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1 Introduction
We consider the Cauchy problem for scalar viscous conservation laws:
ue+ f(u)e = puz,, T €R,t>0 (1.1)

u(0,z) = uo(z), =z €R, (1.2)

where 1 is a positive c »nstant and the initial data ug(z) is asympto .ically:constant as z — +co:
ug(z) = ux as z — *oo. (1.3)

We note that f € C? is not assumed to be necessarily convex.

Asymptotic behavior of the solution of (1.1),(1.2) closely corresponds to that of the solution
of corresponding Riemann problem. In this note, let Eq.(1.1) admit traveling wave solutions
with shock profile such that

u=U(z—st)=U(€), U(f) > uy as € — Foo, (1.4)
where the constants v+ and s (shock speed) satisfy the Rankine-Hugoniot condition
—s(uy —u_) + fluy) = f(u-) =0 (1.5)

and the generalized shock condition(Oleinik’s shock condition)

ﬁ(u)s—s<u—ui)+f(u>—f(ui){ SO mesuse (16)

It is noted that the condition (1.6) implies
Flus) < 5 < flus). (L7)
and that, especially when f” > 0, the condition (1.6) is equivalent to

fiug) <5 < flu-),
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which is well-known as Lax’s shock condition (Lax [5]).
Substituting U(&) into (1.1) we have

pUge = —sUg + f(U)e = h'(U)U. (1.9)
Integrating (1.9) over (£oo,€) and noting the Rankine-Hugoniot condition (1.5) we also have

pUg = =s(U = uz) + f(U) = f(ug) = h(T). (1.10)

Lemma 1 Assume (1.5), (1.6) and
() ~ U = a5 0 (L11)
with ky > 0. Then there exists a traveling wave solution U(E) of (1.1) with U(xo0) = ug,

unique up to a shift, which is determined by the ordinary differential equation (1.9) or (1.10).
Moreover, it holds as € — £

[U(€) = us| ~ exp(—csl€]) if fl(us) <s < f(u-) (1.12)

for some positive constants cy and
UE) = uel ~ (€175 if 5= f(us) (1.13)
Remark. Since h'(13) = —s + f'(us), the condition A'(uy) == 0 is corresponding to the

equality in (1.7) and k4 = 0 in (1.11), which is called as degenerate shock condition. While
A'(uy) # 0 corresponds to (1.8) and kx > 0 in (1.11), which is the non-degenerate shock. We
note the behavior of U as £ — oo is likely (1.12) or (1.13) depending on the non-degenerate or
degenerate shock, respectively.

To investigate the stability of traveling wave solution U, we assume ug — U is integrable and
determine a unique shift of U as

/oo (uo(z) — U(z))dz = 0. (1.14)

—o0

Hence

o) = [ (uoly) = U(y))dy. (1.15)

—00

is well-defined. Under these considerations we obtain three theorems. To state them, we first
mention several notations.

Notations. We denote several positive constants depending on a,b,--- by Cy,... or only by
C without confusions. We also denote f(z) ~ g(z) as ¢ — a when C™'g < f < Cg in a
neighborhood of a, though we have already used it. For funcion spaces, L? denotes the space
of square integrable functions on R with the norm

17 11= ([, 1 (@)Pda) .
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Here and after the integrand R is abreviated. H'(/ > 0) denotes the usual [-th order Sobolev
space with the norm

I .
£ = 11 8Lf 1192
=0
For the weight functicn w . L2 denotes the space of measurable functions f satisfying \/wf € L?
with the norm
[flo = ([ w(@)f(2)Pda) /.

When w(z) = (z)* = (1 + 2%)*/2, we write L2 = L2 and |- |, = | - | without confusions.
Moreover when w is replaced by (z)*w, we denote that space by Li,w with the norm

Ifltx,w = (/<z>aw(1‘)|f($)|2d1:)1/2_
Vi+z2 >0 VITZ z<0

We also use (z)4 = {1 2 <0 1 z>0
When C™* < w(z) < < C, we note that L? = H® = Ly = L, with || - [I=] - llo=1lo ~ | - |w and
that L7 , = L’i with | - Iaw ~ o

or (z)_ = as the weight function.

