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Abstract. The multiple existence of periodic solutions of nonlinear Lienard

system is treated. The proof is based on the theory of topological degree

and monotone operators.

1. Introduction. The purpose in this present paper is to consider the

multiple existence of solutions to the periodic problem of the Lienard system

of the form :

$x^{ll}- \frac{d}{dt}G(x)+f(t, x)=e$ $(E)$

$x(0)-x(2\pi)=x’(0)-x’(2\pi)=0$ $(B)$
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where $e\in R^{N}$ , and $G:R^{N}arrow R^{N}$ and $f$ : $RxR^{N}arrow R^{N}$ are continuous

function. More precisely, we discuss the existence of a constant $R_{0}\in R^{N}$

with $e>R_{0}$ for which the problem $(P)$ has at least $2^{N}$ solutions.

This type of result, so called an Ambrosetti-Prodi type result(briefly

APT result), has been initiated by Ambrosetti-Prodi [1] in 1972 in the

study of a Dirichlet problem to elliptic equations and developed in various

directions by several authors to ordinary and partial differential equations.

A notable discussion for APT results for periodic solutions has been done

by Fabry. Mawhin and Nkashama [3] for second order ordinary differential

equations with one-side coercive nonlinearity and they particulized their

results to Lienard equations having a coercive nonlinearity. A similar re-

sult for periodic solutions of the first order ordinary differential equations

has been made by Mawhin [5]. In their work, the proofs made use of the

upper-lower solution method and degree theory. For APT results to the

higher order $(\geq 3)$ ordinary differential equations having a coercive non-

linearity, we refer to read Ding and Mawhin [2]. They used degree theory

and Lyapunov-Schmidt argument and they imposed an unilateral Lipschitz

condition on the nonlinear term when the order is even.

We refer also to read Ramos and Sanchez [6], and Ramos [7] for APT

results of periodic solutions for higher order $(\geq 3)$ ordinary differential

equations with a coercive nonlinear term. They treated APT results when

the nonlinear term has an one-sided growth restriction. They made use of

variational method and degree theory.

For our result, we impose the following conditions:
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$f$ : $RxR^{N}arrow R^{N}$ is a continuous function of the form

$f(t, x)=g(x)+h(t, x)$

where $g:R^{N}arrow R^{N}$ is a continuous functions of the form

(1.1) $g(x)=(g_{1}(x_{1}), \cdots, g_{N}(x_{N}))$ for all $x=(x_{1}, \cdots , x_{N})$

and

(1.2) $\lim g_{k}(x)=\infty$ , $k=1,$ $\cdots,$
$N$.

$|x|arrow\infty$

$h:RxR^{N}arrow R^{N}$ is a continuous mapping and satisfies

(1.3) $\sup\{|h(t, x)| : (t, x)\in RxR^{N}\}<M$ for some $M>0$ .

$G\in C^{1}(R^{N}, R^{N})$ satisfies that there exists $c>0$ and $d>0$ with $d<1$

such that

(1.4) $|G(x)-G(y)|<d|x-y|$ for all $x,$ $y\in R^{N}$

and

(1.5) $(G’(x)y, y)>c|y|^{2}$ for all $x,$ $y\in R^{N}$

where $G$ ‘ $(x)$ is the Frechet derivative of $G$ .

Remark. If $G’(x)$ is independent of $x$ , we do not need the conditions (1.4)

and (1.5). We need that $A=G’(x)$ is a strongly positive definite matrix

with $||A||<1$ .
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Theorem. Assume that $G$ and $f$ satisfies $(1.1)-(1.5)$ . Then there exists

$R_{0}>0$ such that for each $e\in R^{N}$ with $e_{k}>R_{0}$ for all $1<k<N$, the

problem (P) possesses at least $2^{N}$ solutions.

2. Proof of Theorem. We first introduce notations we need. We denote

by $||.||$ and $(, )$ the norm and inner product, respectively, of the space

$L^{2}((0,2\pi))R^{N}),$ $C_{p}^{r}$ denotes the Banach space of $2\pi$-periodic functions $x$ :

$Rarrow R^{N}$ of class $C$ ‘. The norm of $C_{p}^{0}$ is defined by $||x||_{\infty}= \sup\{|x(t)|$ : $t\in$

$[0,27[]\}$ for $x\in C_{p}^{0}$ . We put $c_{p}\infty=n_{r=1}^{\infty}c_{p^{r}}$ .

