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TODA EQUATIONS AND HARMONIC MAPS

YOSHIHIRO OHNITA (大仁田 義裕)

Department of Mathematics, Tokyo Metropolitan University,
Minami-Ohsawa 1-1, Hachioji, Tokyo 192-03, Japan

A harmonic map is defined as a critical point of energy functional for smooth
maps between Riemannian manifolds. The excellent references for harmonic map
theory are [EL1], [EL2]. Over the past few years Theory of Integarble Systems pro-
vides new approach and much progress in the theory of harmonic maps of Riemann
surfaces into symmetric spaces. The purpose of this article is to give a survey on
recent works due to [B-P], [BPW], [Mcl], [Mc2] and so on. Especially, we shall re-
strict our attention to the relationship between Toda field equations and harmonic
maps.

This article consists of the following subjects :
(1) an elementary construction of a solution to (elliptic) Toda field equation

of type $A$ from a harmonic map of a Riemann surface into a complex
projective space.

(2) to introduce the notion of primitive maps into k-symmetric spaces and
primitive maps of finite type. Here the fundamental thorem is that a prim-
itive map of a 2-torus satisfying certain semisimplicity condition is of finite
type. By using this theorem it can be shown that harmonic 2-tori in some
compact symmetric spaces are covered by primitive maps of finite type.

(3) a correspondence between solutions to an affine Toda field equation for a
simple compact Lie group $G$ and a certain class of harmonic maps into a
symmetric space $G/H$ , and its applications.

1. ELLIPTIC TODA EQUATION AND GAUSS BUNDLES

1.1. Elliptic Toda equation. The 2-dimensional Toda field equation (of type a)
is a partial differential equation

(1.1) $2 \frac{\partial^{2}}{\partial z\partial\overline{z}}\omega_{p}+e^{2(\omega_{p}-\omega_{p-1})}4-e^{2(\omega_{p+1}-\omega_{p})}=0$

with the unknown functions $\{\omega_{p}|p\in Z\}$ . We shall restrict to the elliptic version,
where it is assumed that each $\omega_{p}$ is a real-valued function defined on a domain of
the Gauss plane C. In this case, the left hand side of (1.1) becomes the Laplacian
of $\backslash p$ .

In this section we shall indicate the relationship of the elliptic version of Toda
equation with harmonic maps in a simple case. In order to do it, we consider
harmonic maps into a complex projective space $CP^{n}$ .
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1.2. Gauss bundles. One of the most fundamental method to make harmonic
maps is to construct the Gauss bundles of a harmonic map. We begin with a
brief explanation of the Gauss bundles ([BW],[EL2]). Let $\varphi$ : $\Sigmaarrow Gr(C^{N})=$

$]j_{k0}^{N_{=}}Gr_{k}(C^{N})$ be a smooth map of a Riemann surface $\Sigma$ into the complex Grass-
mannian. The map $\varphi$ can be identified with a subbundle $\underline{\varphi}$ of the trivial bundle

$\frac{C}{\Sigma}N=\Sigma\cross C^{N}$
in the natural way. Let $\{z\}$ be a local holomorphic coordinate of

The $\partial’-$ and $\partial’’-$ second fundamental forms $A_{\varphi}’$ : $\underline{\varphi}arrow\underline{\varphi}^{\perp}$ and $A_{\varphi}’’$ : $\underline{\varphi}arrow\underline{\varphi}^{\perp}$ .
of the subbundle $\underline{\varphi}$ are defined by

$A_{\varphi}’(s)= \pi_{\varphi}^{\perp}(\frac{\partial s}{\partial z})$ and $A_{\varphi}’’(s)= \pi_{\varphi}^{\perp}(\frac{\partial s}{\partial\overline{z}})$ ,

for each $s\in C^{\infty}(\underline{\varphi})$ . The map $\varphi$ is harmonic if and only if $A_{\varphi}’$ : $\underline{\varphi}arrow\underline{\varphi}^{\perp}$ is

holomorphic, i.e. $\nabla_{\frac{\varphi_{\partial}}{8z}}^{\varphi^{\perp}}A_{\varphi}’\equiv 0$ , or eqVvalently, $A_{\varphi}’’$ : $\underline{\varphi}arrow\underline{\varphi}^{\perp}$ , is antiholomorphic.

