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The definition of vertex operator algebras is now essentially fixed due primarily to the
book written by Frenkel, Lepowsky and Meurman [3] (see [1] also). We mostly follow their
definition in this notes. In particular we assume the existence of the vacuum vector 1 and
the conformal vector w. The components w,, of the vertex operator Y (w, z) of w form the
Virasoro algebra Vir spanned by L(n)’s if we set L(n) = wnp4+1. The L(n)’s satistfy the
famous commutation relation :

1
[L(m), L(n)] = (m — n)L(m +n) + = (m® = m)Smin,oc,
where c is called the central charge of the Virasoro algebra Vir or the rank of the vertex
operator algebra V. The central charge c is assumed to be a rational number in [3], but
we do not need it in this paper. If Vi is the eigenspace of the Virasoro operator L(0) with
eigenvalue k, then it is assumed that k is an integer and V is the direct sum of Vi'’s :

Vi is the subspace of the homogeneous elements of V' and the elements of V; are said to
have weight k. The dimension of V) is assumed to be finite in [3]. We, however, do not
need it. We, as in [3], assume that the weight of V is bounded below and so Vi = 0 if
k < ko. That L(—1) is injective is noted by Li in [4] and that L(1) is surjective is shown
by Dong, Lin, and Mason [2]. In this note, we shall obtain, as a corollary, an ‘extension’
of their result : for all k¥ > 0 and n > 0, L(—n) is injective on Vi and L(n) is surjective
on Vi, provided that the central charge c of the Virasoro algebra Vir is nonnegative and
the negative weight states do not occur, i.e. V3 = 0 for k < 0. These conditions are not
assumed in [2] or [4]. What we actually prove is the existence of certain operators Uk n
and Dy , composed of the Virasoro operators L(n), L(—n) such that L(n)Ug »|v, = Id|v,
and Dg ,L(—n)|y, = Id|y,. See Theorem 4 below for the precise statement.The injectivity
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itself of L(—n) for n > 0 under our assumption is easy to show, hence so will be the
surjectivity of L(n) if the duality is used. We, however, believe that the explicit operators
Uk,n, and Di , (i.e. ‘inverses’ of L(n) and L(—n)) are of some interest for studying the
Monster module, for example. The operators U , and Dy , can not be defined unless
some conditions are met. The conditions on the central charge ¢ and the negative states
mentioned above are the simplest. For more general cases, see Theorem 7. See Corollary
8 also, where we prove, under some assumption,

Vign = Ker(L(n)IVk+n) ® Im(L(—-n)|v, ),

for all n > 0.

We start with an elementay lemma :

Lemma 1. For k € {1,2,3,......... }, we have :
(a). [L(0), L(n)*] = —knL(n); and,
(b). [L(n), L(—n)¥] = 2knL(—n)*"1L(0) + kn((k — 1)n + £(n? — 1)c)L(—n)*-1.

Proof. (a) is an easy exercise by induction. (b) is also shown by induction as follows. Set

f(k) = 2kn,

g(k) =kn((k—-1)n+ Ili(n2 —1)c¢).

If k = 1, then f(1) = 2n and g(1) = &(n® — n)c and so (b) is just a defining relation of
the Virasoro algebra. Suppose that (b) holds for k. We have, by a property of derivations,
[L(n), L(~n)**"] = [L(n), L(=n)|L(=n)* + L(n)[L(n), L(~n)"]

= (2nL(0) + 75(n® ~ n)e)L(=n)* + L(=n)(f(k) L(~n)*~" L(0)

+ g(k)L(=n)*1)

= 2n(L(-n)*L(0) 4+ knL(—n)*) + I%(n?' —n)cL(—n)F

+ F(R)L(=n)*L(0) + g(k) L(=n)*

= (2n + f(k))L(—n)*L(0) + (2kn® + 1—12—(713 —n)c+ g(k))L(—n)*.
It now remains to show that

f(k+1) = f(k) + 2n,

and

1
g(k+1) = 2kn? + E(n3 —n)c+ g(k).
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The first is trivial. To show the second we compute :

1
2kn® + ﬁ(ns —n)c+ g(k)

1 1
— 2 3 _ — —(n?—
= 2kn* + 12(n n)c+ kn((k —1)n + 12(n 1))e
1

= kn(2n + kn —n) + (kn + n)o5(n* = 1)e
=kn(k+1)n+ (k+ l)né(n2 —1)c

= (k + Dn(kn + —(n? —1)c)

12
=g(k +1),

as required.

