Y_{555} and related topics

Masaaki KITAZUME (北詰 正顕)

Department of Mathematics Faculty of Sciences Chiba University Yayoi-cho, Inage-ku, Chiba 263, JAPAN

In this note, we will introduce some idea to study the Y_{555} group given in the paper

[CP] J.H.Conway and A.D.Pritchard : Hyperbolic reflections for the Bimonster and $3Fi_{24}$ in "Groups, Combinatorics and Geometry", Cambridge, 1992

and will report some observations together with some questions.

We denote the Monster simple group by \mathbb{M} , and the wreath product $\mathbb{M} \wr 2$ is called the Bimonster. The following diagram is called Y_{555} , and is regarded as a Coxeter diagram which gives 16 generators and some relations among them.

First we will collect some theorems on the presentation of the Bimonster.

Theorem A.

$$\mathbb{M} \wr 2 \cong \langle Y_{555}, (ab_1c_1ab_2c_2ab_3c_3)^{10} = 1 \rangle$$

Theorem B. Suppose that the group G is a minimal group that possesses an S_5 -subgroup S whose centralizer is isomorphic to S_{12} in which a 7 point stabilizer is conjugate to S.

Then $G \cong S_{17}$ or the Bimonster $\mathbb{M} \wr 2$.

Theorem C.

$$\mathbb{M} \{ 2 \cong < Y_{555}, f_i = f_{ij}(i, j = 1, 2, 3, i \neq j) > f_{ij} = (ab_i c_i d_j b_j c_j b_k)^9, \{i, j, k\} = \{1, 2, 3\}$$

Remark. f_{ij} corresponds with the root of the highest height of the E_8 -lattice:

We will call such a relation an E_8 -relation.

Theorem D.(The 26 node theorem)

The bimonster $M \wr 2$ contains 26 involutions, including the generators in Y_{555} , satisfying the Coxeter relations of the incidence graph of the projective plane of order 3.

In [CP], Conway and Pritchard defined the Monster roots, which are some vectors defined in the 16 dimensional space with the 19 coordinates

$$v = \left(\begin{array}{ccccc} a & b & c & d & e & f \\ g & h & i & j & k & l & t \\ m & n & o & p & q & r \end{array}\right)$$

with the quadratic form

$$a^2 + b^2 + \ldots + q^2 + r^2 - t^2$$

and the 3 relations

$$\begin{cases} a + b + c + d + e + f = t \\ g + h + i + j + k + l = t \\ m + n + o + p + q + r = t. \end{cases}$$

For a vector x, the reflection r_x is

$$r_x: y \to y - \frac{2 < y, x >}{< x, x >} x,$$

where $\langle \cdot, \cdot \rangle$ is the inner product.

The fundamental Monster roots are the vectors

$$a, b_i, c_i, d_i, e_i, f_i \ (i = 1, 2, 3)$$

given in Table 1. (In general, the term 'root' means a vector of squared length 2.) We denote by Π the set of the fundamental Monster roots. The reflections r_x ($x \in \Pi$) satisfy the relation given by the diagram Y_{555} .

The (infinite) group G is defined by

$$G = < r_x \mid x \in \Pi > .$$

Then by Theorem A, there exists some normal subgroup N of G such that G/N is isomorphic to the bimonster $\mathbb{M} \wr 2$.

The Monster roots are the vectors in the G-orbit Π^G . We will define an equivalence relation between the Monster roots.

Definition.

$$x \doteq y \ (x, y \in \Pi^G) \iff \bar{r}_x = \bar{r}_y \in G/N \cong \mathbb{M} \wr 2$$

