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Free Boundary Problems

for the Incompressible Euler Equations

Atusi TANI (& & 2)

Department of Mathematics,_Keio University

§ 1. Introduction

In this communication we are concerned with discussing the solvability
of the non-stationary free boundary problems governing the motion of an
incompressible inviscid fluid.

Let 2(t)CR® be the domain occupied by a fluid at the moment ¢#
>0, which is bounded by a hard bottom S, and a free surface S.(¢).
The motion of such a fluid is described by the equations

ov

(1D 2 H Vot Vp=g U+ S, V-o=0 (x€0(t), t>0).

The initial and boundary conditions are

vl =0, (x) (x€Q=00), Fl,_,=F,(x) (x€S5,=5,(0),

OF
(2) p=ry ot MF=0 (x€S5,(2), 1>0),

von=0 (xES, t>0).

Here v(x, t)=(v ,v,, v,) is a vector field of velocities; p(x, ¢)

is a pressure;¢ is the gravitational constant;U is a potential; f is a
vector field of external forces; p, is an atmospheric pressure; F=
F(x, t) is a function describing the free surface S.(t);n=n(x)

~is the unit vector of the outward normal to S,.

The density of mass is assumed to be equal to one.

Now we mention the following typical problems:
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(1) Find v, p and Q(t) satisfying (1)-(2) under the assumptions
that both S,(¢) and S, are non-compact and U=-x, with coordi-

nates x=(x,, x,, x,) taken so that x_, is the vertical component.

() Find v, » and Q(¢) satisfying (1)-(2) under the assumptions
that both S,(¢) and S, are compact, and U=1/lx| with the origin
of coordinates lying in S,

() Find v, p and Q(t) satisfying (1)-(2) under the assumptions

‘ d
that S,(¢) is compact, S,=¢ and U:S S

As usual, we introduce the characteristic transformation ﬂ::x-ﬁf,
t
(3) x:E+S u(e,t)dr=x,(&,t), u(§, )=T1v(x, t),
(1]
which is one-to-one mapping from Q2(¢) onto 2 for each ¢ >0 because

of the boundary conditions in (2) under the suitable smoothness assumption

of v. By this mapping TT,” (1)-(2) is transformed into the equations

d ”
B—ZKL%» V,a=9V,U", V,u=0 (€, t>0),

(1) g=p," (FES, t>0), u-n“" =0 (FES, t>0),
Z{It:(] v, (EGQ)’

where q (£, )=T1," p(x, t), (p, ", U IE, t)=(p,, U)X, (£, t),
t), nE D=n(X (£, 1);7=9" 7 v=(V,V, V), V,=
9/0E (j=1,29), (9"":‘(axu/a§>":(6“+g Vu, do) (ef. [5]).

Now we introduce the function spaces. Leto G be a domain in R’ and
[ be non-negative. By C'(G) and WDI(G) (»>1) we mean the usual
Holder and Sobolev-Slobodetskii spaces, respectively. Let X be a Banach
space, % be a non-negative integer and T>0. By C*([0,7);X) and
L*(0, T;X) we mean, respectively, the spaces of all X -valued func-
tions #(¢) which belong to C*([0, 7)) and L™(0, 7). The same
notation will be used for the spaces of vector fields, the norms of a

vector supposed to be equal to the sum of the norms of all its components.
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Since the problems (I1)— (Il) can be discussed in a similar way, here
we confine ourselves to the problem of type ().

The following is our main result:

Theorm: Let ¢ and p, be positive constants, 77>0 and 0<a <l

Suppose that S,€C’"" and S,EC*"" be located in {x€R’|x =0}
N{(x”, 8)1x"1>K}) and {x€R’ |2, =-R}N{(x", -2 )|l x" 1> K]}
for some non-negative constant & and positive constants 2, &2~ and K,

respectively. Then for any »,€C"""(2) with Vev,=0 in Q and

vo°n|s =0, there exists a solution (%, ¢) to the problem (4) such
B

that w0, T*1;C°"(Q)), u,€ L7, T*;C" "(Q)) and

q€ L0, T*;C*"(Q)) for some T*&(0, T.