Set $G’(\varphi)=\underline{{\rm Im}}A_{\varphi}’$ , the holomorphic subbundle of $\underline{\varphi}^{\perp}$ in $\underline{C}^{N}$ , which is called the
$\partial’$ -Gattss bundle of $\varphi$ and $G”(\varphi)=\underline{{\rm Im}}A_{\varphi}’’$ , the antiholomorphic subbundle of $\underline{\varphi}^{\perp}$ in

$\underline{C}^{N}$ , which is called the $\partial’’$ -Gauss bundle of $\varphi$ . Then the subbundle $G’(\varphi)$ defines
a harmonic map $\Sigmaarrow Gr(C^{N})$ . The sequence of harmonic maps

. . . , $G^{(-2)}(\varphi),$ $G”(\varphi),$
$\varphi,$

$G’(\varphi),$ $G^{(2)}(\varphi),$
$\ldots$

is said to be a harmonic sequence of $\varphi$ . Here $G^{(k+1)}(\varphi)=G’(G^{(k)}(\varphi))$ and
$G^{(-(k+1))}(\varphi)=G’’(G^{(-k)}(\varphi))$ for each nonnegative integer $k$ . The harmonic map
$\varphi$ is called strongly isotropic if $\underline{\varphi}\perp G^{(l)}(\varphi)$ for each positive integer $p$ . In the case
of a map into a complex projective space $CP^{n}$ , we say it simply isotropic The
isotropy order of $\varphi$ is the maximal positive integer $k$ such that $\underline{\varphi}\perp G^{(l)}(\varphi)$ for each
$1\leq P\leq k$ . It is known ([BW, Lemma 3.1]) that if $\underline{\varphi}\perp G^{(l)}(\varphi)$ for each $1\leq P\leq k$ ,
then $G^{(i)}(\varphi)\perp G^{(j)}(\varphi)$ for each $1\leq|i-j|\leq k$ .
1.3. Construction of a solution to Toda equation from a harmonic
map. Let $\varphi$ : $\Sigmaarrow CP$“ be a harmonic map into a complex projective space.
We consider its harmonic sequence

. .. $G^{(-2)}(\varphi),$ $G”(\varphi),$
$\varphi,$

$G’(\varphi),$ $G^{(2)}(\varphi),$
$\ldots$ .

Choose a local nonzero holomorphic section $f_{p}$ of $G^{(p)}(\varphi)$ for each $p\in Z$ , i.e.

$\nabla_{\frac{G_{\partial}^{(}}{\partial z}}^{p)}(\varphi)f_{p}=0$

such that
$f_{p+1}=A_{G^{(p)}(\varphi)}’(f_{p})$

for each $p\in$ Z. We define a local real-valued function $u_{\vee p}$ as $|f_{p}|=e^{j}p$ for eaclt
$p\in Z$ . By a simple computation we see that $\{f_{p}|p\in Z\}$ satisfy

$\frac{\partial f_{p}}{\partial z}=(2\frac{\partial}{\partial z}\omega_{p})f_{p}+f_{p+1}$ ,

$\frac{\partial f_{p}}{\partial\overline{z}}=-e^{2(\omega_{p}-\omega_{p-1})}f_{p-1}$
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for each $p\in$ Z. The complete integrability condition for the above linear partial
differential equation becomes

$2 \frac{\partial^{2}}{\partial z\partial\overline{z}}\omega_{p}+e^{2(\omega_{p}-.v_{p-1})}-e^{2(\omega_{p+1}-\omega_{p})}=0$

for each $p\in$ Z. Thus the functions $\{\omega_{p}\}$ gives a solution to the elliptic Toda field
equation (1.1) of type $a$ .

If $\varphi$ is isotropic, then we obtain the finite lattice $\{\omega_{p}\}$ with $\omega_{p}=0$ for each
$p<-\mathcal{L}$ and each $k<p$ . If $\varphi$ has orthogonally periodic harmonic sequence, i.e.
$\underline{\varphi}\perp G^{(p)}(\varphi)$ for $0\leq p\leq n$ and $G^{(p+n+1)}(\varphi)=G^{(p)}(\varphi)$ for each $p\in Z$ , then we
obtain the periodic lattice $\{\omega_{p}\}$ with $\omega_{p+n+1}=\omega_{p}$ for each $p\in$ Z. In the case of
periodic lattice, such a harmonic map is called superconformal (see 3.2).

2. THEORY OF HARMONIC TORI

In this section we shall provide briefly a review on the theory of harmonic tori.

