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On damped or strongly damped hyperbolic system
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1 Introduction

Let © be a bounded domain in R* with Lipschitz boundary 8. For a map u : Q x
(0,00) — R!, we consider the hyperbolic system

a;;(2) D' (2,1) — Dp (b3 (2) Do (, 1)) + cis (@) lulz, |7~ w2, 1)

(1.1)
+ a;;(2)Dewi(z,t) =0 in Qx (0,00), j=1, -+, &,
(@) D22t (2, 2) — Dy (b2 () Dat (2,)) + i (@) [u(a, )72, 1)
(1.2)

— DtDﬂ (fsﬁ(x)Dau'(m,t)) =0 1n 2 x (0’ OO), ] — 1, ey /.
Here D, and D, mean the partial derivatives with respect to variable ¢ and z°, i.e.,
D, =98/dt, D, =03/0z*.

The c-norm || - ||. of u is the square root of the quadratic form ci;u'w’. Similar notations
Ilella, l|Dulls and || Dul|; will appear later, and their meaning are

L
2

el = (aijuiuj)%, | Dulls = (bZﬂDaU‘Dﬂuj)%, 1Dully = (£57 Do’ Dy

And m > 11s a constant.
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Here and in the following, summation over repeated indices is understood, the greek in-
dices run from 1 to k, and the latin ones from 1 to £. We assume that the coefficients a;;(z),
bZ«B (z) and ¢;;(z) are bounded functions defined on Q and satisfy the coercive condition

( ay(2)¢ > Xolé]? forall £€RY,
b (2)mimy 2 Malnl? for all 5 € R,

(1.3) <
c;(2)E€ > Mfe]? forall €€ R,

FEP(z)nimy > Xg|nf? for all n € R™

\

for some positive constants A9, A1, A2 and Az, and the symmetry
(14)  ay(e) = aii(z), b7 (a) =857(a), ci(e) = ciila), f5P(e) = [ ().

We call (1.1) the damped hyperbolic system, or the hyperbolic system with a damping term
a;;(z)Dyu*(z,t). And the second system is called the strongly damped hyperbolic system,
or the hyperbolic system with a strongly damping term —D,Dyg (f{‘;ﬁ(m)Daui(x,t)). The
strongly damping term is also called the wiscosity term. These system appear in some
models of continuum mechanics. For the historical remark we can refer [2] and references
cited therein.

We impose the initial and boundary conditions

(1.5) u(z,0) = uo(z), Deu(z,0) =1wo(z) in Q,

(1.6) u(z,t) =w(z) on 90 x (0,00),

where uo(z), vo(z) and w(z) are given maps satisfying the compatibility condition uy(z) =
w(z) on 99

Our aim is two-folds. The first one is to construct global weak solutions by the method
of time-discretization. And the second one is to show their decay properly as t — oo in
case of w = 0, i.e., homogeneous Dirichlet’s boundary condition.

First we give the notion of weak solution. Let v, and +,_, denote the trace operators to
9 and 2 x {0} respectively.

Definition 1.1. For ug, w € HY?(Q) N L™(R) and vy € L*(Q) satislying v,,uo = ¥, W,
amap u: Q2 x[0,T) — R’ is called a weak solution of (1.1) on Q x [0,7) with the initial
and boundary conditions (1.5) — (1.6), if the following conditions are satisfied:

(i) we€L®0,T; HX*(Q)Nn L™(Q)) with D € L>(0,T; L3(Q)).
(i)  Yooul(z,t) = uo(z) and 7y,qu(z,t) = Yew(z) for 0 <t < T.
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(i) For any ¥(x,1) € CI(0,T); Co(52)) N C(0,T); C' (@),
[ [ (~ais(e) Dk, ) Dt 2,8) + 8 () D (1) Da? (2,1
+ cij(@)||u(z, P2 (2, )9 (2, t) + ai;(z) Deui' (<, t)wj(z,t)) dzdt

:Laij(x)vs(x)¢j(m,0)dm.

Definition 1.2. For up, w € HY2(Q) N L™(Q) and vo € Hy* () satisfying 7,0 uo = Y,q w,
amap u:Qx[0,T) — R'is called a weak solution of (1.2) on © x [0,T) with the initial
and boundary conditions (1.5) — (1.6), if the following conditions are satisfied:

(i) we Le(0,T; HY*(Q) N L™(Q)) with Du € L=(0,T; LA(Q)) N L2(0, T; Hy*(R)).
(i) ,_u(z,t) = uo(z) and v,qu(z,t) = y,ow(z) for 0 <t <T.
(iii) For any 4(z,t) € C5([0,T); Co(2)) N C([0,T); C* (D)),

/OT/Q (—a.‘j(:z:)Dtu"(m,t)DtW(x,t) + 63 () Do’ (2, t) Dy’ (, 1)
s e (@)lule, P2 (2, )9 (2, 1) + 2P (2) D Dati (2, £) Dt (2, 1)) dadt

= /Q ai; (2)v} (z) (z, 0)da.