The solution to the free boundary problem (1)-(2) is given by
(5) (v, p)(x, t)=C(u, Q)(X;l(x, t), t), Q(t)=X,9.

Remarks: (i) The before-mentioned theorem with the Holder spaces
C***(2) replaced by the Sobolev-Slobodetskii spaces W:™ (Q) (7r>1,
/ >max(0,3/7 —1)) can be proved only in the case S,=¢. ¥hen
S,#¢, the problem is open. On the other hand for the problems of type
() and (Il) the similar results as above hold not only in the Holder
spaces but also in the Sobolev-Slobodetskil spaces with respect to the
space variables.

(i) The problem of the uniqueness of the solution is still open.

In 1982 Ton obtained in [6] the same result as the above theorem in
case S,={x€R’|x, =0 by using Nalimov's result([2]). The aim of
the present paper is to improve his result. In 1987 Ebin ([1]) gave an
example of the initial data for which the problem (1)-(2) of type (II)
with =0 is not well-posed. However, the solution that he constructed
does not belong to our solution space. Therefore our result does not con-

tradict his.

§ 2. Linearized problem
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In this section we consider the linearized problem of (4):

ou
Wa‘tA—-{h qu:ﬁge) Vw.u:O in QTEQX(O’ T>’

(6)3a=1p, on Sp ,=S,x(0,7), u-n"" =0 on Sp +=5,x00, T),

“l,., =v, on 2,
for a suitably given w (see below), where e="(0,0,1).
It is easily seen that if weC(0, T];C (R)) satisfy

1+a

(D Tlwi

oo, m1ic ()= 2<%

and w-n(X.)=0o0n S, . w(x, t)=w(X. (&, t), t), where &,
being the positive root of 1—3x~6x2~6x3‘:0, then Cﬁ(w) is well-
defined and the following inequalities hold for some constant C, inde-

pendent of ¢t (see, [5]):

2

16’

O

-9 ”c([o, £
(8) 5 )
159 ) SCwl g 11 ¢ )

(Yt e, 7).

co, tl;c™ ()

Theorem A: Let v,, p,, S, and S, be as in Theorem. Suppose
TNUR)) satisfy wl, =

that we c((o, T];C**"ennc (o, T1;C

=V, uJ‘n(X;l)‘S =0 and the inequality
BT

e’

+lw, |

9) T{lwl oo, T CTTR))

c(0,171;C* Q) l=0<d,.

Then there exists a unique solution (%, ¢) to the initial-boundary value
problem (6) such that

2+a

wueC ([0, T1;CT(Q)), g0, T];C ().

As preliminaries we consider the linear problem:
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ou .
J ——+tVa=7f, Viu=p in &
ot
(10)1
¢l . =q, u-nl_ =d, ul,_,~u, on Q.
bF,T BT

Lemma: Let S and SB be as in Theorem. Suppose that
feco, ;¢ ), pec (0, T,
q,€C(0,T71;C°"(S)) and deC' ([0, T];C'"°(S,)). Then for

any u,€C " (Q) satisfying the conditions %, n| S =d|, ., and

1+a

~'B
there exists a unique solution (u, ¢ ) of (10) such that

Viu,=0l, .

é’? ’ ; t = | : . - A +1+a ’I’}! | - +2 +a é
g =l g g ety TN e g et )
§ ) i - - +1+a + I . - - +a +
C, {h A1 (10, Z‘J;CZ a0y ol (o, z‘j;CZ (2))

+ . - +2 +a + d 1, 1+ A+l +a +
el cgo et es, )y T e o, et s )
+ ] +1+a [ =0,1; Yt &0, T)).
o, | o (Q))} ( 0, T)

The constant C, is independent of ¢.