2.1 Primitive maps. Let $G$ be a compact connected Lie group with Lie algebra $g$ .
Let $\tau$ be an automorphism of $G$ of order $k$ and set $K=\{a\in G|\tau(a)=a\}$ . Denote
also by $\tau$ the automorphism of the Lie algebra $g$ induced by $\tau$ . Set $\omega=e^{2\pi\sqrt{-1}/k}$ .
We have a decomposition of $g^{C}$ into eigenspaces of $\tau$ :

$g^{C}=\bigoplus_{i\in Z_{k}}g_{i}$
,

where $g_{i}$ denotes the $\omega^{i}$ -eigenspace of $\tau$ . Note that $Bo=\epsilon^{c}$ . Then the homogeneous
space $N=G/K$ is called a k-symmetric space. In the case of $k=2$ , it is nothing
but a symmetric space.

The above decomposition of $g^{C}$ induces the decomposition of the complexified
tangent bundle

$TN^{C}=$ $\oplus$ $[g_{i}]$ .
$i\in Z_{k}\backslash \{0\}$

Definition. A smooth map $\psi$ : $\Sigmaarrow N=G/K$ is called primitive if the differ-
ential $d\psi$ of $\psi$ satisfies $d\psi(T\Sigma^{1,0})\subset[g_{1}]$ .

We shall mention the harmonicity of primitive maps.

Proposition 2.1 [B1]. Any primitive map is harmonic With respect to any G-
invariant Riemannian metric on $N$ whose corresponding $Ad(K)$ -invariant inner
product $\langle, \rangle$ on $\mathfrak{m}$ satisfies

$(^{*})$ $\langle g_{i},g_{j}\rangle=\langle g_{i},\overline{g}_{-j}\rangle=0$

for each $i,j\in Z_{k}\backslash \{0\}$ with $i+j\not\equiv O$ (mod $k$ ).

Remark. A map $\psi$ : $\Sigmaarrow G/K$ is called equiharmonic if $\psi$ is harmonic with
respect to any G-invariant Riemannian metric on $G/K$ . If one of the following
conditions is assumed

(1) $\tau$ is an inner automorphism,
(2) for each $i,$ $l\in Z_{k}\backslash \{0\}$ with $i\not\equiv l(mod k)$ , as K-modules, $9t$ contains no

irreducible component isomorphic to one of $g_{t}$ ,
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then any G-invariant Riemannian metric on $G/K$ satisfies the condition $(^{*})$ . In
these cases, any primitive map into $G[K$ is equiharmonic.

Let $H$ be a closed subgroup with $K\subseteq H$ . We define a homogeneous projection
$p$ : $G/Karrow G/H$ .

Proposition 2.2 [B1]. If $\psi$ : $\Sigmaarrow G/K$ is equiharmoni$c$ , then $\varphi=po\psi$ : $\Sigmaarrow$

$G/H$ is $eq$uiharmonic.

2.2 Primitive maps of finite type. We define the twisted loop algebra

$\Lambda g_{\tau}=\{\xi : S^{1}arrow g|\tau(\xi(\lambda))=\xi(\omega\lambda)\}$ .

If we express $\xi\in\Lambda g_{\tau}$ as $\xi=\sum\lambda^{n}\xi_{n}$ , then we have $\xi_{n}\in g_{n}$ for each $n$ . Let
$d\equiv 1(mod k)$ . Define a finite dimensional vector subspace $\Lambda_{d}=\{\xi\in\Lambda g_{\tau}|\xi_{n}=$

$0(|n|>d)\}$ of Ag $\tau\cdot 1^{l}\backslash \tau e$ consider

(2.1) $\frac{\partial\xi}{\partial z}=[\xi, \lambda\xi_{d}+r(\xi_{d-1})]$ ,

where $r(\cdot)$ denotes some component of $(\cdot)$ (see [BP]). [BP, Bu] proved that (2.1)
is completely integrable, and for each $\xi_{0}\in\Lambda_{d}$ , there exists a unique solution $\xi$ :
$R^{2}arrow\Lambda_{d}$ to (2.1) satisfying the initial condition $\xi(0)=\xi_{0}$ .

Define a l-form $\alpha$ with values in $g$ by

$Ct=(\xi_{d}+r(\xi_{d-1}))dz+(\xi_{d}+r(\xi_{d-1}))d^{-}\sim$.

Moreover, [BP, Bu] proved that the form $\alpha$ satisfies the Maurer-Cartan equation

$d \alpha+\frac{1}{2}[\alpha\wedge\alpha]=0$ .

