NAVIER-STOKES EQUATIONS WITH DISTRIBUTIONS AS INITIAL DATA

HIDEO KOZONO † AND MASAO YAMAZAKI‡

† Department of Applied Physics
Nagoya University
‡ Department of Mathematics
Hitotsubashi University

§1 Introduction.

Let Ω be an exterior domain in $\mathbb{R}^n(n \geq 3)$, i.e., a domain having a compact complement $\mathbb{R}^n \setminus \Omega$, and assume that the boundary $\partial \Omega$ is of class $C^{2+\mu}(0 < \mu < 1)$. The motion of the incompressible fluid occupying Ω is governed by the Navier-Stokes equations:

\[
\begin{cases}
- \Delta w + w \cdot \nabla w + \nabla \pi = \text{div} \, F & \text{in } \Omega, \\
\text{div} \, w = 0 & \text{in } \Omega, \\
w = 0 & \text{on } \partial \Omega, \\
w(x) \to 0 & \text{as } |x| \to \infty,
\end{cases}
\]

where $w = w(x) = (w^1(x), \cdots, w^n(x))$ and $\pi = \pi(x)$ denote the velocity vector and the pressure of the fluid at point $x \in \Omega$, respectively, while $F = F(x) = \{F_{ij}(x)\}_{i,j=1,\cdots,n}$ is the given $n \times n$ matrices with $\text{div} \, F$ the external force. In the previous paper [14], the first author and Ogawa showed the stability in L^n of solutions w in the class

\[(CL) \quad w \in L^n(\Omega) \quad \text{and} \quad \nabla w \in L^{n/2}(\Omega).\]

In case $n \geq 4$ we can show the existence and uniqueness for solutions w of (S) with (CL). In the three dimensional case, however, the solution in the class (CL) yields that the net force exerted to the body is equal to zero:

\[
\int_{\partial \Omega} (T(w, \pi) + F) \cdot \nu dS = 0,
\]

where $T(w, \pi) = \{\partial w^i/\partial x^j + \partial w^j/\partial x^i - \delta_{ij} \pi\}_{i,j=1,\cdots,n}$ and ν denote the stress strain and the unit outer normal to $\partial \Omega$, respectively (see Kozono-Sohr [16]). Introducing another class

\[(CL') \quad \sup_{x \in \Omega} |x||w(x)| + \sup_{x \in \Omega} |x|^2|\nabla w(x)| \equiv C_w < \infty\]
Borchers-Miyakawa [3] constructed the solution with (CL') and showed that if C_w is small, then w is stable under the initial disturbance in weak- L^n space $L^{n,\infty}(\Omega)$.

The purpose of this note is to find a larger class of stable flows than (CL'). Indeed, we shall show that stationary flows in the class

$$(CL'') \quad w \in L^{n,\infty}(\Omega)$$

are stable under such perturbation as Borchers-Miyakawa's [3]. As a result, we shall obtain the same class of stable solutions and initial disturbances. More precisely, if w is perturbed by a, then the perturbed flow $v(x, t)$ is governed by the following non-stationary Navier-Stokes equations:

$$(N-S) \quad \begin{cases} \frac{\partial v}{\partial t} - \Delta v + v \cdot \nabla v + \nabla q = f \quad \text{in } \Omega, t > 0, \\
\text{div } v = 0 \quad \text{in } \Omega, t > 0, \\
v = 0 \quad \text{on } \partial \Omega, t > 0, \quad v(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty, \\
v(x, 0) = w(x) + a(x) \quad \text{for } x \in \Omega. \end{cases}$$

In this note we shall show: if the stationary flow w and the initial disturbance a are both small enough in $L^{n,\infty}(\Omega)$, then there is a unique global strong solution v of (N-S) such that the integrals

$$\int_{\Omega} |v(x, t) - w(x)|^r dx \quad \text{for } n < r < \infty$$

converges to zero with definite decay rates as $t \rightarrow \infty$. Let w and v be solutions of (S) and (N-S), respectively. Then the pair of functions $u \equiv v - w, p \equiv q - \pi$ satisfies

$$(N-S') \quad \begin{cases} \frac{\partial u}{\partial t} - \Delta u + w \cdot \nabla u + u \cdot \nabla w + u \cdot \nabla u + \nabla p = 0 \quad \text{in } \Omega, t > 0, \\
\text{div } u = 0 \quad \text{in } \Omega, t > 0, \\
u = 0 \quad \text{on } \partial \Omega, t > 0, \quad u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty, \\
u|_{t=0} = a. \end{cases}$$

