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A NOTE ON MILNOR AND THURSTON’S
MONOTONICITY THEOREM

TSUJII MasaTo
(3 EN)
The aim of this note is to give a simplified proof of the so-called Milnor and
Thurston’s monotonicity theorem. We begin with stating the theorem.
Let us consider a family of maps Q,(z) = a — z? from R to itself. The kneading

sequence for @, is an infinite sequence K(a) = (e1,ez2,---) of three symbols L,C

and R defined as )
L, if @,(0) <0;

e;=<¢ C, if QL(0) =0;
R, if Q4(0) >0,

On the set {L,C, R}V, the so-called signed lexicographical order < is defined as
follows: for three sequences with the same first n-entries,

IL 2(61)62)'“ 7en:L7"'))
IC :(61,82,"' 1en)Cr"')1
IR=(617627°" ;eﬂ!RJ"')r

we decide It < I¢ < Ig if the number of the symbol R in {e;,e2,--- ,en} is even,
and Ir < Ic < I otherwise. Milnor and Thurston’s monotonicity theorem is

Theorem. The correspondence a — K(a) is monotone increasing.

This surprisingly strong theorem was conjectured by Milnor and Thurston, and
proved firstly by Duady, Hubberd and Sullivan. The proof we give here is a modi-
fication of the proof in (2].

The theorem follows from

Proposition. If K(ag) = (e1,€3,--- ,€n,C,---) and e; # C for 1 < i < n, then

3a(Q2*(0)) azan
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M

where DQ}  denote the derivative of the n-times iteration of the map Q., and
84(Q"*1(0)) denote the derivative of Q7%1(0) as a function of the parameter a.

In fact, suppose that ag satisfies the assumption of the proposition and that the
number of R in (e1,€z2, - ,€,) is even (resp. odd). Then the denominator in the
left hand side of (1) is positive (resp. negative) and, from the proposition, so is the
numerator. This implies that e, 4+, variesas L — C — R (resp. R — C — L) when
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the parameter a pass ay from the left to the right. Now consider the truncated
kneading sequence K(™)(a) = (e, ez, - ,en) for each n. For each parameter at
which K(")(a) changes, we can find the situation in the proposition. Thus the above
observation shows that K(*)(a) depends on a monotonously. Letting n — oo, we
get the theorem.

Let us denote w; = Q,(0) fori = 1,2, - ,n and put w = (wy, wo, - - - ,wp) € R™.
Consider the so-called Thurston map:

T(z1,2z2, ,2n) = (0121 — 22,02V 21 — 23, ,0n1V21 — 24, 00/21)

where o; s the sign of w;. Then T(w) = w and T is defined on a neighborhood of
w. By easy calculations, we obtain’

04(Qa*'(0))]a=a0
D 20 (an (0))

matrix and DT the derivative of T at w.

Lemma 1.

= det(I, — D,T) where I, denotes the n x n unit

So we reduce the proposition to
Lemma 2. No eigenvalue of D, T is contained in {1, 00).
Let X = {(21,22, -+ ,22) €EC™ | 0< |z:| <3, and z; # z; if i # j} and
Yo={(21,22 1 2) € X | |zi] > 107 and |z — z;] > 10™003de if i £ 5}
for € > 0. Then the (multi-valued) complex extension of T,

TC(lez:Zr“' 7zﬂ)=(\/zl_22)\/21 — 23, " yvzl):cn —"'Cn,

maps X into itself in the sense that, for every z € X and every branch of T¢, the
image belongs to X. Moreover, if ¢ is sufficiently small, T¢c maps Y; into a compact
subset of Y, in this sense. Take ¢ so small that w € Y,. Let M, : C — C be a map
defined by

My(z1,- -, 2n) = (w1 + p(z1 — w1), -, W + 4(zp — wy)) : C* — C™.

We choose 4 > 1 so close to 1 that the composition S := M, o T¢ maps Y, into
itself. Let m : Y. — Y. be the universal covering and let @ € 176 be a point such that
7(@) = w. Then there is a (single valued) lift S :_}7'6 — Y. of S such that (@) = &.

Now consider the Kobayashi metric |- [ on Y., which is defined as

[v]k = [sup{r > 0 | there is a holomorphic map ¢ : D, — Y, s.t. dé(e) = v.}]~!

for any tangent vector v where D, = {z € C | |z| < r} and e is the unit vector at
0 € D,. (See [1] for generalities.) Then it is easy to check that |- |x is equivalent to
the Euclidean metric at each point. From the definition, we have |d®(v)|x < |v|x
for any holomorphic map & : Y. — Y. and any tangent vector v. So it follows that
the spectral radius of Dy S is not bigger than 1. Since DzS = p-D,T and u > 1,
the spectral radius of Dy S is smaller than 1. We have proved lemma 2 and so the
main theorem.
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