Definition 1.3. We say u is a global weak solution if ule[O 7y 1S a weak solution on

2 x [0,T) for any T > 0.

We discuss the damped and strongly damped hyperbolic systems in § 2 and § 3 respec-
tively. This note is an epitome of [5, 6].

2 The damped hyperbolic system

2.1 A construction of weak solutions

Here we construct weak solutions by use of a combination of time-discretization and
calculus of variations. Though our system solved in several different way, we omit the
historical remark of the equations. The authors, however, think that our method is not
so familiar. Hence we point out only the previous result on our method applied various
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equations. The method explained here was firstly introduced by Rektorys [7] in 1971. He
applied it to linear parabolic equations. Independently Kikuchi [3] rediscovered this method
in 1991, and he tried to apply the method to non-linear equations coming from variational
problems. Actually Bethuel-Coron-Ghidaglia-Soyeur [1] constructed a weak solution of the
heat flow for harmonic maps by the method. The authors also constructed weak solutions
of a semi-linear hyperbolic system and the Navier-Stokes equations by the method in [9]
and [4] respectively.

We firstly construct an approximate solution as follows. Let h be a positive number,
which will tend to zero later. uy is a given initial data of u. u; is defined by

uy(z) = uo(z) + v(z, h),
where v is an R*valued function satisfying

( v(z,0) =0, Duw(z,0)=1wv(z) in Q, v(z,t)=0 on 9N xR,

v € L*(R; HY2(Q) N L™(Q)),

(2.7 <
(27) Dv(-,t) is a weakly continuous map of ¢ with values in L?(Q),

1 o 1o a1 1,
| [ (GID@F + SUDVIE + —1") do < [ Sl

Here || - || denotes the Euclidean norm, and D = (Dy,---, D). To get such a map v, for
example, we solve the initial-boundary value problem

D?v(z,t) — Avi(z,t) + [v)|"" 20 (z,t) =0 on Q xR,
(2.8) v'(z,0) =0, Dy'(z,0) = vj(z) in Q,
v'(z,t) =0 on 092 x R.

[8, Theorem 2] guarantees the existence of weak solution v satisfying (2.7).
For n > 2 we define u,, as a minimizer of the functional

u = 2uns +unsal2 1, oy 1 1|u = wpos|?
i — - a D il m S HY T Yn-2lla
Fulu) /Q(2 2! T - L )

in the class

{ue H(Q)NL™(Q) ; Yo b = Voq W}

The functional F,(u) is coercive in the above class, and the standard argument of mini-
mizing sequence can be applied.
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Proposition 2.1. F,.(u) has a minimizer, which we denote by u,. It satisfies the
Buler-Lagrange equation

0= é—i—f'n(u + ep)

e=0

29 = /a {7115“"1(3)(“" = 2y + )¢ + b3 (2) Dati' Dpg? + cij () ||u| "2 ?

+§%M@xw—u;g¢}w for all o € H¥(Q) N L™(Q).

Thus {u,} is well-defined inductively. Now, using {u,}, we define two maps u;, and @,
by

( { ug(z) for t=0,

ah('r)t) =
U, (2) for (n—1)h<t<nh, n>1,
<
up(z) + v(z, t) for -1<t<h,
up(z,t) =
—(n—1Dh —t
‘ t————(zlh—l)—-un(z) + nhh Up_1(z) for (n—=1h<t<nh n>2.

They approximate a weak solution of (1.1).
Proposition 2.2. For small h € (0,1) it holds that
{tn}, {ur} are bounded set in L™ (Q x (0,T)), where m' = max{2, m},
{Dyup} is a bounded set in L*(Q x (0,T)) N L>=(0, T; L*(Q)),
{Datr}, {Doun} are bounded set in L% x (0,T)),

and
T
//mrmﬁwd:mﬁﬂ.
0 Q

Sketch of Proof. Since u, and u,_, coincide on 09, u, — u,_ (n > 2) is an admissible
test function for (2.9). Substituting it for ¢ in (2.9), we get the assertion. O
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It follows from Propositions 2.1 and 2.2 that

/ / { ai;(2) (Dot (z,1) — Dei(x,1 = b)) ¢'(a)
+ 62(2) Dty (2,£) Do (2) + iy (=) (2, I[P~ (2, 1) (2)
+ %aij(x) (Dtu;l(x,t) + Dyu (z,t — h)) d(m)} n(t)dzdt

=o(l) as hlO

for any T' > 0 and n € C§°[0,T).

The weak(-star) compactness argument and the diagonal argument give the fact that
and uy converge to a global weak solution u along a suitable subsequence of A | 0. Thus
we get the following result.

Theorem 2.1. Let m > 1. For any uo, w € H?(Q) N L™(Q) and vo € L%(Q) satisfying
YoqUo = VoW, there exists at least one global weak solution u to (1.1), (1.5) and (1.6).