Hence our problem on the stability for (S) can now be reduced to investigation into asymptotic behaviour of the solution u of (N-S'). In a three-dimensional exterior domain, Heywood [10,11] and Masuda [18] considered inhomogeneous boundary condition at infinity like $w(x) \rightarrow w^\infty$ as $|x| \rightarrow \infty$, where w^∞ is a prescribed non-zero constant vector in \mathbb{R}^3. They showed the stability for such solutions in L^2-spaces. On account of the parabolically wake region behind obstacles, their decay rates are slower than that of our solutions. To obtain sharper decay rates in L^r-spaces of the solutions of (N-S') with the initial data in weak- L^n space, we need to establish $L^{p,\infty} - L^r$-estimates for the semigroup e^{-tL_r}, where L_r is the operator defined by

$$L_r u \equiv A_r u + P_r(w \cdot \nabla u + u \cdot \nabla w).$$
NAVIER–STOKES EQUATIONS WITH DISTRIBUTIONS AS INITIAL DATA

Here \(P_r \) is the projection operator from \(L^r(\Omega) \) onto \(L^r_\sigma(\Omega) \) and \(A_r \equiv -P_r \Delta \) denotes the Stokes operator in \(L^r_\sigma(\Omega) \).

In case \(w \equiv 0 \), we have \(L_r = A_r \) and hence our problem coincides with obtaining a global strong solution and its decay properties of the Navier-Stokes equations in exterior domains. Since the pioneer work of Kato [13] and Ukai [23], many efforts have been made to get \(L^p - L^r \)-estimates for the Stokes semigroup \(e^{-tA_r} \) in exterior domains and there are mainly two methods. One is to characterize the domain \(D(A_\alpha^p) \) of fractional powers \(A_\alpha^p(0 < \alpha < 1) \) due to Giga [7], Giga-Sohr [9] and Borchers-Miyakawa [2] and another is to obtain asymptotic expansion of the resolvent \((A_r + \lambda)^{-1} \) near \(\lambda = 0 \) due to Iwashita [12]. In our case, since \(L_r \) is the operator with \textit{variable} coefficients, both of these methods seem to be difficult to get the same asymptotic behavior of \(e^{-tL_r} \) as that of \(e^{-tA_r} \) as \(t \to \infty \). If we restrict ourselves to the case \(n/(n-1) < r < \infty \), however, then \(L_r \) can be treated as a perturbation of \(A_r \), and for such \(r \), we can get satisfactory \(L^p, \infty - L^r \)-estimates of \(e^{-tL_r} \), which is enough to construct the global strong solution of (N-S'). Our proof needs neither estimates of the purely imaginary powers \(L^s_r(s \in \mathbb{R}) \) of \(L_r \) nor asymptotic expansion of \((L_r + \lambda)^{-1} \) near \(\lambda = 0 \); we need only such a standard resolvent estimate of elliptic differential operators as Agmon's [1].

On account of the restriction \(n/(n-1) < r < \infty \), we cannot construct the strong solution directly in the same way as Giga-Miyakawa [8] and Kato [13]. Therefore, we need to first introduce a \textit{mild solution} which is an intermediate between weak and strong solutions (see Definition below). This procedure is due to Kozono-Ogawa [14]. Then we shall show the existence and uniqueness of the \textit{global} mild solution \(u \) of (N-S') in the class \(C((0, \infty); L^n, \infty(\Omega)) \) with decay property \(\|u(t)\|_r = O(t^{-1/2 + n/2r}) \) as \(t \to \infty \) for \(n < r < \infty \). Using a similar uniqueness criterion to Serrin [21] and Masuda [19], we may identify the mild solution with the strong solution. As a result, it will be clarified that the restriction on \(r \) causes no obstruction for our purpose.