Theorem 1 (Stability) Assume (1.5), (1.6) and (1.11) and let U be a traveling wave solution
uniquely determined by (1.14). Then the followings hold.

(i) When f'(uy) < s < f'(u_), suppose ug — U 1is integrable and 1o € H?. Then there ezists a
positive constant 1 such that if || 1o ||2< €1, then the Cauchy problem (1.1), (1.2) has a unique
global solution u(t,z) satisfying

u—U € C%[0,00); H') N L*(0, 00; H*)

and moreover
sup|u(t,z) —U(z —st)] >0 as t— co. (1.16)
R

(it) When s = f'(uy) < f'(u-), there exists a positive constant €1 such that if || ¥ |l
+|%ol(ey, < €1, then the Cauchy problem (1.1), (1.2) has a unique global solution u(t, z) satis-
fying |
u—U €C[0,00); H') N L*([0,00); H> N L}y, )
and moreover
sgp]u(t,x)—U(m—st)I—»O as t— oo. (1.17)

(iti) When f'(us) < s = f'(u=) or s = f'(uy) = f'(u-), then L, in (ii) should be replaced
by Lfﬂ_ or L%é) = L3, respectively.

Remark 1 When s = f'(uy) or f'(u_)(degenerate shock), we need a weight of order (£) =
V14 E% as & — +o00 or —oo for a stability theorem in our method.

Theorem 2 (Rate of asymptotic speed for f'(us) < s < f'(u_)) Let u be a solution obtained
in Theorem 1(i) and let 1o lie in L2 for some a > 0. If & is an integer, then it holds

suplu(t, ) = Uz = st) < C(1+ £)72 (1 wo ~ U Iy +lola), (1.18)



77

while 1f & 1s not an integer, then
Sup u(t, 2) = Uz = st)] < Co(1+8)***(|| uo = U [l +|tbola) (1.19)
for any constant € > 0 and some constant C, such that C, — oo as ¢ — 0.

Next we state the result for f'(uy) = s < f'(u-). When f'(uy) < s = f'(u_) or s =
f(uy) = f'(u-), the similar result is obtained as in Theorem 1(iii}.

Theorem 3 (Rate of asymptotic speed for f'(us) = s < f'(u=)) Let u be a solution obtained
in Theorem 1(ii) and f"(uy) = -+ = f™(uy) = 0 and fO+(uy) # 0 forn > 1. Then if
o € LY iy, (0 < <2/n), it holds for any e > 0

s%plu(t, z) = U(z = st)| < Co(1+8)7/**(| uo — U {l1 +[%olaters)- (1.20)

We now mention the background of our theorems. Pioneering work in this field was given
by I’in and Oleinik {1] in 1960. They showed the exponential stability of the traveling wave
solutions when f” > 0 and so f'(uy+) < s < f'(u-), together with the stability of rarefaction
waves. Kawashima and Matsumura [3] have obtained the stability of algebraic order, supg |u—
Ul < Ct~Wl2 if 4y € L. Recently, in the absence of f” > 0 the stability problems have
been investigated by Kawashima and Matsumura [4], Jones, Gardner and Kapitula[2], Mei [6].
When f has only one inflection point, the stability theorem has been obtained by Kawashima
and Matsumura {4] including the system case and the rate of asymptotic speed by Mei [6],
both of which are due to the weighted energy method. Mei [6] also has obtained the stability
theorem in the degenerate case s = f'(uy) for the first time. For general function f € C? and
f(us) < s < f'(u-) (non-degenerate shock case), Jones et al. [2] have obtained the stability
and the rate of asymptotics, supg |u — U| < C(1 4 t)~lV/* if 4, € L2, which is based on
spectral analysis. (Jur thHeorems 1 and 2 cover these stability results and improve the rate of
asymptotics in non-degenerate shock case. Further, our rate seems to be almost optimal from
the view point of the optimality in Nishihara 7], in which he has showed that, when f = u?/2,
supg |u — U| < Ct=% if [1ho(z)] < C|z[~*/? and this estimate is optimal in general. In the
degenerate shock case, we have obtained the rate in Theorem 3 for the first time. However, it
seems to be less sufficient and more contributions may be expected.