Proof. In the same way as in [6], the solution (u, ¢) of (10) is given
in the form w=wu"+u", w (&, t)=Vp(E, t)— Vo(&,0+u, (£),
¢ ou’
u”(&, t):S (f-— Vq~‘a%~) dt, where @ and ¢ are, respectively,

solutions to the boundary value problems
(A1) Ap=p.in 2, e@| . =0, n-Vel|_. =4,
Se S,
and
(11" A¢=V-f—p, in 2, ql_ =aq, n-Val_ =fn-d,.
S, S,

The unique existence of the solutions to (11) and (11)” and the estimates
for &, (1=0,1) are well-known from the general boundary value problem
for the elliptic system (cf. [3]). O
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Proof of Theorem A. ¥We use the successive approximation method. Let
(«°, ¢°) be the solution of (10) with (£, 0, ¢, d,u,)=(0,0,p,,0, v,)

and (u”, ¢%) be the solution of the initial-boundary value problem

k

0 w - .
éztl + Vg = ge+U-9“)ve =" in &

k-1 k

o in @

I

Veu =(U-9") v u
(12)k qkzp:w on SF’T,

w  n(E)=u T (X (E, tN—n(E)N=d" on Ss 1

ul, . =v, on  (k=1237).

0

Lemma guarantees the existence of (x”, ¢*) (£=0,1,2 ++). Evaluating
each term in the right hand side with the help of (8) and

lwl | ol

i

co, t ;) e, t1; TR

fw | } X

=c, t{lwl thedo, t ;¢

- +a +
co, t1;C°T(Q)
2

X, )

t C([O, t];c2+a(9))+“'1)0“C2+a(9)}+c4”UOH

obtained from the initial conditions wl,_,=wul,_,=v,, we get

X k k. ; <
(13) gjl<u aq 1t)—knuoN(;2+a((2)_~

=C, t{lwl +lw, |

c(lo, t1;¢°7 Q) £ (o, t];C“"‘(Q))}><

AP ' a T D 0 e P C, (VEEQTY).

()
Then the sequence {(u", ¢*)};_, is well-defined and converges provided
that 7 is chosen so small (say, 7,) that the inequality C, 0=
1***6‘6/M for any fixed M>C,. In fact, the convergence results from
the inequality derived from (13) with (g, »,)=(0,0) and v,=0:

k-1 3 k-2 k-1

AP (u —u'" g " T sc, 0, (T w0 T ),
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Hence leg?l(uk"uk_l, q“—-q " t)<ow (0< t<T,) because
C o <1. Namely, we can find the limit function (u, ¢) such that
u —>u in C'(0 t1;C7TR)), ¢ ->q in 0, £1;C°7TT(Q))
as k—>o for 0< ¢t <T,.

It is trivial to check that (u, ¢) is a solution to (6) on (0, ).
This solution can be extended on any time interval (0, 7) by the stan-
dard method (cf. [4]). The uniqueness follows from (14) as usual. []

Remark: Under the weaker condition T{“wHC([O, T];sz(g))Jr

+llw, “C([O, T];C1+a(9>)}§5, similar inequality to (13) holds:
(13)’ P, (u" " )+, IR
=Ct i cqo, 1ot e, t1ie @)
k-1 k-1 . ,
x{P (u" ", q ,t)+livollclm(m}+cs.

§ 3. A priori estimates
For the nonlinear problem it is necessary to get the a priori estimates

for the solution to problem (6) under the weaker hypothesis on w (cf.[6]).

Theorem B: Let (v,, ,, S, S,) be as in Theorem A. Suppose that

(l) {”w“C(LO T 2+a(9))+ﬂwt I|L O, T: C1+a(Q))}—5<5
G) w-n(X, )I -0 wl,_,=v, on 2.