We denote $H$ the subspace of $C_{p}^{1}$ defined by

$H=\{x\in C^{1}(R, R^{N}) : x(0)-x(2\pi)=x’(0)-x’(2\pi)=0\}$ .

For each $e\in H$ , we write $e$
.

$=\overline{e}+\sim e$ with

$\overline{e}=\frac{1}{2\pi}\int_{0}^{2\pi}e(t)dt$ , $\int_{0}^{2\pi}e\sim(t)dt=0$ .

The subspace $\tilde{H}$ of $H$ is defined by

$\tilde{H}=\{x\in H : \overline{x}=0\}$ .

Then $H$ has the decompition $H=\tilde{H}\oplus R^{N}$ . The projections from $H$ onto
$\tilde{H}$ and $R^{N}$ are denoted by $\tilde{P}$ and $\overline{P}_{)}$ respectively. Then

$x=x\sim+\overline{x}=\tilde{P}x+\overline{P}x$ for all $x\in H$.
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Moreover, we denote by $\overline{P}$; the i-th component of $\overline{P}$ . That is

$\overline{P}x=(\overline{P}_{1}x, \cdots,\overline{P}_{N}x)$ for $x\in H$.

The identity mappings on $\tilde{H}$ and $R^{N}$ are denoted by $I\sim$ and $\overline{I}=$ $(\overline{I}_{1}, \cdots , \overline{I}_{N})$,

respectively. For each $r>0$ , we denote by $J(r)$ open interval $(0, r)$ ,

$-J(r)$ stands for the interval $(-r, 0)$ . We denote by $J(r)$ closed interval
$[0, r])^{-\overline{J}(r)}$ stands for the interval $[-r, 0]$ .

Let $E$ be a subspace of $L^{2}((0,2\pi),$ $R^{N}$ ) defined by

$E=\{x\in L^{2}((0,2\pi), R^{N}) : \overline{x}=0\}$.

We set

$V=\{x\in E : x’\in L^{2}((0,2\pi),R^{N})\}$ .

Then $V$ is a Hilbert space with the norm

$\Vert x\Vert_{V}^{2}=||x||^{2}+||x’||^{2}$ for $x\in V$,

and continuously embedded in $E$ (we write $Vrightarrow E$ ). We denote by $V^{\cdot}$

the dual space of $V$. Then $Vrightarrow Erightarrow V$ . For each $\overline{x}\in R^{N}$ , we define a
mapping $L_{\overline{x}}$ from $V$ into its dual space $V$ by

$(L_{\overline{x}}x, y\rangle= (x‘, y’)+\langle G’(x+\overline{x})x’, y)$ for all $x,$ $y\in V$.

If we define a subset $H_{0}$ of $H$ by $H_{0}=\{x\in H : x’’\in L^{2}((0,2\pi), R^{N})\}$ .
Then the problem (P) is equivalent to the abstract $equation-L_{\overline{x}^{X}}^{\sim}=e-f$

in $H_{0}$ .

Now we have
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Lemma 1. For each $\overline{x}\in R^{N},$ $L_{\overline{x}}$ : $Varrow V^{\cdot}$ is a continuoua and strongly

monotone mapping.

Proof. It is obvious from the definition that $L_{\mathfrak{H}}$ is continuous. Let $x,$ $y\in V$.
Then we have

$\langle L_{\overline{x}}x-L_{\overline{x}}y,$ $x-y$) $=||x’-y^{l}||^{2}+(G’(x+\overline{x})x’-G^{l}(y+\overline{x})y’, x-y)$

$=||x’-y^{l}||^{2}-\{G(x+\overline{x})-G$($y+$ 面), $x’-y’\rangle$

$\geq||x’-y’||^{2}-d||x-y||||x’-y’||$ .

Then nothing that $||x||\leq||x’||$ for $x\in V$, we find that

\langle $L_{\overline{x}}x-L_{\overline{x}}y,$ $x-y$ ) $\geq(1-d)||x’-y^{l}||^{2}\geq(1-d)||x-y||^{2}$ for all $x,$ $y\in V$.