2 Reformulation of the problem

Letting U(&) be the traveling wave solution in Theorem 1, we put

u(t,m)zU(§)+1/’£(t,f), £=1z — st (2.1)
Then the problem (1.1), (1.2) is reduced to

e = st + F(U + ) — f(U) = pyee (2.2)

9(0,6) = po(&) = [_(uo— U)(m)dn (2.3)

Eq.(2.2) is rewritten as

Ve + R (U)e — pihee = F, (2.4)
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F=—{f(U+ve)— f(U)~ f(U)e}. (2.5)

Now we select the weight as

w= w(U) - I(U - u+)(U - u—)l'

T (2.6)

Since w(U) ~ cons:. in the case f'(uy) < s < f'(u_), L2 ,yy = L2 While if s = f'(uy) <

f'(us), then w(U) ~ U — uy|™™ as U — uy and w(U(€)) ~ (£) as £ — +oo, and hence
L2y = Ly, Also, Ly = Liy_ if f'(us) < f'(u-) = s and LYy = Ly = LT if f'(uy) =
flluz) =s. Notlng these we define the solution space of (2.2) and (2.3)

X(Os T) = {¢ € CO([O: T]) H2 n L2w(U))) ¢€ € L2(07 T; H2 N sz(U))}
with 0 < T' < 400. Then the problem (2.2), (2.3) can be solved globally in time as follows.

Theorem 2.1 Suppose 1 € H* N qu(U). Then there ezists a positive constant 5 such that

if 1| o |l2 +]¥olww) < €2, the problem (2.2), (2.3) has a unique global solution ¢ € X (0, c0)
satisfying

| () 113 +1w(t) o +/ | e () 113 +labe (D2 ydr < CUI %o 13 +ol2gwy) (2.7)

for any t > 0. Moreover, i tends to 0 in the marimum norm ast — oo, that s,

sup [¥¢(t,€)] = 0 as t— oo,
R

For the decay rate we have the followings.

Theorem 2.2 (Non-degenerate shock case) Suppose f'(uy) < s < f'(u=). Then the solution
Y(t) obtained in Theorem 2.1 satisfies

t
1+ v 13 +/0 (L+ 1) || %e(7) 115 d < CIola+ 1l %o II3) (2.8)
for any v such that 0 < v < «a if & ts an integer and that 0 < vy < o if & s not an integer.
Theorem 2.3 (Degenerate shock case) Suppose s = f'(uy) < f'(u-) and f"(uy) = --- =

f(uy) =0 and fO*D(uy) £ 0 forn > 1. If 0 < a < 2/n, then the solution (¢, z) obtained
in Theorem 2.1 satisfies

07 100 B+ [Q+ o ) B dr < Ol o I +Hoey)  (29)
for v such that 0 < y < /2.

All assertions (i)-(iil) in Theorem 1 are direct consequences of Theorem 2.1. Theorem 2
and Theorem 3 are, respectively, consquences of Theorem 2.2 and Theorem 2.3. Theorems 2.1-
2.3 are all proved by the weighted energy method combining the local existence with a priori
estimates. These are on the same line in Kawashima and Matsumura [3] etc.
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Proposition 2.1 (Local existence) For any &9 > 0, there ezists a positive constant Ty depending
on €q such that if Yo € H*N sz(U) and || Yo ||2< €0, then the problem (2.2), (2.3) has a unique
solution ¢ € X(0,Tp) satisfying || ¥(2) |l2< 20 for 0 <t < Tp.

Proposition 2.2 (A priori estimate) Let ¢ be a solution in X(0,T) for a positive constant T.