Definition. For each pair (k,n) of integers we define the ‘up’ operator
Uk,n : Vk — Vk+n,

and the ‘down’ operator
Din: Vign — Vi,

as follows: -
Uk,n = ZajL(—"n)jL(n)j—la
Jj=1
and -
D, = ZajL(——n)j_lL(n)j,
i=1
where )
~12. 4 1
Y il ¥ |
o ==(=7) g(i((nz “T)c=12( = Dn 1 028)”
or
aJ- =0
if

(n? =Dec—~12(i —1)n+24k =0

for some ¢, where 5 > 1 > 1.

Remark. If (n? — 1)c — 12(i — 1)n + 24k = 0 for some 7, then
| . (n?=1)c+ 24k
' 12n

In particular, such an ¢ = 19 is uniquely determined for a given pair (k,n). Obviously
a; = 0 for all j > 19, and a; # 0 for j < tg. Since the weight of V' is bounded below, both
operators are well defined on V. Note also that the coefficient a; involves k.

+ 1.
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Lemma 2. Suppose ¢ > 0 and the weight of V is bounded below by 0, i.e. Vi = 0 for
k < 0. Then for k > 0, L(n)? Vi = L(n)?Vik4n = 0 holds for all n > 1 and for all

. o (n2=1)c+24k
J Z 12n + 1.

Proof. Suppose
(n? — 1)c+ 24k

> .
J= 12n +1
Then (2 1)
n® —-1)c
; — > k
(J-Dn2> 15 + 2k,
and so (n? — 1)
n® —1)c
k—(1—-1n< k- —"1",
(J-1n< 7

On the other hand, we have :
L(n)j_le C Vk—(j—l)n-

Suppose
n? —1)c

(
g 12

Then, since n > 1, we get k = 0, against our assumption. Since

2 0.

L(n)ij+n - Vk—(j—l)na
also, we obtain the lemma.

Corollary 3. Supposen > 1 and
(n? — 1)e — 12n(ip — 1) + 24k = 0,

for an integer i, then _ .
L(n)*~ 1V, = L(n)**Viyn = 0,

ifk > 0.
Proof. Immediate from the previous lemma.

Theorem 4. Suppose the central charge ¢ of the Virasoro algebra Vir of the Vertex
operator algebra V is nonnegative ; i.e. ¢ > 0 and the negative states do not occur ; i.e.
Vi =0 for all k < 0. Then

L(n)Uk,nIVk = Ilek’

and,
Dk,nL(_n)IVk = IdIVk ’

for allk > 0, n > 0.
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Corollary 5. Under the same assumption as in Theoem 4, we have : L(n) is surjective
on Viyn and L(—n) is injective on Vi for alln > 0,k > 0.

Remark. Alternatively, the injectivity of L(—n)|y, can easily be established as follows
(under a slightly weaker condition). Suppose L(—n)v = 0, where v € Vj. Since the weight
of V is bounded below, we have L(m)v = 0, for a large m > 0. We may assume n|m. Using
the Virasoro relation :

[L(m), L(=n)]o = (m + n)L(m — n)v + le—(m3 )0y = 0,
repeatedly we obtain, with m=n,
1
(2nL(0) + E(n3 —n)c)v = 0.
Therefore )
_— 3 —_ —
(2nk + 12(n n)c)v = 0.

Now suppose

24nk + (n® — 1)c # 0,
which obviously holds if n > 0,k > 0,¢ > 0. Then v = 0, as desired.

Proof of Theorem 4. We directly compute :

oo

L(n)Ugn = Z a;L(n)L(—n) L(n)i~?

= 3" a;{L(=n)L(n) + FG)L(=nY " L(0) + g(i)L(—nY T }L(nY ™,

where as in Lemma 1,
f(5) = 2jn,

and
1

9(i) = in((§ = Dn + 75 (n® = 1)o).

Since L(n)?~'Vi C Vik_(j-1)» and L(0)|vi_(j_1yn = k — (j — 1)n, a scalar mulptiple, we
have:

L(m)Ukalv, = ) a;L(=n) L(n)’
+ 2 ai{f(G)(k = (G = D)) + g()}L(=n) = L(n) ™
= a{f(Dk +g(1)}d]y,

+ Y {aj-1 +a;(f()(k = (G = 1)n) +g()}IL(-n) "' L(n) .

i=2
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It now suffices to show:

a{f(Dk+g(1)} =1,
and, for 7 > 1,

{aj—1 + a;(f()(k = (G = D) + g())L(=n) T L(n) |y, = 0.