This completes the proof.

It follows from Lemma 1 that $E\subset R(L_{\overline{x}})$ and $L_{\overline{x}}$ is injective. Hence

$L_{\overline{x}}^{-1}$ : $Earrow V\subset E$ is well defined. Again from Lemma 1, we see that

the operator $f\vdasharrow L_{\overline{z}}^{1}f$ from $E$ into $V$ is bounded. Since $V$ is compactly

imbedded in $E$ , we find that $L_{\overline{x}}^{-1}$ is a compact operator.

Lemma 2. If we define $\tilde{H}_{0}=\{x\in H_{0} : \overline{x}=0\}$ , then $\tilde{H}_{0}=L_{\overline{x}}^{-1}(E)$ .

Proof. It is clear that $\tilde{H}_{0}\subseteq L_{\overline{x}}^{-1}(E)$ . Let $f\in E$ and suppose that $L_{\overline{x}}^{-1}(f)=$

$x$ . Then there exists a sequence $\{x_{n}\}$ in $c_{p}\infty$ such that $x_{n}arrow x$ in $V$. By

the continuity of $L_{\overline{x}}$ , we have $L_{\overline{x}}x_{n}arrow L_{f}x$ in $L^{2}((0,2\pi),$ $R^{N}$ ). If we put

$L_{\overline{x}}x_{n}=f_{n}$ , then clearly $f_{n}arrow f$ in $L^{2}((0,2\pi),$ $R^{N}$ ) $,$

$x_{n}’’-G’(\overline{x}+x_{n})x_{n}^{l}=$
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$-f_{n}$ and $x_{n}’(0)=x_{n}’(2\pi)$ . Since $x_{n}arrow x$ in $V,$ $x_{n}arrow x$ in $C_{p}^{0}$ and $x_{n}^{l}arrow x^{l}$ in

$L^{2}((0,2\pi),$ $R^{N}.$). Hence $x_{n}’’arrow G^{l}(\overline{x}+x)x^{l}-f$ in $L^{2}((0,2\pi),R^{N})$ and thus

$\int_{1_{0}}^{t}x_{n^{l}}’(s)dsarrow\int_{0^{t}}[G’(\overline{x}+x(s))x^{l}(s)-f(s)]d\epsilon$

for all $t,$ $t_{0}\in[0,2\pi]$ .

Since $x_{n}’arrow x’$ a.e. in $[0,2\pi]$ , for $t_{0}\in[0,2\pi]$ such that $x_{n}^{l}(t_{0})arrow x’(t_{0})$ , we

have

$x’(t)-x^{/}(t_{0})=l_{0^{t}}[G^{l}$ (歪 $+x(s))x^{/}(s)-f(s)]ds$

$a.e$ . in $[0,2\pi]$ .

Hence $x^{l/}-G^{l}(\overline{x}+x)x^{l}=-f$ a.e. on $[0,2\pi]$ and so $x”\in L^{2}((0,2\pi),$ $R^{N}$ ).

Since $x_{n}^{\mathfrak{l}/}arrow x$
“ in $L^{2}((0,2\pi),$ $R^{N}$ ) and $x_{n}^{\overline{\prime}}=\overline{x}^{l}=0$ , by the $SobQlev$ inequal-

ity, $x_{n}’arrow x^{t}$ in $C_{p^{0}}$ . Hence $x\in C^{1}(R, R^{N})$ and $x^{l}(0)=x’(2\pi)$ . Therefore

$x\in\tilde{H}_{0}$ and thus $\tilde{H}_{0}=L_{\overline{x}}^{-1}(E)$ .

Lemma 3. There exists $M_{0}>0$ such that for any solution $x$ of (P),

(2.1) $||_{X}^{\sim}||_{\infty}<M_{0}$ .

Proof. Let $x\in H$ be a solution of (P). We multiply (E) by $x’$ and integrate

over $[0,2\pi]$ . Then nothing that $x$ satisfies (B), we find that

$c||x’||^{2} \leq\int_{0}^{2\pi}|h(t, x)||x^{l}|dt\leq 2\pi M||x^{l}||$ .
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Therefore
$||x^{l}\Vert\leq 2\pi M/c$ .