Hence there exists a smooth map $F$ : $R^{2}arrow G$ satisfying $F^{-1}dF=\alpha$ . It is
possible to show that the map $F$ projects to a primitive map $\psi$ : $R^{2}arrow G/K$ .
The primitive map so obtained is said to be of finite type.

2.3 Harmonic tori. The following is the fundamental result on characterization
of harmonic tori. It was proved by differential geometric method.

Theorem 2.3 [BFPP, BP, Bu]. Let $\psi$ : $T^{2}arrow G/K$ be a primitive map of a
2-torus into a k-symmetric space. If $d \psi(\frac{\partial}{\partial z})\subset[g_{1}]$ is contained in an $Ad(K^{C})$ -orbi $t$

of a semisimple elemen$t$ , then $\psi$ is of finite type.

Problem. Let $\varphi$ : $T^{2}arrow G/H$ be a harmonic 2-torus in a symmtric space $G/H$ .
Does there exist a primitive map $\psi$ : $T^{2}arrow G/K$ into a k-symmetric space $G/K$

and a homogeneous fibration $\pi$ : $G/Karrow G/H$ such that $\varphi=\pi 0\phi$ ?

In the case $G/H=S^{n}$ and $G/H=CP^{n}$ , it was proved affirmatively by ([Bu]).
Very recently the case of $G/H=Gr_{2}(C^{4})$ is studied by Udagawa [Ud].
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3. AFFINE TODA FIELD EQUATIONS AND HARMONIC MAPS

3.1. A special class of primitive maps of $fi_{1}uite$ type are related with solutions to
Toda equations. Bolton, Pedit and Woodward ([BPW]) clarified the relationship
between affine Toda field equations for general compact simple Lie groups and
special class of primitive maps.

Let $T$ be a maximal torus of $G$ with Lie algebra $t$ . Let

$g^{C}=t^{c}+\sum_{\alpha\in\Delta}g^{\alpha}$

be the root decomposition of $g^{C}$ and $\{\xi_{\alpha}\in g^{\alpha}|\alpha\in\triangle\}$ be the Cartan-Weyl basis
satisfying

(3.1) $\{\begin{array}{l}-\xi_{\alpha}=-\xi_{-\alpha}[\xi_{\alpha},\xi_{-\alpha}]=\alpha\#(\xi_{\alpha},\xi_{\beta})=\delta_{\alpha,-\beta}\end{array}$

Let $\{\alpha_{1}, \ldots , \alpha_{l}\}$ be the fundamental root system and $\theta=\sum_{p=1}^{l}\uparrow n_{p}\alpha_{p}$ be the
highest root where $p=$ rank $G$ . Define $m_{0}=1$ . We denote by $(, )$ {he Killing-
Cartan form of $g^{C}$ and an element $\alpha\#\in\sqrt{-1}t$ is defined by $\alpha(X)=(\alpha\#, X)$ for
each $X\in\sqrt{-1}t$.

The flag manifold $N=G/T$ has an m-symmetric space structure with the auto-
morphism $\tau$ of $G$ of order $m$ , where $m= \sum_{p=0}^{l}m_{p}$ , and the automorphism $\tau$ is given
by $\tau=Ad(exp(2\pi\sqrt{-1}Z))$ , where $Z= \frac{1}{m}\sum_{k1}^{\ell_{=}}\eta_{k}$ and $\eta_{k}\in\sqrt{-1}t,$ $\alpha_{j}(\eta_{k})=\delta_{j,k}$ .
The eigenspace decomposition of $g^{C}$ with respect to $\tau$ becomes

$g^{C}=t^{c}+\sum_{i\in Z_{m}\backslash \{0\}}g_{i}$
.

Then we have $g_{1}=\sum_{p=0}^{l}g^{\alpha_{p}}$ . We call $\xi\in g_{1}$ cyclic if $\xi=\sum_{p=0}^{l}a_{p}\xi_{\alpha_{p}}$ with $a_{p}\neq 0$ .
The affine Toda field equation for $g$ is

(3.2) $2 \frac{\partial^{2}\Omega}{\partial z\partial\overline{z}}+\sum_{p=0}^{l}m_{p}e^{2cx_{p}(\Omega)}cx_{p}^{f}=0$,

where $\Omega$ : $Uarrow\sqrt{-1}t$ is a unknown function and $U$ is a simply connected domain
in C.

The following is fundamental in the treatment of Toda equation.