We have : 1
f(1) =2n,9(1) = 75(n° —n)e,

and so 1

f(Dk +g(1) = 2kn + (n® —n)e #0,
and

12 1 _ L

ap = —( - )(nz —1ec+24k  f(D)k+g(1)

and so

ar(F(1)k + (1)) = 1.
We will next show, for 5 > 2,

aj—1 +a;(f(5)(k — (4 — D)n) +9(4)) =0,
if a; # 0 (and hence a;_; # 0 also).

Recall ;
~12.; ¢ L

=1

Replacing f(j) and g(j) with their respective expressions given above, we obtain

fG)(k=(G-1)n)+g(5) = jn{fé(nz—l)c—(j—l)wzk} = %{(n2—1)c—12(j—1)n+24k}.

By the definition of a;, we obtain

aj 12 1
a1 jn(n? —1)c—12(j — I)n + 24k
Therefore
aj-1+a;(f(7)(k = (G — 1)n) +9(j)) =0,
as desired.

Finally we treat the cases where a; = 0 for some j. To this case to occur, there must
exit an integer iy such that (see Remark)

; _ (n®* —1)c+ 24k 1
°= 12n ’
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In this case, we have a; = 0 for all j > ig, and a; # 0 for j < ¢. It then suffices to show :
{io=1 + ig (£ (io) (k — (io — 1)n) + glio) }L(=n)**L(n)*~ |V = 0.
This, however, has been shown in Corollary 3.
The corresponding statement for the down operator :
Di,nL(—n)ly, = Id]y,

can be proved by making the following observation :

Lemma 6. The following relation holds :
L(n)L(=n)’ L(ny' |y, = L(=n)’ "' L(n)' L(=n)|v,
= L(—n)’L(n)’

{2k~ (5~ D+ jn((§ ~ Dn+ 75(n2 = D) }E(-n) " L(ny

Proof. We set a; = 1and a; = 0 for 7 # j in the calculation of L(n)Ug »|v,. Then its proof
reads :

L(n)L(—n) L(n)" " |y, = L(=n)' L(n) + {f(§)(k = (j — \)n) + g(i)} (=) " L(n)i .

The equality of the first and the third quantity in the lemma is now obvious. To show the
remaining equality, let us write

f(3) = f(G,n) =2jn
and -

9(5) = gG,m) = jn((§ = Dn+ 75 (n? = 1)e),

as f and g are functions of two variables 7 and n. Then by Lemma 1, we obtain :

L(n)’ L(—n) = L(-n)L(n)’ — f(j, —n)L(n)* "' L(0) — g(j, —n) L(n)’ .
Therefore

L(=n)""'L(n)' L(=n)|v, = L(=n)’L(n)’ + {=f(j, —n)k — g(3,—n)}L(=n)’ " L(n)"~*.
It now sufices to show :
—f(3, —n)k — 9(j, —n) = f(,n)(k = (j — )n) + g(4, n)),
or
—g(j, _n) = _2Jn(J - l)n +g(]a Tl.),

which can be established easily. ‘

It is now immediate from Lemma 6 that
Dy, nL(—n)lv;, = L(n)Ukn|v; = Id|v;.
This completes the proof of the theorem.

We do not see an immediate application of it, but what we actually proved in Theorem
5 was :
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Theorem 7. Suppose :
| (a). (n® —1)c —12(i — 1)n + 24k # 0 for any ¢ > 1; or,
(b). L(n)?~'V}, = 0 for all j > iy, where
. (n®—1)c+24k

10 Tom + 1.
Then
L(n)Uknlv, = Idly,,
and,
Dy nL(—n)|v, = Id|y,,
for all n > 0.

Corollary 8. Under the same assumption as in Theorem 7 (in particular if ¢ > 0, ko =0,
and k > 0), we have

Vign = I{er(L(n)IVk-f-n) ©® Im(L(—n)IVk)’
for all n > 0.

Proof. Consider the exact sequence :

0 — Ker(L(n)lw,.) = Vign =3 Vi — 0,

where ¢ is the natural injection. Since the ‘up’ operator Ui, splits the exact sequence, we
have ’

Vitn = Ker(L(n)lv,,..) ® Im(Uy,n)-

Since -
Ugn = ZajL(—n)jL(n)j"l,
j=1
we obtain :
Im(Uk,n) € Im(L(—n)).
Hence

Vign = Ker(L(n)IVH”) + Im(L(—n)|v,).
To show the sum is direct, let
v € Ker(L(n)|v,,,) N Im(L(—n)|v,).
Then v = L(—n)v’, where v’ € Vi, and L(n)v = 0. We can now apply the ‘down’ operator

oo

Din =Y a;L(-n)"'L(n)’,

j=1

to the both sides of the relation v = L(—n)v’ to obtain v’ = 0. This completes the proof
of the corollary.
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