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On a Local Energy Decay of Solutions

of a Dissipative Wave Equation

FIMRFHF SR SH  R5L (Yoshihiro Shibata)

HERFHTSR M fBET (Wakako Dan)

§1. Introduction.

This study is concerned with a local energy decay property of solutions to the fol-

lowing initial boundary value problem of the dissipative wave equation :

Ugg +ug — Au=20 inQandt >0,
(D) u=0 onI and t > 0,
u(0,z) = ug(z), ue(0,7) = us(z) in Q,

where (2 is an exterior domain in an n— dimensional Euclidean space R", whose boundary
I' is a C* and compact hypersurface. Below, ry > 0 is a fixed constant such that
Q° C By, ={z € R" | |z| < R}. (Q° is the complement of Q. )

In the wave equation case, the local energy decays exponentially fast if n is odd and
polynomially fast if n is even, when € is at least non-trapping ( cf. [9], [10], [11], [16]).
In fact, from a physical point of view the energy propagates along the wave fronts, so
that the motion stops after time passes unless the wave front is trapped in a bounded
set.

In the dissipative wave case, the energy also propagates along t'he wave front. More-
over, the trapped energy also decreases in virtue of the dissipative term u¢, so that we
can expect to get the local energy decay result for any domains. In fact, in 1983 Shibata,

[14] proved the following theorem.

Theorem 1.1. Assume that n > 3. Let R > rq and let u(t,z) be a smooth solution of

(D) such that suppu(0,z), suppus(0,z) C Qr = {z € Q| |z| < R}. Then, there exists
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a constant C > 0 depending on n and R such that
[ AP + Y 10eutt,o) e
“r laf<1

<o+t (Y /Q|agut(o,x)|2dx+

|} <3

3 /Q 102u(0, 2) 2de ),

o <4
where 9%v = 8l /821 ... 927 & = (a1,... ,an) and |a| = ay + - + ap.

The purpose of this study is to show the decay rate of the local energy of even the
weak solutions of (D) is also n/2 when n > 2, that is, we shall prove the following

theorem.

Theorem 1.2. Assume that n > 2. Let R > rq and ug € H(}’R(Q) and u; € L%(Q),

where

LR(Q) = {f € L*(Q) | suppf C Qr},

Hy p(Q) = {f € H'(Q) | suppf C Qr, f=0o0nT}.

Let u(t,z) be a weak solution of (D). Then, there exists a constant C depending.on n
and R such that
| Gutta)P+ Y 105u(t,0) o
fr laf<1

SC(l—l—t)"”{/ﬂ]ul(;v)]zd;v—}— Z /Q|a:u0(x)'2d:c}.

o<1
Compared with Theorem 1.1, in Theorem 1.2 we remove the smoothness assumption
on solutions of (D) and we consider the case that n = 2 as well as the case that n > 3.
For the Cauchy problem of the dissipative wave equation (i.e. @ = R"), A. Mat-
sumura [8] studied the decay rate of solutions in 1976. His argument was based on
the concrete representation of solutions by using the Fourier transform. When  is
bounded, it is well-known that the energy of solutions decays exponentially fast. In

fact, this fact is easily proved by the multiplications of the equation with u; and u
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and by use of Poincaré’s inequality. Since 2 is unbounded in our case, we cannot use
Poincaré’s inequality. And also, because of the boundary, we can not use the Fourier
transform. Our method is based on a spectral analysis to the corresponding stationary

problem.
§2. A construction of (), semigroup solving (D).

Putting u; = v, let us rewrite the problem (D) in the following form :

alo]= 13 A][]-a0)

To consider A to be dissipative, we introduce a space Hp(2). For any open set O C R",
C$°(§2) denotes the space of all C* functions on R™ whose support is compact and lies
in O ( in particular, such functions vanish near the boundary of O ), L?(O) a usual L?
space on O with norm || - |0 innerproduct ( , )o and H*(O) a usual Sobolev space of
order s on O with norm || - ||s,0. || - ||k, Will be denoted simply by || - ||x. Likewise for

Il llo and ( , )a. Then, we put

Ju Ou
HD(Q) :{u € Hlloc(Q) | Vu = (%v ,aZB

I {un} C C5°(Q) s.t. ||V(up —u)]| = 0asn — oo },

)EL*(), u=0 onT,

where H} (2) = {u € D'(Q) | v € H'(Qr) VR > ro}. Hp(R) has the following

properties.