Then there exists a positive constant €3 such that if supge,cr || ¥(t) [|2< €3, then ¢(t) satisfies
(2.7) for 0 <t < T.

Proposition 2.1 can be proved in the standard way. Proposition 2.2 will be proved in the
next section. For the proofs of Theorems 2.2 and 2.3 more estimates are necessary.

In later sections we only show the case uy < u_ and h(U) < 0 for U € [uy,u_]. The other
case is shown in the same way.

3 Basic estimate and stability theorem

Assuming uy < u_ and A(U) < 0 for U € (uy,u_), we first derive the basic estimate in our all
proofs.

Lemma 3.1 Let ¥(t) € X(0,T) be a solution of (2.2), (2.3). Then it holds

S0y + [ U/=Teblr) P+l Py < Slbolioy + [ [wl0)pFdzdr. (3.1
Proof. Multiplying (2.4) by w(U(€))%(t,€) we have |

(U + (GORVIU) = U bed); + pulU)E = Zwh)(U)Ved? = w(U)YF. (32)

Here we have used uU¢ = h(U). Since we have taken the weight w as (2.6), we obtain (3.1) by
integrating (3.2) over (0,¢) x R and noting U, < 0. Q.E.D.

We now put
N(t) = sup || %(7) |2,
0<r<t

and assume N(t) < eq. Since |¢| < N(t), |F| < C+)7. Hence, if N(t) < 5 for sufficiently small
€3 > 0, then we have

|¢(t)li(v)+/0 [%e (T2 0ydm < Clbol - (3.3)

Moreover, we apply ¢ to (2.4), multiply it by d;% and 9% and integrate the resulting
equations over (0,t) x R. Noting |F¢| < o(1)|¢] + C|yetee| as supg |¢e] — 0 we can get the
next lemma. We omit the details.

Lemma 3.2 There is a positive constant e4(< €9) such that if N(t) < &4, the estimate holds:

e I+ [ () I dr < Cllbolaoyt I o 1R):

Combining Lemma 3.2 with (3.3) gives the proof of Proposition 2.2 and so Theorem 2.1.
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4 Decay rate for the case f'(uy) <s < f'(u_)

We proceed more a priori estimates of the solution 1 of the problem (2.2), (2.3). Since h(U) < 0
U € (us4,u-), there exists a unique number £, € R such that

)

Ue) =1 “*;“'. (4.1)

Putting (£ — &) = /T + (€ — £.) and multiplying (2.2) by 2(1 +1)(€ — £.)Pw(U ), we get
(L + )76 = ENPw(U)P?)e + (- e + 20(1 + £)7(€ = &) w(U)yf
—y(1+8)77HE = &) Pw(U)Y? + (1+)7(§ = &)1 Apy?

F2uB(1+ (€ = £572(E = E)w(U )ik (42)
= 2(1 +1)7(€ ~ &) w(U)YF,

where

£ — ¢
(6_6-&)

§€— &

Ap(€) = —(§ = &) Ue(wh)"(U) - B (€—¢&)

(wh)'(U) = =2(¢ = £&.)Ue — 26

(U -7)

by virtue of (2.6).

Lemma 4.1 Let a be a given positive number. For B € [0,a], tuere 1s a positive number cg
independent of B such that

Ag(€) > o forany € €R. (4.3)

Proof. Let put g(¢§) = —(wh)'(U(£)) = —2(U(§) — 1), then g(&) = 0 by (4.1) and ¢'(§) =
—2U'(€) > 0, so g(€) — us — ux as £ — *oo, respectively. Hence

£ — &
(€-¢&)
for any § > 0. On the other hand,

(wh)(U(§)) = c(é), [€—&]2=6 (4.4)

—<s—e*>Uf<wh)"(U;=—2<5—&>U5=2<£—5*>‘h(g(§))z‘}jfa), E—El<b (45)

for some constant 6. Combinig (4.4) with (4.5) we obtain (4.3), where ¢, = min{c(d), :‘%‘Q}
Q.E.D.

