<table>
<thead>
<tr>
<th>Title</th>
<th>Application of Stackelberg equilibrium theory to n-person games (Nonlinear Analysis and Mathematical Economics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>明石 重男</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1994), 861: 149-153</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83838</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Application of Stackelberg equilibrium
to n-person games

新潟大学 理学部 明石重男
(Shigeo Akashi)

第1章 序論
複数のプレイヤーがそれぞれの利得関数を持ち、個々のプレイヤーが他に影響されぬ事無く選択した戦略の組によって各参加者の利得が決定される場合、完全情報ゲームであるという前提のもとにプレイヤーの戦略決定順序が利得の大小を決定する重要な要因となる事は言うまでもない。本稿では、戦略決定手順が明示された完全情報非零和ゲームにおいて Stackelberg 均衡点の概念が拡張可能である事を示す。更に、全てのプレイヤーが互いに他のプレイヤーに対して協力的であるという前提のもとに、n人ゲームにおける Stackelberg 均衡点の拡張形が存在する事を、多価写像の上半連続性に関する性質を応用する事により証明する。

第2章 上半連続多価写像の値域に関する性質
XをHausdorff空間、YをコンパクトHausdorff空間とし、f をXからYの部分集合に値を取る多価写像とする。SをXの部分集合とした時、Sのfによる像f(S)を次式で定義する。
\[f(S) \supseteq \bigcup_{x \in S} f(x) \]

この時，次の補題が成立する。

補題1．\(X \)をHausdorff空間，\(Y \)をコンパクトHausdorff空間とし，\(f \)を\(X \)から\(Y \)の部分集合への上半連続多価写像とする。\(S \subseteq X \)のコンパクト部分集合とした時，\(S \)の\(f \)による像はコンパクト部分集合となる。

証明．\(\{ y_0 \} \)を\(f(S) \)の要素から成る\(y_0 \)に収束する有向列とする。\(y_0 \in f(S) \)が示されならば，\(f(S) \)は\(Y \)の閉部分集合であるためコンパクトとなる事が分かる。任意の\(y_0 \)に対してある\(x \in S \)が存在し\(y_0 \in f(x) \)が成立する。\(\{ x_\alpha \} \)は\(S \)の部分集合故，ある\(x_\alpha \in S \)に収束する部分有向点列\(\{ x_\alpha \} \)を選び事が可能である。この時，対応して作られる\(\{ y_\alpha \} \)は\(y_0 \)に収束し，\(y_\alpha \in f(x_\alpha) \)を満たす\(\{ y_\alpha \} \)の部分有向点列となる。ここで\(f \)が上半連続である事から，\(y_0 \in f(s_0) \subseteq f(S) \)となり証明が終了する。

第3章．Stackelberg均衡概念のn人ゲームへの拡張

\(X_i \)から\(X_0 \)をHausdorff空間の列とし，\(S_i \)から\(S_0 \)をそれぞれ\(X_i \)から\(X_0 \)に含まれるコンパクト部分集合の列とする。更に\(f \)から\(T \)を直積位相空間\(\prod_{i} X_i \)上で定義され，実数値を取る連続関数列とする。今，\(t_i \)及び\(n \)以上の以下の整数とし，
x及びyを\(\prod_{i=1}^{n} X_i \)の要素とした時、以下の様な記号を導入する。

\[(y, y) \equiv (x, 0; y, y), \quad 1 \leq i \leq n, \]

\[(x, i; y, y) \equiv (x_1, \ldots, x_i, y, y_{i+1}, \ldots, y_n), \quad 1 \leq i \leq n, \]

\[(x, i) \equiv (x, i; y, i), \quad 1 \leq i \leq n.\]