By the Sobolev inequality, the assertion follows.

Here we put

$W=\{x\sim\in\tilde{H} : ||x\sim||_{\infty}\leq M_{0}\}$ .

We define a family $\{T, : s\in[0,1]\}$ of mappings from $WxR^{N}$ into $\tilde{H}xR^{N}$

by

$T_{f}( \sim\frac{x}{x}I=(_{\overline{T}(x,)}^{\tilde{T}(x,)}\sim\sim\overline{\frac{x}{x}})=(_{\overline{P}(g(x)+sh(tx)-e+)}L_{\overline{x}}^{-1}(\tilde{P}(g(x)+_{)}sh(t,x))_{\frac{)}{x}})$

where $x=x\sim+\overline{x}$ . If $(x\sim_{)}\overline{x})$ is a fixed point of $T_{*}$ for some $s\in[0.1]$ , Then

(2.2) $\tilde{P}(x’’-\frac{d}{dt}G(x)+g(x)+sh(t, x))=0$

and

(2.3) $\overline{P}(g(x)+sh(t, x))=e$ .

It is easy to see that (2.2) and (2.3) implise that $x=x\sim+\overline{x}$ is a solution of

the problem

$(P_{t})$ $x^{ll}- \frac{d}{dt}G(x)+g(x)+sh(t, x)=e$ .

If $s=1,$ $x$ is a solution of $(P)$ .

We will show that if we choose $R_{0}$ sufficiently large, the mapping $T_{0}$ pos-

sesses at least $2^{N}$ fixed points for each $e\in R^{N}$ , with $e;>R_{0},$ $i=1,$ $\cdots$ , $N$.
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Here we choose a positive number $R_{0}$ so large that

(2.4) $( \sup\{g_{k}(t):|t|\leq M_{0}\}+M)<R_{0}$ for all $1\leq k\leq N$ .

It then follows that for each $\sim x\in\tilde{H}$ with $||x\sim||_{\infty}\leq M_{0}$ ,

(2.5) $\overline{P}_{k}(g_{k}(x_{k}\sim)+sh_{k}(t_{X}^{\sim}\}))<R_{0}$

for all $s\in[0,1]$ and $k=1,$ $\cdots$ , $N$. Now we fix $e\in R^{N}$ such that

$e;>R_{1}$ for all $i=1,$ $\cdots$ , $N$.

We next choose a positive number $R_{1}$ such that $R_{1}>R_{0}$ and

$\inf\{g_{k}(t):|t|>R_{1}-M_{0}\}>e_{k}+M$ for all $k=1,$ $\cdots$ , $N$.

This implies that

(2.6) $\overline{P}_{k}(g_{k}(x_{k}\sim+\overline{x}_{k})+sh_{k}(t, x))>e_{k}$

for all $x\in H$ with $x\sim\in W$ and $|\overline{x}_{k}|>R_{1}$ . We set $J(R_{1})=(0, R_{1})$ . We also

set

$K=$ { $(i_{1},$
$\cdots,$ $i_{N})$ : $i_{k}=\pm 1$ for $1\leq k\leq N$ }.

Then $K$ contains $2^{N}$ elements.
Now let

$D_{0}=W x\prod_{k=1}^{N}i_{k}\overline{J}(R_{1})$ .
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If $x\in H$ is a solution of $(P)$ in $D_{0}$ , then

$||x||_{\infty} \leq R_{1}+\frac{\pi}{\sqrt{3}}M/c$ .

Multiply $(E)$ by $x^{ll}$ and integrate over $[0,2\pi]$ , then

$\int_{0}^{2\pi}(x^{ll}(t))^{2}dt-\int_{0}^{2\pi}G^{l}(x(t))x^{l}(t)x^{ll}(t)dt$

$+ \int_{0}^{2\pi}g(x(t))x^{l/}(t)dt+\int_{0}^{2\pi}h(t, x(t))x^{\prime l}(t)dt=0$ .