(Table 1) Th	e fundamental	Monster roo	ots and	the 26	nodes
--------------	---------------	-------------	---------	--------	-------

			i	= 1	1.					i	=	2					:	i =	3			
a								$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	1)								
b _i	$\left(\begin{array}{c}0\\0\\0\end{array}\right)$	0 0 0	0 0 0	0 0 0	1 0 0	ī 0 0	0	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0\end{array}\right)$	0 0 0	0 0 0	0 0 0	0 1 0	0 1 0	0	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right) $	0 0 0	0 0 0	0 0 0	0 0 1	0 0 1	0	
C _i	$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	0 0 0	0 0 0	1 0 0	1 0 0	0 0 0	0	$\left(\begin{array}{c}0\\0\\0\end{array}\right)$	0 0 0	0 0 0	0 1 0	0 1 0	0 0 0	0)	$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	0 0 0	0 0 0	0 0 1	0 0 1	0 0 0	0	
d_i	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right) $	0 0 0	1 0 0 -	1 0 0	0 0 0	0 0 0	0	$\left(\begin{array}{c}0\\0\\0\end{array}\right)$	0 0 0	0 1 0	0 1 0	0 0 0	0 0 0	0)	$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	0 0 0	0 0 1	0 0 1	0 0 0	0 0 0	0	
e_i	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right) $	1 0 0 7	1 0 0	0 0 0	0 0 0	0 0 0	0	$\left(\begin{array}{c}0\\0\\0\end{array}\right)$	0 1 0	0 1 0	0 0 0	0 0 0	0 0 0	0)	$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	0 0 1	0 0 1	0 0 0	0 0 0	0 0 0	0	
f_i	$ \left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right) $	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	$\left(\begin{array}{c}0\\1\\0\end{array}\right)$	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0)	$\left(\begin{array}{c}0\\0\\1\end{array}\right)$	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0)	
a_i	$\left(\begin{array}{c}0\\1\\1\end{array}\right)$	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	1	$\left(\begin{array}{c}1\\0\\1\end{array}\right)$	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0	1)	$ \left(\begin{array}{c} 1\\ 1\\ 0 \end{array}\right) $	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	1	
z_i	$ \left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right) $	1 0 0	0 0 0	0 0 0	0 1 1	0 1 1	2	$\left(\begin{array}{c}0\\1\\0\end{array}\right)$	0 1 0	0 0 0	0 0 0	1 0 1	1 0 1	2	$ \left(\begin{array}{c} 0\\ 0\\ 1 \end{array}\right) $	0 0 1	0 0 0	0 0 0	1 1 0	1 1 0	2	
g_i	$\left(\begin{array}{c}2\\0\\0\end{array}\right)$	0 0 0	0 0 0	0 1 1	0 1 1	1 1 1	3	$\left(\begin{array}{c}0\\2\\0\end{array}\right)$	0 0 0	0 0 0	1 0 1	1 0 1	1 1 1	3	$ \left(\begin{array}{c} 0\\ 0\\ 2 \end{array}\right) $	0 0 0	0 0 0	1 [.] 1 0	1 1. 0	1 1 1	3	
f								$ \left(\begin{array}{c}1\\1\\1\end{array}\right) $	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	2								

The following equivalence is a key of [CP].

Proposition 1. (Theorem 2 of [CP])

Notice that the sum of the vectors

$$v + b_1 = \begin{pmatrix} 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 & 2 & 2 & 6 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} = f_3 + 2e_3 + 3d_3 + 4c_3 + 5b_3 + 6a + 4b_2 + 2c_2 + 3b_1,$$

and this equals the primitive isotropic vector of the following \tilde{E}_8 -lattice.

Hence Proposition 1 is equivalent to

This means $f_{32} = f_3$, one of the E_8 -relations in Theorem C.

Now a simple question is "What does happen on an E_6 - or E_7 -diagram in Y_{555} ?" The following equivalence (we call it an E_6 -relation) is proved in [CP].

Proposition 2.(Theorem 4 of [CP])

The sum equals $3 \times (\text{the primitive isotropic vector of } \tilde{E}_6\text{-lattice}).$

$$\left(\begin{array}{ccccccc} 0 & 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 3 & 3 & 3 & 9 \\ 0 & 0 & 0 & 3 & 3 & 3 \end{array}\right)$$

Similarly the following " E_7 -relation" can be proved by using the relations in [CP]. **Proposition 3.**

The sum equals $2 \times (\text{the primitive isotropic vector of } \tilde{E}_7\text{-lattice}).$

We will explain the above relations by using the orders of the products of some reflections.