Proposition 3.1. The complete integrability condition of the line$arp$artial cliffer-
ential equation

$\{\begin{array}{l}F^{-1}\frac{\partial F}{\partial z}=\frac{\partial\Omega}{\partial z}+(Adexp(\Omega))(B)F^{-1}\frac{\partial F}{\partial\overline{\approx}}=-\frac{\partial\Omega}{\partial\overline{\approx}}+(Adexp(-\Omega))(\overline{B})\end{array}$
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where $B= \sum_{p=0}^{l}\sqrt{m_{p}}\xi_{\alpha_{p}}\in g_{1}$ and $\Omega$ : $Uarrow\sqrt{-1}t$ , is that $\Omega$ satisfies the Toda
equation (3.2).

Indeed, using (3.1) we compute

$\frac{\partial}{\partial z}(-\frac{\partial\Omega}{\partial\overline{z}}-\sum_{p=0}^{p}\sqrt{m_{p}}e^{\alpha_{p}(\Omega)}\xi_{-\alpha_{p}})-\frac{\partial}{\partial\overline{z}}(\frac{\partial\Omega}{\partial z}+\sum_{p=0}^{l}\sqrt{m_{p}}e^{\alpha_{p}(\Omega)}\xi_{\alpha_{p}})$

$+[ \frac{\partial\Omega}{\partial z}+\sum_{p=0}^{l}\sqrt{m_{p}}e^{\alpha_{p}(\Omega)}\xi_{\alpha_{p}}, -\frac{\partial\Omega}{\partial\overline{z}}-\sum_{p=0}^{l}\sqrt{m_{p}}e^{\alpha_{p}(\Omega)}\xi_{-\alpha_{p}}]$

$=-2 \frac{\partial^{2}\Omega}{\partial z\partial\overline{z}}-\sum_{p=0}^{\ell}m_{p}e^{2\alpha_{p}(\Omega)}\alpha_{p}^{\#}=0$ .

Definition. A framing $F:Uarrow G$ is called a Toda frame ([BPW]) if $F$ satisfies

(3.3) $F^{-1} \frac{\partial F}{\partial z}=\frac{\partial\Omega}{\partial z}+(Adexp(\Omega))(B)\in t^{c}\oplus g_{1}$,

for some $\Omega$ : $Uarrow\sqrt{-1}t$ .

The relation between a Toda frame and a primitive map is described as follows.
From (3.3) we see immediately

Proposition 3.2. If $F$ is a Toda frame, then $\psi=F\cdot T:Uarrow G/T$ is a primitive
map such that $d \psi(\frac{\partial}{\partial\approx})\in[g_{1}]$ is cyclic.

[BPW] proved the following by using the argument of [FPPS].

Proposition 3.3. If $\psi$ : $Uarrow G/T$ is a primitive map from a simply connected
domain $U$ such that $d \psi(\frac{\partial}{\partial z})\in[g_{1}]$ is cydic, then there exists a Toda frame $F$ such
that $\pi oF=\psi$ .

The following result was proved first by [BPW] as extension of results of [FPPS].
Theorem 2.1 can be considered as its generalization.

Theorem 3.4 [BPW]. Let $\psi$ : $T^{2}arrow G/T$ be a primitive map and $d \psi(\frac{\partial}{\partial z})$ is
cyclic. Then $\psi$ is of finite type.

This result implies that any double periodic solution to (T) can be obtained from
finite dimensional Hamiltonian ODE system (2.1) for $G/T$ .

3.2 Differential geometric characterization. We suppose that $G/K$ is a sym-
metric space with $T\subset K$ and the projection $\pi$ : $G/Tarrow G/K$ . By a result of [B1].

$intoG/If.Itisa\backslash \cdot eryinterestingquestion^{\frac{\partial}{\partial\approx h}}o\backslash vcanharmonicmapsobtainedsoaprimitivemap\psi intoG/Twithcyc1icd\psi()projectsaharmonicmap\varphi=\pi 0\psi$

from solutions of affine Toda equation for each $g$ be characterized in the sense of
differential geometry.

In [BPW], in the case when $g$ is of type $a_{n}$ . $b_{n},$ $0_{n}$ or $9z$ they gave differential
geometric characterization of harmonic maps so obtained, which were called super-
conformal harmonic maps.
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The case $\alpha_{n}$ : A harmonic map $\varphi$ : $\Sigmaarrow CP^{n}$ is called superconformal if $\varphi$ has
isotroy order $n$ . This condition is equivalent to that $\varphi$ has orthogonally periodic
harmonic sequence, that is, $G^{(i+n+1)}(\varphi)=G^{(i)}(\varphi)$ for each $i\in$ Z. Any harmonic
map $\varphi$ : $\Sigmaarrow CP^{1}$ is holomorphic, anti-holomorphic or superconformal. Any
weakly conformal, harmonic map (branched minimal immersion) $\varphi$ : $\Sigmaarrow CP^{2}$

is isotropic or superconformal. The solutions to affine Toda field equations of type
$\alpha_{n}$ correspond to superconformal harmonic maps into $CP^{n}$ .