Integrating (4.2) over [0,¢] x R and noting C~! < w(U) < C, we have
(L+ )15 + B Jo(1+ 1) () 5oadr + [ (1 + 1) | (7) |7
< Ol + 1 JE(1+ 7))

+8 Jo(1+7)7 [(€ = &) beldedr + Jg [(1 4 7)€ — £.)°| || F|dédr}.

(4.6)
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Since

B

IVIQ

CBE = &) bl < S(E = €077 + —= (€ - &)

and

JGE(E - 5,.)"‘11/)?6{5
= fie-eu>r semay (€ = EVPURAE + fle_g e GR(E — &P 1y2dE
< L3 + ﬁcauwfn?-
for some fixed R > 0, we have
(L+ ) @3 + {50+ )3y + (3 = CN(P)(A + 7) e (1) 3 dr
< C{lbol3 + 7 5 (1 + 7) M (r) 3dr + 8 f3 I Pdr}-

Thus we get the following.
Lemma 4.2 There is a positive constant 5 such that if N(T) < s, then it holds for t € [0, T]

(L+ 871915 + B+ 1) [(7)5-1 + (1 +7)7|%e(7) [P Y7
< C{lwolg + 7 Jo(1 + )77 Hu(r)[3dr + B fo(1 + 7) I (7)|2dr}. @0
Applying the induction to (4.7) we have
Lemma 4.3 It holds for k =10,1,---, [a]
(14 O OF o+ [ = B+ 9 omy + (L 7Pl DB bir < Clol. (48)
Consequently, if a is an integer, then the following estimate holds for 0 < v < a
(+ 0PI + [ 1+ 7 leIPdr < Claal. (49)

Proof. First, letting v = 0 and 8 = « in (4.7) we have (4.8)y, which shows the lemma for
o < 1. Here we have used (3.3). Next we take 1 < o < 2. Letting /= 0 and y = 1 and letting
f=a—1and y=11in (4.7) show (4.8);. Hence the proof for « < 2 is completed. Repeating
the same procedure we can get the desired estimate (4.8); for any o > 0. Q.E.D.

Methods used in this section till now are almost same as in Kawashima and Matsumura
[3]. Further we show sharper estimate. Let o be not an integer and 7 be [¢] < ¥ < . Taking
f = 0in (4.7) we have

(1100 + [ (4TI Bdr < Clal + [ (4 P win)Bdn). (410)
Using (4.8), with k = []
(1+ )R 3 i + Jofla = [a)(1+ 7)E(n)% ),
+(1+ 7)) EYar < Cliol, (48
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we estimate the final term in (4.10):
Jo(L+ 7)o (r)|3dr
= [{(1 4 7)1t (€ = &) elaDed+-a)=(a=la])[o]+1=) (4 2)([e]+1-a)H(a=[aD) g 4 r
< fg(l 4~ ‘)7 —l(f(g - €‘>a—[a]¢2d€)[a]+l—a(f<5 _ 6*)"(["]“"‘)1,112d§)°‘_[°‘]d7'
= 31+ ) (1 ) (1 ) )l

< Clypol0e+1=0 (14 )1 r)pff_gyy_y)eldr

< ClypPlel+1=2)( (1 4 1)~ BRZ drjlebti=a( (1 4 )| g2, dr)=tel

S CW’O z)

because of {%H_i—'_'z > 1. Thus we have the following from (4.10).

Lemma 4.4 If a is not an integer, then it holds for any v <
t
1+ )OI + /0 (1+ 7)"lle(n)[Pdr < Claola. (4.11)

Similar estimates to Lemma 3.2 give the same decay rate for derivatives of the solution.

5 Decay rate for the case s = f'(uy) < f'(u_)

First we show the following estimate for the solution ¢ obtained in Theorem 2.1.

