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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS
FOR THE DISCRETE BOLTZMANN EQUATION
WITH LINEAR AND QUADRATIC TERMS

MITSURU YAMAZAKI (|1 i)

Dept. Mathematical Science, Univ. Tokyo

In this paper, we study the discrete Boltzmann equation in one-dimensional
space with linear and quadratic terms. This system, which is different from the
usual one by the intervention of linear terms, describes the gas motion of molecules
which take only a finite number of velocities under the interactions between particles
represented by the quadratic terms and also under the reflection of molecules at
the inner wall of an infinite thin tube, represented by the linear terms which we
treated in the papers [13], [14], [15], [16], [17], [18].

Gu,- 6uz N ) .
(B) 5 + Cigr = Qi(u) + Li(u) ,

Uili=0 = ud(z) .
The physical theory imposes to this system the natural conditions :

Conditions .—

ARt >

iy =Y
*) AL#0 = i#j,
a*>0 and of=0 forall k.

ke _ Akl __ Atk
A =45 = A,

This linear terms are more general than the ones which are obtained by considering
solutions around constant stationary solutions, called constant Maxwellian. We
suppose furthermore the conservation of momentum in the course of interactions
and also reflections

Condition mvQ.—
Aiff%o = c+tcj=cktcp.

and



Condition mvL.—
Viel, Za}c(ck—ci)zo.
kel

Remarque : We omit here all detailed explanations of these conditions which are
described in [18].

Remarque : We know already that for bounded, summable and positive Cauchy
data, the solutions exist globally in time, they are positive and bounded on [0, cc)
[13], [16], [18].

Under these assumptions, we show ‘asymptotic’ behaviors of solutions which
means that, for bounded and summable Cauchy data, the solutions Z ui(z+cgt, t)

Ca=¢C;

tend almost everywhere and in L(q € [1,00)) to a function ,(z). Furthermore,
supposing that the velocities are mutually different, we prove that, for i belonging
to a subset Iy, the u;(z + ¢;t,t) converge in L™ to ¢;(z) = 0. Finally we treat the
small data case, supposing that “sufficiently” reflection coefficients o are non zero,
which is incompatible with the momentum conservation for the linear terms (mvL).
Then we show, according to the argument due to Shizuta and Kawashima [9], [11],
the decay in (1 +t)"% of solutions. At the end, we prove that this assumption is
also necessary for the decay of solutions.

Definition.— We define a subset Iy as follows :
(1) Iy = {¢ :3j such that a; > 0}.
We denote vo = r?eajxci and Eo = {i :¢; = v}, then v1 = ig}é\igg ¢; and E; =
{i :¢ =7}, ---. In this way, we have the decreasing sequence of velocities
Yo>m > and E, ={i :¢; =~,}. We put then
(2) Ua(x:t) = Z 'U,,;(x,t)
Ci=",

and
(3) USest) = 3 et andu=Y [ W@)ds.

Ci=%Ya le[ R
Lemma 1.— Suppose the conditions (mvQ) and (mvL). Let u? be positive, sum-

mable and bounded Cauchy data. Then we have

t t
4)  Ualz +7at,t) =UJ(z) + / Pa(T + Yas,5)ds — / N0 (T + Va8, 8)ds
4} 0

with pe(z,t) = 0, na(z,t) 2 0 and [;° [ pa(z,t)dzdt < C(u? + 1), where C is a
constant depending only on the equations.
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Preuve. Integrating the sum of equations for ¢; = 7,, we have

t t
(5) Uds(z + vat, t) = Ud(z) + / Pa(T + Yas, 8)ds — / N (T + Yo, 5)ds
0 0
where

(6) pa(z,t) = 3 Aupug+ Y o,

(7) ny(z,t) = Z A}gguiuj-{- Z Za};ui,

Ci=%Ya ci=Ya k

where 3 "[resp. 3'] is the summation which operates only for cx # ¢; = v, with
af # 0 [resp. for cx # c¢ or cx = cg such that there exist 4 and j with Aff #0
and cx # ¢; = va]. To prove the global existence of solutions, we knew [18] that
Jo Jg Pa(z,t)dzdt £ C(4® + p).

Theorem 2.— Suppose the conditions (mvQ) and (mvL). Let u? be positive,
summable and bounded Cauchy data. Then the Ug(x + 74t,t) converge almost

everywhere and in L with q € [1,00) to a function . (x) positive, summable and
bounded.
Furthermore, if we suppose the

Condition vd.—

TE]=>CGFC,
then the u;(z + c;t,t) converge almost everywhere and in L? with q € [1,00) to a
function ¢;(x).