0
Let (u, q) be a solutlon to the initial-boundary value problem (6) with
w0, T1;C*"(Q)), u,€L”(0, T:C" ""(2)) and

1+a

g€ L7, T:C*"°(Q)). Then the following estimates hold:
“u(" t)“ 2+a'( )§(1+IIU “ 2+a( )> exp[t%(t)]v
(15) I, () l‘)HCHa(Q)JrHQ(' ) 2+a(Q)§
=C,U+iv o )) UCt) expl t UCE)],

where U(t)=C,(1+]|wl ), and C,, C, are

8

o 1@
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constants depending on & but not on ¢t <T.
Proof. First of all, let w satisfy the condtion

(Y THwl l<6<5,,

C(o, 715 )y TIwe!

L7, T;C° ()
in place of (i). By going back to the x -variables and then taking the
divergence, we get

Ap=-3 .., Vw, Vv, (x€X,2=0(1)),

l

(186)
p=p, (x€X,S,=2S,(t)), n Vp=(w-Vn—9n, (xES,),

where (v, p)(x, t)=(u, ¢)(X,_ (x,t), t), because w+V is the
tangential derivative on S, according to the hypothesis (ii). For this
problem it is well-known (cf.[3]) that the following inequality holds
with the help of (8) and (i)":

an s G, ol +Nq(-,t)ilcz+., <

()
lo(, t)llc

T (Q(t))

<, () 1+lw(, 1)l 3

C2+a<Q) 2+a(Q)

Next extending w to R®, we define w’ as the average of w with
an infinitely differentiable kernel depending only on & (cf.[4]). Then
wec(o, 71;C77 (), w, L™, T;C
in ¢([0, 7];C*" (@), w,~w, in L7, T;C
T,>0 so that

3+a 2+a

(R)). Moreover, w —w
(2)). ¥e take

1+a

T {lw'l . +w, |

cto,73;c @ e L et TS0

Then the equation corresponding to (6) becomes

a ) ~e € £ & £
{a;} +(w B V)U = — Vp ‘_9e_:f , V-v =90 (XEX EQ’ t>0),
, v£|t=0 =v, (x€Q).
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Here p  is the solution of (16) with w=w .

Returning to the & -variables, we obtain
& vt £ &
w (€, =0, ()4 FUE T dT, FUE =5 (X 0 1),
0 w

which implies, with the help of (17) and the Gronwall inequalitly,

(18) ”u ('1 t)||C2+a(Q)§

%(1+IIUOHC2M ) exp{C,,(8) ¢t (I+]wl )}

(Q) co, t1;C*T(R))

for any t€(0, T, ]. Here C,, does not depend on & and ¢. Now we do

the same argument on [7 ,7,,) and after a finite number of steps N,
(=[T/T J+1), we finally arrive at the estimate (18) on [0, 7.
Letting &->0 we obtain the desired estimate (15)".

From (15)' and (17) we have

HA

(19 la(, ”“C““(Q)

=C, () {1+lwl <1+ﬂvuncz+a ) expl t U(z)])

(2)
) w(t) expl tu(2)]}.

c(0, T1;C**(2)

=C + a

Cll((S)(l ||1)0“C2 (Q)
The estimate for |« (-, t)llclm(g) easily follows from (6), (8) and
(19). [

8§ 4. Proof of Theorenm

¥e begin with preparing the extended version of Theorem A:

Theorem C: Under the hypotheses in Theorem B, there exists a unique
solution (u, ¢) to the initial-boundary value problem (6). Moreover,
the solution satisfies the inequality (15) for any ¢t < (0, 7).

Proof. Extend we& C([0, 7];C* " (2)) with w,€L7(0, T;C'"°(Q))
to RS. Let w  be the same function as that in the proof of Theorem B.