The case $b_{n}$ and $\Phi_{n}$ : A full harmonic map $\varphi$ : $\Sigmaarrow S^{n}$ is called superconformal
if $\varphi$ has isotropy order $2m-1$ in the case of $n=2m$ and $\varphi$ has isotropy order $2m+1$

in the case $n=2m+1$ . Any weakly conformal harmonic map $\varphi$ : $\Sigmaarrow S^{3}$ or $S^{4}$

is isotropic or superconformal.
In the case of $n=2m+1,$ $\varphi$ is superconformal if and only if $\varphi$ has periodic

harmonic sequence, that is,
$\underline{\varphi}\oplus G’(\varphi)\oplus\cdots\oplus G^{(2m+1)}(\varphi)=\underline{C}^{2m+2}$

with $\underline{\varphi}\perp G^{(p)}$ for each $1\leq p\leq andG^{(p)}(\varphi)=G^{(2m+2+p)}(\varphi)$ for each $p\in Z$ . Note
that we have $G^{(i)}(\varphi)=\overline{G^{(-i)}(\varphi)}$ for each $p\in Z$ . The branched minimal surface in
$S^{2m+1}$ defined by $G^{(m+1)}(\varphi)=G^{(-(m+1))}(\varphi)$ is called a polar surface of $\varphi$ . In the
case of $n=2m$ , we should remark that a superconformal harmonic map $\varphi$ does not
always have periodic harmonic sequence. It was shown that the solutions to affine
Toda field equations of type $b_{n}$ or $\mathfrak{D}_{n}$ correspond to superconformal harmonic maps
into $S^{2n}$ .

The case $g_{2}$ : It is well-known that the 6-dimensional sphere $S^{6}$ has the standard
nearly K\"ahler manifold structure. Any almost complex curve $S^{6}$ is isotropic or
superconformal (see [BPW]). It is shown in [BPW] that the solutions to the affine
Toda equation of type $g_{2}$ correspond to superconformal, almost complex curves in
$S^{6}$ , and any non-isotropic almost complex 2-tori in $S^{6}$ is of finite type.

The case $(bc)_{1}$ : More generally, the affine Toda field equation can be defined
for each root system, particularly also for nonreduced root systems $(bc)_{1}$ . It is
interesting to examine what kind of class of harmonic maps corresponds to solutions
of affine Toda equation for a nonreduced root system in the sense of differential
geometry. The solutions to the affine Toda field equation of type $(bc)_{1}$

$2 \frac{\partial^{2}}{\partial z\partial\overline{z}}\omega+e^{2\omega}-e^{-4\omega}=0$

correspond to non-isotropic totally real minimal surfaces in $CP^{2}$ . This is studied
by J. Inoguchi, who is a graduate student of Tokyo Metropolitan University.

Problem. Classify totally real minimal tori in $CP^{2}$ .
Some constructions of totally real minimal tori in $CP^{2}$ are already known.

Problem. Characterize harmonic maps corresponding to the solutions to affine Toda
field equation for other root systems in the sense of differential geoemtry.
Problem. It is known that there is a bijective correspondence between simple root
systems and quaternionic K\"ahler symmetric spaces. Is there a good relationship
between a certain class of harmonic maps into a quaternionic K\"ahler symmetric
space and solutions to affine Toda field equation for the correspondsing simple root
systems ?
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3.3 Soliton theory for elliptic Toda field equations. Theory of solutions to
Toda field equation were already established as integrable systems. For applications
to harmonic maps, we need to develop theory of solutions to ELLIPTIC Toda field
equation. When $g$ is of type $\alpha_{n}$ , I.McIntosh [Mcl].[LIc2] has discussed soliton
theory for elliptic Toda field equations. As the application, he gave a description of
solutions to elliptic Toda field equation in terms of $\theta$-functions and a correspondence
between superconformal harmonic 2-tori in $CP^{n}$ and pairs of spectral curves and
certain rational functions (X, $\pi$ ).
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