Theorem 2.1. If u € Hp(2), then u satisfies the following inequalities:

lullo,0r < C(R)IVullo,0r,

|u(2)[? 2
 d(a) dz < C||Vu|*.

Moreovér, Hp(Q) is a Hilbert space equipped with an inner product (u,v)p = (Vu, Vv).
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Then, an underlying space for A is
u
H = {M |ue Hp(Q) ve L?(Q)}.

From Theorem 2.1 we know that H is a Hilbert space equipped with the innerproduct

(L] []), = ewo e

The domain of A is

D(A):{m eH|Am e}

{[] emtoe o, ave )

Then, A has the following properties.

Proposition 2.2. (1) A is a closed operator. (2) A is a dissipative operator.
(3) R(I-A4A)=MH. (4) D(A) is dense in H.

Lumer and Phillips theorem [13, Chapter 1, Theorem 4.3] implies that A generates

a C° semigroup {T(¢)} on H.
83. A proof of Theorem 1.2.

Our purpose in this section is to prove the following result, which implies our main

theorem.

Theorem 3.1.

lerT(£)xllx < C(1+8)"?|1x]|n,
for x € H1,r, where C = C(R).

Sketch of proof.
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Since A is dissipative, T(t) is a Cy semigroup of contractions, so that
(3.1) T <1 vt =0.
Let a be a positive number. In view of (3.1), we have the following expression :

atiw
(3.2) T(t)x = lim L / eM(AI — A)"'xd\ for x € D(A?).

w—00 271 a—iw

(cf. [12, p.295] or [13, Chapter 1, Corollary 7.5] ). By a lemma due to F. Huang in [4,

§1, Lemma 1] (also see [7]), we have the following lemma.

Lemma 3.2. For any a > 0 and x € 'H, put
9(w) = ((a + 1) I — A) 7 x|

Then g(w) € L*(R) and

' llim g(w) =0,
| owraw < T,

In view of Lemma 3.2, the high frequency part decays sufficiently fast, so that we
have to investigate the low frequency part. Now we shall introduce some functional
spaces. Let E be a Banach space with norm |- |g, N > 0 an integer and k = N + o

with 0 < 0 < 1. Put
CHRY E)={u e CVN YR, E)nC®(R' — {0}; B); < u > p< o},

where

N
d .
L uPkE=) /Rl(d—T)J“(T)IEdT
i=0

_ d N d N .
o — —(— f
+ il;%lh] /Rl(d'f) u(tT + h) (dT) u(r)|pdr f0<o <1,

: N

d .
<u >>k,E.—_Z/Rr(E)’u(T)|EdT
=
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-1 d\N d \N d\N
it~ [ 1)t +20) =2 "t 1+ () e

if 0 = 1. Here, (d—d;)o = 1. The following lemma is concerned with the properties of the
Fourier transformation of functions belonging to Ck(Rl,E), which was proved in [14,

Part 1, Theorem 3.7].

Lemma 3.3. Let E be a Banach space with norm | - |g. Let N > 0 be an integer and
o a positive number < 1. Assume that f € cN*o(RY; E). Put
1 oo
F(t) = é}—/ f(r)exp(vV—17t)dr.
Then,
F(t)]e < CA+It)™F < f >Npop

Here and hereafter, we put Hg = {[Z} € H | supp u, supp v C Qr}. ¢r(x) always
refers to a function in C{°(R™) such that ¢r(z) = 1if |z] < Rand=0 if |z| > R+ 1.