According to Theorem A, there exists a unique solution (u°, qf) to the
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problem (8) with w replaced by w . Theorem B implies that the inequal-
ity (15) holds for (x, q°) with w replaced by w', namely,

u” _ va +Hlu, | e +
I« “c(w,t 1. 'lut“Lw,t;c‘ (2))

+lq Ile(O, t;c““(g))gM Weeo,T))

for some positive constant M independent of ¢ and &. This yields

(20) lae )éM’ (Vte(,T))

c’(o, t1;¢" ()
for any B, 0<B<1, and some positive constant M" indedependent of ¢
and &. Taking a subsequence if necessary, we have U —>u, q£—>q in
the weak® topology of L7(0, T;C*""(2)), u,—u, in the weak® topo-
logy of L™(0, T:C'""(Q)) as €—0. It is obvious that

2 (e, t)"C2+a g(lJrliv,,HC ) expl £ UCt)],

()"
+q (-, )

Q)

o, ¢, t)IICHa( C“"(Q)é

) UCet) expl tUCt)].

Q)

§C7<1+Uvoﬂcz+a(g)

B
1+a

From (20) " also converges to # in CB’([O, t];C "T(2)) for any

B €(0, B) and a”’€(0, ). Using this and the interpolation inequal-
ity in the Holder spaces, we obtain z‘—>u in C([0, T];C" " (Q)).
Therefore, by passing to the limit, it is clear that (u, ¢) is a
solution of (6). The convergence of (u ", ¢") to (u, qg) as &£—>0 is
indeed valid without taking a subsequence, since the uniqueness of the
solution can be established in the following way. Let (u, ¢) be a
solution of (6) with (g, »,)=(0,0), v,=0. Then (13)" yields that
Pu, q;t)=P,(u, q;t)/2 (0<¢<T,) for some constant T >0.
This means (%, ¢)=0 on (0, T,). After repeating this step, we
finally conclude (%, ¢)=0 on (0,7). [

Now we turn to prove our main theorem. Let (%', ¢°) be the solution



of (10) with (f,p,q,, d,u,)=(9e,0, p,,0, v,) given in Lenna.
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Lemma also says that there exists a positive constant K(>1) such that

YA . < 0, T)).
21) lu 'c(l,o,tj;c'" () K (Wete(0, 7))

Let 7" be a positive number such that

(22) 27"+l v, Yexp{C,[Q+K)T*+C,,+6, ]1=85<4,.

C2+a(Q)
Such a T* really exists. Then let («*, ¢*) be the solution to the
initial-boundary value problem (6) with w:uk_l and T=T"

(k=1,2,3+++). Theorem C implies, by virtue of (21) and (22), that

(u', q') exists and satisfics the inequalities

!Iu ”C([O, t]’C2+a<Q>)§<l+“UOHC2+a(Q)) eXPLCBU’FK) t]r
I”‘f”L“’(o, t ;c““(sz))wq ”L""(O, t ;c'“"(sz))'g‘
YA+ K) explC,(1+K) t].

=C,C,, (Lt 'Uoﬂcz-c-a(Q)

Therefore from (22) it follows the hypothesis (i) in Theorem B for u'

and T=T". Then we may apply Theorem C again so that («”, ¢°)
exists and satisfies the inequalities
“l

o et e S

=+l ) exp[C8(1+llu'llC )]

2+a(Q>

) exp[C,(t +38)],

(o, ¢ 1;C*7°(Q))

§(1+H U01ic2+a(9)

i 2 2,
' o +a + o 2+a =
el oo eecon T T e et o)

Co v, ava, DU+Tu'l expl C (¢ +6)]

8 Q) c(0, t1; ¢ Q)

=C

éCaCm(lJrHUO|iC2+a(Q>)2exp{C8[(2+K)t+50]} (vt e, 7).

Whence again for ¢ <T" with the same T* as before the hypothesis (i)
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in Theorem B is satisfied for x°. By induction (", ¢*) for all %
exist and satisfy the inequality

k
+Hlu,d

" k
i | o Lita +
wle L=, ¢ (@)

c(o, t ;¢ Q)

+lq” =K (te(, T).

"LT, £ TR

The constant K~ is independent of ¢ and k. Letting A->o and an
argument as in the proof of Theorem C give the existence of a solution

(u, q) of (4) with all stated properties. {J
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