2.2 Decay of our weak solutions

In this subsection we assume w = 0 and m > 2.

Since we are posing the homogeneous boundary condition, u, is an admissible test func-
tion for (2.9). Therefore we can see that

/ 2 i (u Un—l)(uzz—l - uf,_g)dx

J J J 7 7
U : U U .U u
“n Pn-1 1 n—1 n—2 t n n—1
= / { (atJ — —a‘jun_l——————h )+a,-jun———————h

4 1D+l = iy, = 20y + g )}

2h
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Next we test (2.9) by ¢ = u, — u,_; to get
1 i i : i ] J
0= /Q h2 % {(Un — 1) = (Upoq — Un-z)} (w7, — Un-1)

+ 5P Doul, (Dgul, — Dgul,_y) + cijljun |72, (uf, — o, _,)

n n—1
L — b Mo — o
+ %aij(un - u'n—Z)(un - un—l)] dz

1 ; i ' ]
= [ 15 {lln = sl = a0y = o) = 61}

+ 1 Duall2 = b2 Do, Dty + lfuall = lfwnll7=25002

n“n—1
1 2, 1 P ; ;
+ —Q_E“un - un_l”a + ﬁaij(un - un-—-l)(un—l - un—2) dz.

Combining these relations, and estimating non-coercive terms by use of Young’s inequality,
we get

Proposition 2.3. It holds that

U (t) — Up(t — h)
e +

U,(t) < hKj,

where 1 1 1 1
y(t) = /ﬂ (-2-||Dtu,,||2 + §aijﬁZDtUi + §|lDﬂh|l§ + ;”ﬂhﬂln) dz,

and K7 1s a constant depending on the initial data but not on h. And therefore we have

1 " R
\I/h(t) S (m) \Ilh(+0) + h[ﬁl,

where the relation between t and n s given by

n=[t/h],

[ 1 denotes the ceiling, i.e., [z] is the smallest integer greater than or equal to z.

Passing to h | 0, we have

D, [ llu(z,0li2ds + G [ lfu(a, 0)|ds < Kae™
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for almost every t € (0,00). Since u is a weak solution, it belongs to C([0,T7]; L%(£2)) and
Diu to L*(0,T; L?(2)). Hence it follows from the above differential inequality that

|IU(-,t)||2L;(Q) < Kse™ @,

Using ¥, again, we have

1 1, . 1, 1 \" _
[ (1Pl + S1DmE + —llwll) do < (557) Ku+ hEy + Callin(, Ol Bacay

Passing to h | 0 again, we obtain
Theorem 2.2. Our weak solution salisfies
Ol gy + -, OBy + 1D )y < K,
provided w = 0 and m < 2.

Remark 2.1. If we define u, (n > 2) as a minimizer of

~ lju = 2up—g + up—ll? 1 | 1|lu = up—1]|?
- ol a4 2D gl 4 22 Znm1ila ) g
Fot) = (Gl et tealle y Bypug Ly 4 gleseali) o,

instead of F,(u), then we can also construct a global weak solution form them. The
authors, however, cannot clarify that this weak solution has a decay property or not.

3 The strongly damped hyperbolic system

In this section we consider the initial-boundary value problem for the strongly hyperbolic
system (1.2). The method is similar as in § 2, so we state only the scheme. Let h be a
positive number, which will tend to zero later. up is a given initial data of u. u; is defined
by

u1(z) = uo(z) + huo(z),

where vy is also given initial data of Dyu. For n > 2 we define u, as a minimizer of the
functional

B T S T TN 1o G |
Gutu) = | (et ttnctle ) Yypugg g Loz 4 =2l

in the class
{u€ H2(Q)NL™R) ;5 Yoot = Vo w}-
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This scheme gives us

Theorem 3.1. Letm > 1. For any ug, w € HY(Q)NL™(Q) and vo € Hy?(Q) satisfying
Youlo = YoqW, there exists at least one global weak solution u -to (1.2), (1.5) and (1.6).
If w =0, then our weak solution satisfies

lu(-, )z 2y + Nul, )| En@) + | Deul:, |32y < Ke

Remark 2.1. If we define u, (n > 2) as a minimizer of

Gulw) = | (Ulu = Znt + tnall

1 1, im
+ Sl Dulls + —|lul7 +

o \2 h2

1{|D(u = un—)||3
2 2h f) da

instead of G, (u), then we can also construct a global weak solution form them. The authors,

however, cannot clarify that this weak solution has a decay property or not.
A technical difference between F,(u) and F,(u) (see Remark 2.1), and between G, (u)
and G,(u) comes form Poincaré’s inequality. The inequality can be expressed by

(u, U)Lz(g) S C(DU, D'U,)Lz(g)
for u € Hy?(Q). It, however, does not hold that
(un; un—l)Lz(Q) < C(Dun> Dun—l)Lz(Q)'

We must choose scheme so that such terms does not appear in calculating a decay property.
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