以下、プレイヤー1からプレイヤーの選が、\(S \)を利得関数から\(S \)を所有するものとして、戦略集合\(S \)から\(S \)の集合から各\(x_1, \ldots, x_n \)を戦略として選び出す事により各プレイヤーの利得を最大にするという非零和ゲームを取り扱う。但し、\(n \)人のプレイヤーは戦略を決定するに際して、プレイヤー1から始まりプレイヤー1から終了するという決定手順に従うものとし、各プレイヤーの所有する戦略集合及び利得関数形は互いに他のプレイヤーに対して既知であるものとする。更に全てのプレイヤーは、自らの利得を最大化する戦略が複数個存在する場合、他のプレイヤーの利益をより大きなものにする様な戦略を決定選択するものと仮定する。即ち、互いに他のプレイヤーに対して協力的に戦略を選択するものと仮定する。更にプレイヤー1からプレイヤー\(n-1 \)が各々戦略\(s_i \)から\(s_{n-1} \)を選択した場合に、プレイヤー\(n \)が自らの利得関数を最大にする様に選択する戦略をプレイヤー\(n \)の最適反応戦略という。プレイヤー\(n \)への最適反応戦略\(s_{n-1}(x, n-1) \)は次式で定義される。
\[r_n(x, n-1) = \{ (x, n-1; y, n) \}; f_n(x, n-1; y, n) = \max_{z_n \in S_n} f(x, n-1; z, n) \]

更に、2 \(\leq k \leq n-1 \) を満たす整数に対して、\(r_{k+1} \) からなが定義されているとした時、プレイヤー 1 からプレイヤー k-1 の戦略 \(x_k \) から \(x_{k-1} \) を選択したという条件でのプレイヤー k の最適反応戦略 \(r_k(x, k-1) \) は、次式により定義される。

\[r_k(x, k-1) = \{ (x, k-1; y, n) \}; f_k(x, k-1; y, n) = \max_{z_{k-1} \in S_{k-1}} \{ f_k(x, k-1; z, n); z_{k} \in S_k, (x, k-1; z, n) \in r_{k+1}(x, k-1; z, k) \} \]

最終的に、プレイヤー 2 からプレイヤー n まで、順に各自の戦略を決定した場合の Stackelberg 均衡点は

\[r_n(x, n) = \max \{ f_n(x, n; z, n); z \in S_n, (z, n) \in r_2(z) \} \]

として定義される。以上の設定のもとに次の定理が成り立つ。

定理 2. n 人ゲームにおける Stackelberg 均衡点が存在する。

証明. 数学期的帰納法を用いる。任意の \((x, n-1)\) に対して、

\(r_n(x, n-1) \) が空でないコンパクト集合となる事はコンパクト集合上の連続関数に関する最大値最小値存在定理より明らかに、また、上半連続写像になる事も次の様にして示す事が出来る。\(\{ x_n \} \) を \(x_0 \) に収束する有向点列とし、\(\{ y_n \} \) を \(y_0 \) に収束し、全ての \(m \) に対して \(r_m(x_m, n-1) \) \(y_m \) で満たす有向点列とする。この時、\(f_n(x_0, n-1; y_0, n) \geq \max_{z \in S_n} f_n(x_0, n-1; z, n) \) が全ての \(z \in S_n \) に対して成り立つため、\(f_n(x_0, n-1; y_0, n) \geq \max_{z \in S_n} f_n(x_0, n-1; z, n) \) を得る。これより \(r_n(x_0, n-1) \) の \(y_0 \) が示され、\(r_n \) の値域はコンパクト
集合に含まれる事から上半連続性が示せた。次に$\forall k \geq 1$
を満たす自然数kに対して、η_iがコンパクト集合値上半連続
多値写像である事を仮定した時、先程と同様にしてkも空
でないコンパクト集合値を取る上半連続多値写像となる事
が示せる。これは、$\eta(S)$上でkを最大にする点の集合である
から空でないコンパクト集合となり証明が終了する。

参考文献
[1]. 鈴木光男，ゲーム理論入門，共立出版，1982年．
[2]. 高橋 涉，非線形関数解析学ー不動点定理とその周辺
ー，近代科学社，1989年．
[3]. Jean-Pierre Aubin, Hélène Frankowska, Set-Valued
[4]. Eric van Damme, Stability and Perfection of Nash
[5]. Tatsuro Ichiishi, Game Theory for Economic Analysis,
[6]. O. Moenschlin, D. Pallaschke, Game Theory and Related Topics,
Proceedings of the Seminar on Game Theory and Related Topics