Moreover, we put
Hioe = {[::\ I u € HI(QR),’U € L2(QR) VR > ’I“()},

Hcompz U HR»
RZT‘O

and L£(By, B;) denotes the set of all bounded linear operators from B; into By and
Anal(I, B) the set of all B-valued analytic functions in I. In view of Lemma 3.3, if we

prove the following fact, the proof of Theorem 3.1 is complete.

(F) PutQu={r€C |0 < RX < d, |9N < d}. Then, there exists a d > 0 and
R()\) € Anal(Q; L(Hcomps Hioe)) such that :

(a) R(N\)x =M —A)"'x  for x € Heomp and A € Qu;

(b) For any R > ro and p(s) € C§°(R) such that p(s)=1if |s|] < d/2and =0 if

|s| > d, there exist M; >0 depending on R, p and d such that

< p(Y@rR(a+i)%,¥)H >njz S Mul|x|lnllyllz
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forany x ¢ Hp,y € Hand 0 < a < d.

We shall conclude this report by giving a brief proof of (F).

Proof of (F).
When n > 3, (F) was proved by Shibata [14, Part 1], so that we shall consider the case

that n = 2. Corresponding stationary problem is

(3.3) (MX4X-Au=f and u=0 onT.

If [A| is small, then in stead of (3;.3), it is sufficient to consider the following problem :
(Ay) A=Apu=f nQcR? and u=0 onT,

where A € S, . ={A € C\ {0} | [A]| <, JargA|] <7 —€},0<r<land0<e<n/2,
because AZ + )\ is equivalent to A for small [A|. In view of Lemma 3.4 of [14], in order

to prove (F), it is sufficient to prove the following propositions.

Proposition 3.4. For A € S, . andrg < R < oo, there exists A(X) : L%(Q) — H} ()

satisfying that
A=AAN)f=f inQ and AN)f=0 onT,
for f € L%(). Moreovef, it satisfies that

lerANfll < ClIfIl as A€ Spe.

Proposition 3.5. For A and R as mentioned above, following estimates hold;

lon gy Al < ot )A|2!|fll~fcsi)llfll
B2 C(R) L O®)

- <
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for f € L%(Q).

Our main idea to prove Propositions 3.4 and 3.5 is to use the single layer potential and
the double layer potential, and to reduce (A4)) to a boundary integral equation. Put

v =(A—A)"'f. Then v is represented by the modified Bessel function :

(=28)7f = [ B )y,

where Ex(z) = (27) ' Ko(|z|v/}), Km ( m € NU {0} ) denotes the modified Bessel

function of order m. So we want to solve the equation
(AY) A=Aw=0 in and w=fy onT,

where fy = (A — A)™! f|r. To do this, let us introduce the integral operator B) :

2ra

E\® for ® € CUI).
log\/X)‘ o ()

B\®=D,%—-nE\M® +

Here a, n > 0, E) is a single layer potential defined by

E\¥(z) = /FEA(JC —y)¥(y)doy

and D) is a double layer potential defined by

DAW(m):ADA($7y)W(y)dOy,

where

Dy(z,y) =V Ex(z —y)- N(y)

= _\%Kl(p: - y|x/X)|x—\/_X—m(x —y) - N(y)

The projection M : C%(T) — C%T) is defined by

. | .
¢ > MP=0—- Py with (I)le_ﬂ/q’do and |I'| = meas(T").
r
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Obviously Ba® satisfies that (A — A)B)x® = 0 in 2, so that we obtain the following

boundary integral equation :

2T

log VA

If @ is a solution of (3.4), B,® satisfies (4)), and A(X)f is expressed by

L1
(3.4) B)\®|r = K,® = (—5 + Dy —nE\M + E\)® = fy.

(3.5) ANf = (A= A)"1f - B®.

Therefore, (A) was reduced to a boundary integral equation (3.4). K is a Fredholm
operator, so that by using the Fredholm alternative theorem, we can solve the boundary
equation (3.4). If we consider that A()) is an operator from L%(2) to L} (), by the

loc

properties of Bessel function, we know that the expansion of A(A) at A — 0 1is

1
AN = e
(A) CO+CllogA +
Therefore, we have Propositions 3.4 and 3.5.
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