Preuve. By virtue of Lemma 1, we have
(8) Uo(z 4 vat,t) £ Go(x) almost everywhere

where Go(z) = U2(2) + [5° Pa(z + 7at,t)dt = 0. Then we have G, € L*. We see
easily that

Na(T + 7aS$, 8)ds

©) U2(x)+/tpa(x+'7as s)ds

Ga(z).

|I/\
\

A

A

Since G, is summable, we have, for almost all z € R,

(10) / Da(T + Yat,t)dt < 00
0



and
(11) / Nna (T + Yat, t)dt < oo.
0

Furthermore we have

(12) / / Ne (T + Yat, t)dtdr < 0.
o JRr
We see that
t t
(13) , liin Ud(z) + / Pa(Z + Ya$, s)ds — / Na(Z + Yas, 5)ds,
—ree 0 0

denoted by ¢, (x), exists for almost all z € R. We obtain
(14) Us(- + 7at, t) iy o () almost everywhere.
We see easily that ¢, is positive, summable and bounded. We have

t t
0 U%z) + / Dol + Yas, s)ds — / N (Z + Va8, s)ds
0 0

< Gu(z) e L.

(15)

By virtue of Lebesgue’s theorem, we deduce that

t t
(16) Ug(-) + / Da (- + Ya$, s)ds — / Na (- + Yas, s)ds
0 0

converges to ¢, in L'(R).

To prove the convergence in L7 with ¢ € [1, c0), we have only to use the interpolation
between L' and L*°. Indeed we have

(17) > ui-+cit,t) — gal)

iI€EE,

<C sup u; < 0.
- Rx[O,_oo)zi: '

Loo
In the above proof, we showed the

Corollary 3.— Suppose the conditions (mvQ) and (mvL). Let u? be positive,
summable and bounded Cauchy data. Then there exists a function G, positive and
summable such that we have

(18) Ua(x: t) § Ga(x - ’Yat)

for all (z,t) € R x [0, 00).

To study better the asymptotic behavior of solutions, we exclude henceforth the
case of multiple velocities. The final aim is to show that, for i € Ip, the u;(z+c;t, t)
tend to ;(z) uniformly in z € R. First we have
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Proposition 4.— Suppose the conditions (vd), (mvQ) and (mvL). Let u{ be
positive, summable and bounded Cauchy data. Then, for all € > 0, there exists a
big T such that we have

(19) / / ui(z, t)uj(z, t)drdt S €
T JR
ifi# j,
(20) / / u;(z,t)dzdt < €
T Jr
if i € Iy, and ’
(21) / ui(z, T)dz L €
R
if 1 € Iy.

Preuve. By virtue of the remarks concerning the global existence of solutions, we
deduce that, for all € > 0, there exists a big T° such that we have

(22) /‘/muﬁwu@@a§e
™ JR
i £,
(23) / / u;(z,t)dzdt < €
T JR
if 2 € Iy. Since we have
T°4+1
(24) / wi(z, t)dodt < e,
To R

there exists a T' € [T°, T° + 1] such that we have

(25) / wi(z, T)dz < e.
R

We have then the third inequality.

Proposition 5.— Suppose the conditions (vd), (mvQ) and (mvL). Let u? be
positive, summable and bounded Cauchy data. Then, for all € > 0, there exists a
big T such that we have, for c;, ck,c; mutually different,

(26) ess sup/ ugue(z + cit, t)dt S ¢
z JT
and, for k € Iy such that i # k,

(27) ess sup/ uk(z + cit, t)dt < €.
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Preuve. We knew that the G;(z) = ug(:c, t) + f0°° pi(z + cit, t)dt are positive and
summable and that u;(z,t) £ Gi(z — ¢;t,t). For all € > 0, there exists a closed
interval K C R such that / Gi(z)dr < ¢ for all 1 € I. We put
; R\K
08 = 0, on K,

Then we have [|Hg||;: < €. In the outside of the compact set L = {(z,t)
T — cit,z — cot € K}, we see that

, otherwise.

(29) upug(z,t) S M (Hi(z — cxt) + He(z — cot))
where we put
(30) M= sup Zui(z,t) < 00.

(.’E,t)ERX [0700) e

There exists a big T" such that
(31) R x [T,00)NL # 0.
Then we obtain

ge’s)
/ upue(z + cit, t)dt
T

(32) <M / " (He(z — cut) + Ho(z — cqt)) dt
T

< 2Me.
Therefore we showed the first inequality.

Concerning to the second inequality, we have first, for t > T,
up(z + cit,t) Sur(z+ et — et = T),T)

+C SUg(T + it — et — 7
- ;/u (& + it — cult — 7),7)dr

+ Zak/ up(x + cit — cp(t — 7), 7)dT.
p#k
Then we have

/ uk(x + cit, t) t<C/ukxT)dx
T

(34) | ~ +C> / / uyuqdzdt

pP#q

Zak / / updzdt.

p#k
The two first terms in the right-hand side are less that € by virtue of the Proposition
4. Concerning to the third term, the summation operates only for p # k such that
af # 0, 1i.e. forp € Iy. This term is then less also than € by virtue of the Proposition
4.
Now we state the theorem which describes more precisely the asymptotic behav-
ior of solutions.



52

Theorem 6.— Suppose the conditions (vd), (mvQ) and (mvL). Let u? be positive,
summable and bounded Cauchy data. Then, for i € Iy, the u;(xz + ¢;t,t) tend to 0
uniformly as t — +oo. In particular, we have @;(x) = 0.