§2 Results.

Before stating our results, we introduce some notations and function spaces and then give our definition of mild solutions of (N-S'). Let \(C^\infty_{0, \sigma} \) denote the set of all \(C^\infty \) real vector functions \(\phi = (\phi^1, \cdots, \phi^n) \) with compact support in \(\Omega \), such that \(\Div \phi = 0 \). \(L^r_\sigma \) is the closure of \(C^\infty_{0, \sigma} \), with respect to the \(L^r \)-norm \(\| \cdot \|_r \); \(\langle \cdot, \cdot \rangle \) denotes the \(L^2 \)-inner product and the duality pairing between \(L^r \) and \(L^r' \), where \(1/r + 1/r' = 1 \). \(L^r \) stands for the usual(vector-valued)\(L^r \)-space over \(\Omega \), \(1 < r < \infty \). \(H^1_{0, \sigma} \) denotes the closure of \(C^\infty_{0, \sigma} \) with respect to the norm

\[\|\phi\|_{H^1_r} = \|\phi\|_r + \|\nabla\phi\|_r, \]

where \(\nabla \phi = (\partial \phi^i/\partial x_j; i, j = 1, \cdots, n) \). When \(X \) is a Banach space, its norm is denoted by \(\| \cdot \|_X \). Then \(C^m((t_1, t_2); X) \) is a usual Banach space, where \(m = 0, 1, 2, \cdots \) and \(t_1 \) and \(t_2 \) are real numbers such that \(t_1 < t_2 \). \(BC^m((t_1, t_2); X) \) is the set of all functions \(u \in C^m((t_1, t_2); X) \) such that \(\sup_{t_1 < t < t_2} \| d^m_x u(t) \|_X < \infty \).
Let us recall the Helmholtz decomposition:
\[L^r = L^r_{\sigma} \oplus G^r \] (direct sum), \(1 < r < \infty \),
where \(G^r = \{ \nabla p \in L^r; p \in L^r_{loc}(\Omega) \} \).
For the proof, see Fujiwara-Morimoto[6], Miyakawa[20] and Simader-Sohr[22].
\(P_r \) denotes the projection operator from \(L^r \) onto \(L^r_{\sigma} \) along \(G^r \).
The Stokes operator \(A_r \) on \(L^r_{\sigma} \) is then defined by
\[A_r = -P_r\Delta \]
with domain \(D(A_r) = \{ u \in H^{2,r}(\Omega); u|_{\partial\Omega} = 0 \} \cap L^r_{\sigma} \).
It is known that \((L^r_{\sigma})^* \) (the dual space of \(L^r_{\sigma} \)) = \(L^{r'}_{\sigma} \),
where \(1/r + 1/r' = 1 \).
Furthermore, for \(1 < r < \infty \) and \(1 \leq q \leq \infty \), \(L^{rq} \) denotes the Lozentz space over \(\Omega \) with norm \(||\cdot||_{r,q} \).
Let us introduce the operator \(L_r \) in \(L^r_{\sigma} \). To this end, we make the following assumption on \(w \).

Assumption. \(w \) is a smooth solenoidal vector function on \(\overline{\Omega} \) with \(w|_{\partial\Omega} = 0 \) in the class \(w \in L^{n,\infty}_{\sigma} \).

For the existence of such solutions \(w \) of (S), see Finn[4] and Fujita[5]. Under this assumption, we define the operator \(B_r \) on \(L^r_{\sigma} \) by
\[B_r u \equiv P_r(w \cdot \nabla u + u \cdot \nabla w) \]
with domain \(D(B_r) = H^{1,r}_{0,\sigma} \).
\(L_r \) is now defined by
\[D(L_r) = D(A_r) \quad \text{and} \quad L_r \equiv A_r + B_r. \]
Since \(\text{div} \ w = 0 \) in \(\Omega \), we can easily verify that the operator \(L' \) defined by
\[L'_r u = A_r u - P_r(w \cdot \nabla u + \sum_{j=1}^{n} w^j \nabla u^j), \quad D(L'_r) = D(A_r) \]
is the adjoint operator of \(L_r \) on \(L^r_{\sigma} \). It should be noted that the operator \(L' \) contains no derivative \(\partial w/\partial x^j (j = 1, \cdots, n) \) of \(w \) in its coefficients.