Let $\tilde{X} = X \cup \{e\}$ be a subset of Π such that the diagram of \tilde{X} is an affine diagram $\tilde{E}_n, n = 6, 7$ or 8, and the diagram of X is a spherical diagram E_n . Then we write $e = e(\tilde{X})$ and denote by h = h(X) the root of the highest height of X.

Then the sum e + h is a primitive isotropic vector. Moreover $\langle e, h \rangle = -2$, and $r_e(h) = h + 2e$.

The E_6 -relation is equivalent to $h + 2e \doteq e + 2h$ and

$$h + 2e \doteq e + 2h \iff r_e(h) = r_h(e) \iff |r_e r_h| = 3.$$

The E_7 -relation is equivalent to $h + 2e \doteq h$ and we have

$$h + 2e \doteq h \iff r_e(h) = h \iff |r_e r_h| = 2.$$

The E_8 -relation is also equivalent to $h \doteq e$ and this means

 $h \doteq e \iff r_e = r_h \iff |r_e r_h| = 1.$

Remark. The numbers 3,2,1 are the determinants of E_6, E_7, E_8 -lattice. Is there any mathematical background ?

Theorem C shows that

$$\mathbb{M} \wr 2 \cong \langle Y_{555}, E_8 - \text{relations}(\forall E_8 \subset Y_{555}) \rangle$$
.

The following is a natural question.

Question.

$$< Y_{555}, E_7, E_6$$
-relations $(\forall E_7, E_6 \subset Y_{555}) >=?$

Remark. The orthogonal group O(11,3) contains

satisfying the E_6 -relation and $f_1 = f_{13}, f_2 = f_{23}$, (and $(ab_1c_1ab_2c_2ab_3c_3)^{30} = 1$). It is known that

$$3.Fi_{24} \cong < Y_{552}, f_1 = f_{13} = f_{12}, f_2 = f_{23} = f_{21} > .$$

Finally we consider the affine diagrams \tilde{X} contained in 26 node system given in Theorem D. The 26 vectors are listed in Table 1 ([CP]). By using them, we can easily calculate the orders $|r_{e(\tilde{X})}r_{h(X)}|$ in $G/N \cong \mathbb{M} \wr 2$.

The cases (1)-(3) are contained in Y_{555} , the set Π of fundamental Monster roots. We treated them in Propositions 1-3.

The cases (4)-(13) are not contained in Y_{555} . There is no diagram which gives a new relation.

An interesting fact is that for any X, Y of (4)-(13),

$$|r_{e(\tilde{X})}r_{h(X)}| \le |r_{e(\tilde{Y})}r_{h(Y)}| \iff c(X) \ge c(Y)$$

where we denote by c(X) the Coxeter number of X.

Our final question is "Is there any mathematical background ?"

(Table 2) The affine diagrams \tilde{X} and the order $|r_{e(\tilde{X})}r_{h(X)}|$

(1) (2) (3)	$egin{array}{c} ilde{E}_6 \ ilde{E}_7 \ ilde{E}_8 \end{array}$:	3 2 1		E_6 -relation E_7 -relation E_8 -relation
(4)		\tilde{D}_4		:	3	\Leftrightarrow	(1)
(5)		-	$ ilde{A}_5$:	3	\Leftrightarrow	(1)
(6)		$ ilde{D}_5$:	3	\Leftrightarrow	(1)
(7)			Ã7	:	2	\Leftrightarrow	(2)
(8)		$ ilde{D}_{6}$:	2	\Leftrightarrow	(2)
. (9)			$ ilde{A}_9$:	2	\Leftrightarrow	(2)
(10)	$ ilde{E}_{6}$:	2	\Leftrightarrow	(2)
(11)			$ ilde{A}_{11}$:	1	\Leftrightarrow	(3)
(12)		$ ilde{D}_{8}$:	1	\Leftrightarrow	(3)
(13)	$ ilde{E}_{7}$:	1	\Leftrightarrow	(3)