Lemma 5.1 For 0 < f < a < 2/n(n > 1), there exists a positive constant e; such that if
N(T) < 7, then the estimate

Jw(U)*Ph(t, €)dE + [y feso w(U)P~(r, )% dEdr
+ Jo Jw(U)*P4e(r,€)dédT < C [ w(U)*Pepo(€)7dE (5.1)g

Proof. Letting z(€) be a positive function and multiplying (2.4) by 2zw(U)v, we have
(w(U)8), + (- + 292 — ((hu) (U))d? + 2pzeu(U )b = 20w (UYOE.  (5.2)

Since
—(2(hw) (U))e = 2(T - U)z — 22U,

and

2w (U ] < 2enzu(U)t + A% o

2ez
for e € (0,1), Eq.(5.2) yields

(zw(U)g2)e + (- )¢ +2(1 = e)pzw(U)E + {=22U¢ + (2(T = U) — E570%) 2}y

2ez

< 2zw(U) |y F|. | (5.3)
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Taking z = w(U)?, we have

- 2802, = Loy )ho) et - v) - 2D,

If we put § =U —uy >0 and & = u_ — uy, then we have near u, or € = +o00

WU)w'(U) = 26 — i — LR

I=Q2@-0)

(nt1)
- 5(6-&)(h"(u+)5+---+"—"—n,—("ﬂ6"+o(m))

=26 —
I (n+1) ¢y
_(;:;L)52+...+Lﬁ:ﬁ%!_f_).5n+l +o(6"+1)

=26 —a—(6—a)((n+1)+0(6))

= an + O(9)
and hence )81
I= -ﬁﬂ;)————(fm + 0(8))(u(1 - %) + 0(6)).

Since 8 < a < %, ifwesete<lasl-— @2—:5 > 0, then there are positive constants ¢; and R,
such that

I>c for £€>R,. (5.4)
Noting C™! < w(U) < C,C™! < (w'h)(U) < C as § - —oo and using Lemma 3.1, we have
¢
- < 2 Uy :
| /esm 21 - y2dédr < Cli2, (5.5)

Because of (5.4) and (5.5) the integration of (5.3) over (0,t) x R gives the estimate (5.1). Q.E.D.
Again multiplying (2.2) by 2(1 + t)"(€ — &.)Pw(U)y and integrating its equation
(=(4.2)) over (0,t) x R, we have for 0 < f < «
(14 ) [()]3 ) + (1 = CN(T)) Jo(1+ ) [We(7)15 wiend7
+6 o (1 + 1) [(r)[3oydr
< ol + 7RO+ TP e (58

+0 Jo(1 4 7)7 J{€ = &)P 7 w(U) || dédr}.

For (5.6)yp withy=0and f < «

t | 2
last term in(5.6)o] < [ [ g—@—&)‘“%”CTﬁ<E—€*>"'lw(U)2¢?dEdﬂ (5.7)

and
S8 [t [ — )P 1w(U)yRdedr

< C g feop, wU)PHYFdEdT + 1 [§ fecon (& = &) 47dEdT + C [ [_p,<e<n, WEdEdT (5.8)
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for some constants R,, R3 > 0, becaue w(U(£)) ~ € as £ — oo and w(U(€)) ~ const. as
& — —oo. Applying Lemma 6.1 and Lemma 4.1 to (5.6)g 5, (5.7) and (5.8), and taking 8 = «,
we get the following.

Lemma 5.2 There is a positive constant g7 such that if N(T') < e7, then the estimate

Lol 8)]2 ey + /ot [W(T)Zoy + [e ()12 wndT < Clabold wry (5.9)
holds for a < %(n > 1)
Next we consider (5.6), 5 with v < @/2 and g = O:
(14 )W wiy + (1 = V(D)) Jo(1 + 7)1 (T)[F worydT
< Cllol iy + 7 RO+ T o) (58
We can estimate the final term provided v < £,in a similar fashion to the proof of Lemma 4.4,

deviding the integrand into {¢ > 0} and {{ < 0}.
Thus we have had a desired estimate.

Lemma 5.3 For N(T) < &7, 1t holds for y < a/2 < 1/n

(3 + ) @) 20 + /Ot(l + ) () 2y dm < Clol iy
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