Our definition of mild solutions of (N-S') is as follows:

Definition. Let \(a \in L^{n,\infty}_{\sigma} \) and let \(w \) satisfy the Assumption. Suppose that \(n < r < \infty \). A measurable function \(u \) defined on \(\Omega \times (0, \infty) \) is called a mild solution of (N-S') in \(L^r_{\sigma} \) if
\begin{enumerate}
 \item \(u \in BC((0, \infty); L^{n,\infty}_{\sigma}) \) and \(t^{(1-n/r)/2}u(\cdot) \in BC((0, \infty); L^r_{\sigma}) \);
 \item \((u(t), \phi) = (e^{-tL}a, \phi) + \int_{0}^{t} (u(s) \cdot \nabla e^{-(t-s)L'} \phi, u(s))ds \)
\end{enumerate}
for all \(\phi \in C_{0,\sigma}^{\infty} \) and all \(0 < t < \infty \).

Our results now read:
Theorem 1. (1) (existence) Let $a \in L^n_{\sigma}^{n, \infty}$ and let w satisfy the Assumption. Then for every $n < r < \infty$, there is a positive number $\lambda = \lambda(n, r)$ such that if

$$\|a\|_{n, \infty} \leq \lambda, \quad \|w\|_{n, \infty} \leq \lambda,$$

there exists a mild solution u of $(N-S')$ in L^r_{σ} such that

$$u(t) \to a \text{ weakly } \ast \text{ in } L^{n, \infty}_{\sigma} \text{ as } t \downarrow +0.$$

(2) (uniqueness) There is a constant $k = k(n, r)$ such that any mild solution u of $(N-S')$ in L^r_{σ} with

$$\limsup_{t \to +0} t^{\frac{n}{2} \left(\frac{1}{n} - \frac{1}{r}\right)} \|u(t)\|_r \leq k$$

is unique.

Concerning the regularity of the solution, we have

Theorem 2. The mild solution u given in Theorem 1 is actually a strong solution in the following sense:

1. $u \in C^1((0, \infty); L^r_{\sigma})$;
2. $u(t) \in D(L_r)$ for $t \in (0, \infty)$ and $L_r u \in C((0, \infty); L^r_{\sigma})$;
3. u satisfies

$$\frac{du}{dt} + L_r u + P_r (u \cdot \nabla u) = 0, \quad t > 0 \text{ in } L^r_{\sigma}.$$

Remarks. (1) The above theorems show that the space $L^n_{\sigma}^{n, \infty}$ is the class of stable stationary flows and that it is the same class as that of initial disturbances. Borchers-Miyakawa [3] obtained, among others, similar results to ours including the uniform L^∞ estimate in time. They make, however, such a stronger assumption as

$$\sup_{x \in \Omega} |x||w(x)| + \sup_{x \in \Omega} |x|^2 |\nabla w(x)|$$

is small enough. On the other hand, our theorems assert that the assumption on the spacial decay of $\nabla w(x)$ as $|x| \to \infty$ is not necessary. Moreover, the class of the space $L^n_{\sigma}^{n, \infty}$ is larger than that of functions w such that $\sup_{x \in \Omega} |x||w(x)| < \infty$.

(2) Since the semigroup $\{e^{-tL}\}_{t \geq 0}$ is not strongly continuous in $L^n_{\sigma}^{n, \infty}$, we cannot assure whether our solution u satisfies

$$\lim_{t \to +0} t^{\frac{n}{2} \left(\frac{1}{n} - \frac{1}{r}\right)} \|u(t)\|_r = 0.$$

(3) When $\Omega = \mathbb{R}^n (n \geq 3)$, without assuming any regularity on the stationary flow w, Kozono-Yamazaki [17] obtained a similar strong solution with a uniform decay estimate.
REFERENCES