Preuve. We have

J .
Uiz + it t) S —aus(z + it t) + C > upug(z + cit, t)

(35) P#q
+C Y up(z + ait,t)

p€lp

with a > 0. By virtue of the Proposition 5, for all € > 0, there exists a big T such
that

t
(36) ess sup/ Zupuq(:c + 6T, T)dT < E,
T T piq
t
(37) ess sup/ Z up(T + 7, 7)dT < €.
* T p€lp

Integrating the inequality (35), we have, for t > T,

(38) ui(z + cit, t) £ Me2Ct"T) 4 9¢

with

(39) M = sup Zui(z,t) < 0.
Rx[0,00) el

There exists a T° such that Me~*(~T) < ¢ for all t > T°. We have therefore, for
t > TO, ui(z + cit, t) < 3e. The function us(z + ¢;t,t) tends, in L% —norm, to O i.e.
wi(z) =0. :

Finally we apply the argument due to Shizuta and Kawashima [9], [11] to show
the decay in (1 + t)~7 of solutions in case “sufficiently” reflection coefficients af
are non zero, which is incompatible with (mvL) and also necessary for the decay of

solutions. First of all, we state some conditions.

Condition L.— If y; € R verify ) ., pu;Li(u) = 0 for all u, then we have
2 1iQi(u) = 0 for all w.

Condition dsp.— There is no eigenvector A of C = diag(c1,- - ,cn) such that A
is in the kernel of £*, where £ = (o] — 6;; Y, 0} )ij and N = {I.

Remarque : The condition (mvL) is incompatible with the condition (dsp). In-
deed, the vector (u;) such that u; = 1 if i € Ep and u; = 0 otherwise, is an
eigenvector of C and is in the kernel of L.
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Corollary 7.— The conditions (1) and (dsp) are verified if

1)there is at least two distinct velocities and 0 is a simple eigenvalue of L.

or

2)(very particular case)there is at least two distinct velocities and all of (i # k) are
non zero.

Condition prL’.—

of =ob foralliandk

(microreversibility of reflection).
Shizuta and Kawashima [9], [11] proved the

0

Proposition 8.— Suppose the conditions (dsp) and (urL’). We put S = L— C@
z

Let beu® € H* N LY(R) (s > 3). Then we have

(40) e°u] ;. £ CU+8)7F||u

Narserrs -

Furthermore, if u° is orthogonal to the kernel of £, then we have
(41) le*ulll,, £ L+ F Ju]

We show now the decay of solutions of our nonlinear system.

HsnLY *

Theorem 9.— Suppose the conditions (1), (dsp) and (urL’). Let u® be a posztwe
Cauchy data and in H* N L'(R)(s > 3). Let u(t) be a solution of

(42) (5 + 50 ) u= Q0+ Lw,

with the Cauchy data u°, where Q(u) = (Q:(u))i, L(u) = (Li(u));. Ifu® is suffi-
ciently small in H* N L*(R), then we have the global existence of solution and the
decay of solution in H*(R) :

_1
(43) Jul)ll Lo S Mul®llys = CA+ )7 # ul) genr
where the constant C depends only on the equations.

Preuve. Owing to the usual argument, it is sufficient to show the estimate (43)
up to the time-existence of solution T*. By virtue of the condition (L), Q(u) is
orthogonal to the kernel of £¢. We have

(44) u(t) = eSul + / t =S Q(w) (1) dr.
0

Remarking that H*(R) forms an algebra for s > %, we obtain, by the Proposition
8,

lu(®)l 2
<C@+07 5 (|u 4o + )l 0)
(45) +C / 1+t - 1) (1QW)() e + 1Q)P)| 2 )dr

t
<CUL+)} +C / (14t — )" 3u(r) |y 2dr,
0
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where we put Uy = ||UO||Hs + ““OHLI' Denoting U(t) = sup (1+"')%”“(T)“Hs, we
T€[0,t]
have
t
(46) v s CU°+C(1+t)%U(t)2/ (1+t—7)"8(1+7)"2dr
0

< CUy + CU (1)

We remark here that the equation X = C X+ CX? admits two real roots a and 8
(o £ B) for sufficiently small Xy with o = O(Xo?). By the continuity of U(t), the
value U(t) is included in the interval [0, o], which completes the proof.

At the end, we show that the condition (dsp) is also necessary for the decay of
solutions under the condition (L).

Theorem 10.— Suppose the condition (1L). Furthermore we suppose that the
condition (dsp) is not verified. Let u{ be positive, summable and bounded Cauchy
data. Then the solutions do not tend to 0 except when the data verify a linear
relation well precise.

Preuve. We know already [13] that the solutions u;(z,t) are positive, summable
in z and locally bounded in R x R,. By hypothesis, there exists u = (u;) € ker £
and v € R such that u; # 0 = ¢; = . Then we have ). y;L;(u) = 0 and, by the
condition (L), Y . #:iQi(u) = 0. We have then

(4.7) (% + 7%) (Z; pit;) = 0.

Therefore ), psu; is a conservative quantity which moves at the velocity v. Except
when ), piud = 0, the solutions u; can not tend to 0.
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