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&1 ozpmy  We may assume that T is represented by Schatten’s formula as

T:ianen ®dn1

n=1

where {e,,} and {d.} are orthonormal families and |a,| | 0 (n — 00). Then it follows
that

ITI= 3 lanldn @dn, |77 = 3 lanlen @ .

Since the eigenspace corresponding to |a,]| is finite dimensional, there is an i € N such
that |a1| = -+ = |ai] > |ai+1|. Then we have

la|®* = (T*T)*dy, d1) = (T**T*dy,d1) = |a1|}(T**~2T*~2Te,, Te;)
< |a1|2k—2(Te1,Te1) < lag|?*,

from which it follows that
(T*Te1,e1) = |a1|*> and hence (la1]® —T*T)e; =0,
because |a;|? —T*T > 0. In the same way as above we get
{e1, - &} C N(T*T — |a1]?),
where 91(X) denotes the null space of X, and hence
NTT* ~ |aa|*) = T*T — |as|*),

which reduces T to the normal operator, that is T*Te, = TT%e, for 1 < n < 1.
Repeating this procedure in the same way to the other restrictions of T', we derive
T*Te, = TT*e, for every n. {e,} and {d,} span the same space. Thus the proof is
complete.

WHIEM 1 »FH] Let B be the inverse of A. Then PA|g and (I — P)B[gsL are

invertible, and we have

(PA|9~* = PB|s— PB(I - P)(I -~ P)Ble) "' (I = P)Ble,



from which we easily obtain the inequality in the lemma.
Suppose (PA|g~! = PB|g. Then we have (I — P)B|g= 0, which implies PB = BP,

and hence PA = AP. The converse assertion 1s obvious.

HBEHE 2 I8 By the Lowner’s theory, f can be represented as
f(z)=a+bz+ /w(-l— - —l—)d (t)
- +0 t t+z H

where a = f(0), b > 0 and p is a positive Borel measure such that

*® 1
/ du(t) < oco.
+

o 14122

Thus we have
(P£(A)Ph, k) = ((a -+ bA)Ph, Ph) + L o:(( -:-I — (t1 + A)~)Ph, Ph)du(t)
and
(F(PAP)h, h) = ((a +bPAP)h, h) + L :o((-:-z - (T + PAPY ), R)dp(1)

= ((a +bPAP)h, h) + A j((%P — (P(T + A)|2)"1) Ph, PR)dut),

where £ is the range of P. By Lemma 1 1 P—(P(tI+A)|g)~! > $ P—P(tI+A) *P for
t > 0 implies that f(PAP) > Pf(A)P. If f(PAP) = Pf(A)P, then it follows that,
for every h, (ah, k) = (aPh, Ph) and ((P(tI + A)|g)~*Ph, Ph) = ((tI + A)~1Ph, Ph)

for almost every ¢ > 0 w.r.t.u. Since the whole space is separable, we obtain
(P(tI+ A)|9~' = P((I + A)"'P for almost every t > 0.

Lemma 2.1 implies PA = AP. Clearly we have f(0) =a = 0.

A continuous function f on [0, o) is called an operator monotone function

if 0 < A < B implies f(4) < f(B). The first half of the next lemma was shown in [5].



SEHL O FE A (1)=(i1)=(iii) are trivial, so we show only
(i1) = (i). From

T*(T*TY*T = T*(T**T*)T = (T*T)**! = T*(TT*)*T

it follows that P(T*T)*P = P(TT*)*P = (T'T*)*, where P is the projection on the
closure of the range of T'. Similarly we obtain P(T*T)!P = (T'T*)’, and hence

(P(T*T)*P)/* = P(T*T)' P = P((T*T)*)/*P.
Since f(z) = z'/* is an operator monotone function, by Lemma 2.2 P commutes to
(T*T)* and hence to T*T. Consequently we obtain (PT*TP)* = (TT*)* and hence
PT*TP = TT*. Therefore

T*TT =T*TPT = PT*TPT =TT"*T.

This concludes the proof.

Remark. In [4], Embry showed that (i) and (ii) are equivalent using
her theorem about subnormal operators. From lemma 2.2, it follows that

PAP < (PA*P)Y*<...<(PAP)* < ..., (2.1)

which was shown in [1].
subnorma]  VERV £ & BpnN EARSER £ tAadAL T o b oY
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w2 DIEE] . First we show that a subnormal operator T on § satisfies
T <|T?M2 <o < T < e (2.2)

In fact, T has a normal extension N on £ D §). Let Q be the projection from £ onto
$. Then, we have

(QIN?"|Q)3 = (QN*"N"Q)% = _

0 0

o=
T-tn.Tn, gl
0 0

ITnII/n’ 0]

Thus by (2.1) we get (2.2). If |T™| = |T'|*, then (2.2) implies that |[T'|? = |T?|, which
means that T is a quasi-normal (cf. [4]). The proof is complete.

e 3 DI From the assumption we have

P(T*T)"P = P(TT*)"P = (PTT" P)",

where P is the projection onto T'H. From (2.1) we obtain
0 < PT*TP < (P(T*T)*P)}/* = PTT* P,

from which PT*TP = PTT* P follows, because T' is hyponormal. Consequently we

get TT*T = T*TT, in the same way as the proof of Theorem 2.1. The proof is
complete. '

g i

FHOSFME (i) 2BWT n=i+1 Z2WT X PRAUTEHIEE, B
BTERZEDSho7z, T%bb3lD n 22oVWT ¥ PREITAETRTH
no{ZonT X PKRIT S, X, IRLIERIRICOWTORMEZ M RIS EM
FCOWTLRTT S, CZCHERE T PEEHTHIEE T=VITI| 2%2&
BpELIEE VITI=|TIV ThdrEHRTS.

ShiE VITIe|ITIV LRABETHS.
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