Since $G\in C^{1}(R^{N}, R^{N}),$ $g$ : $R^{N}arrow R^{N}$ is continuous and $|h(t, x)|\leq M$ for

all $(t, x)\in RxR^{N}$ , we have

$||x$
“

$||\leq M_{1}^{l}$ for some $M_{1}^{l}>0$

where $M_{1}’$ depends only on $c,$ $R_{1},$ $G,$ $g$ and $h$ .
Consequently, there exists a constant $M_{1}>0$ such that

$||x’||_{\infty}<M_{1}$

for any possible solution of $(P)$ lying in $D_{0}$ .
Define $D$ by

$D=[W^{0}x_{k=}I^{N}I_{1}^{i_{k}J(R_{1})]\cap\{X\in H:}||x’||_{\infty}<M_{1}\}$

where $W^{0}=\{\tilde{x}\in\tilde{H} : \Vert x\sim||_{\infty}<M_{0}\}$.
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Then we have the following:

Lemma 4. For each $(i_{1)}\cdots, i_{N})\in K$,

$\deg(I-T_{0},D, 0)=1$ .

Proof. Let $(i_{1,}i_{N})\in K$ . We define a homotopy of compact mappings

$F_{s}(x)=(\tilde{F},(x)$ ,F.,1 $(x),$ $\cdots,F_{,N},(x))$ , $0\leq s\leq 1$ ,

on $D$ by

$\tilde{F}_{\iota}(x)=(1-s)L_{\overline{z}}^{1}(\tilde{P}(g(x)))$

and

$F_{s,k}(x)=(1-s)(\overline{x}_{k}-i_{k}(g_{k}(x_{k}))-e_{k})-sz_{k}$ , $1\leq k_{j}\leq N$.

Here $z=(z_{1}, \cdots, z_{N})$ is a fixed vector such that $z_{k}=-i_{k}\delta$ for some sufficent

small positive number 6.
From the definition of $F_{f}$ , we have that $F_{0}=T_{0}$ and

(2.7) $F_{1}(x)=(0, i_{1}\delta, \cdots, i_{N}6)$ for all $x\in V$.

Now let $s\in[0,1]$ and $x\in D$ be a fixed point of $F_{f}$ . Then $x$ satisfies

(2.8) $L_{\overline{x}}\tilde{x}-(1-s)\tilde{P}g(x)=0$ .

and

(2.9) $(1-s)(i_{k}(g_{k}(x_{k})-e_{k}))+s(\overline{x}_{k}+z_{k})=0$.
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Then we can see from Lemma 3 that $x\sim\not\in\partial W^{0}$ . On the other hand, if $\overline{x}_{k}=0$

for some $1\leq k\leq N$, then by (2.5) we have

$(1-s)(i_{k}(g_{k}(x\sim_{k})-e_{k}))-si_{k}\delta\neq 0$ .

This contradicts to (2.9). That is $\overline{x}_{k}\neq 0$ for any $1\leq k\leq N$ . Suppose next

that $\overline{x}_{k}=i_{k}R_{1}$ for some $1\leq k\leq N$ . Then by (2.6),

(2.10) $(1-s)(i_{k}(g_{k}(x_{k})-e_{k}))+s(i_{k}R_{1}-i_{k}\delta)\neq 0$ .

Then form the argument above, we obtain that $x\not\in\partial D$ . Therefore from

the invariance of degree under homotopy, we have that

$\deg(I-T_{0}, D, 0)=\deg(I-F_{0}, D, 0)=\deg(I-F_{1}, D, 0)$ .

We can see from (2.7) that $\deg(I-F_{1)}D, 0)=1$ Therefore $lhe$ assertion

follows.

Proof of Theorem We can see from $(2.4))(2,2)$ and (2.6) that

$T_{f}x\neq x$ for $x\in\partial(D)$ and $0\leq s\leq 1$ .

Then by the homotopy invariance of degree, we have from Lemma 4 that

(2.11) $\deg(I-T_{1}, D)=1$

for any $(i_{1)}\cdots, i_{N})\in K$ . In fact, if (2.11) holds each $(i_{1}, \cdots, i_{N})\in K$,

the problem (P) has a solution in $D$ . Therefore $(P)$ possesses at least $2^{N}$

solutions.
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