align*}
r = s & \iff \text{Theorem B [6]} \\
r = s & \iff \text{Theorem C [1]} \\
r = s & \iff \text{Theorem D [1]}
\end{align*}
\]

The details, proofs and related results in this paper will appear in [15].

REFERENCES

[6] T.Furuta, $A \geq B \geq 0$ assures $(B^rA^pB^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2r)q \geq p+2r$, Proc. Amer. Math. Soc., 101 (1987),85-88.
[7] T.Furuta, The operator equation $T(H^{1/n}T)^n = K$,
[8] T.Furuta, A proof via operator means of an order preserving inequality,
[9] T.Furuta, Elementary proof of an order preserving inequality,
[10] T.Furuta, Two operator functions with monotone property,
[11] T.Furuta, Applications of order preserving operator inequalities,
[12] T.Furuta, Some norm inequalities and operator inequalities
[13] T.Furuta, Generalization of Heinz-Kato theorem via Furuta inequality,
[14] T.Furuta, Applications of the Furuta inequality to operator inequalities and norm in-
equalities preserving some orders.
[15] T.Furuta, Extension of the Furuta inequality and log-majorization by Ando-Hiai,
to appear in Linear Alg. and Its Appl..
[16] T.Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality,
to appear in Proc. Amer. Math. Soc..
[17] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung,
[18] E.Kamei, A satellite to Furuta’s inequality,
[19] F.Kubo and T.Ando, Means of positive linear operators,
[20] K.Löwner, Über monotone Matrixfunktionen,
Math. Z., 38 (1934),177-216.