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BRS Symmetry on Background-Field and Renormalizability
Problem of Quantum Gravity 1

静岡県立大学、教養科物理
一ノ瀬祥一 (Shoichi Ichinose)

Abstract

The two dimensional gravity is newly formulated in the backgroud field
method. We take a new way of splitting the metric field in order to clarify the
role of the Weyl mode. The gauge-fixing and ghost lagrangians are introduced
follwowing the standard BRS procedure. The BRS transformation of $aU$ fields
is obtained. Both the Weyl symmetry and the BRS symmetry can be looked
transperently in this formaJism.

\S 1. Introduction

BRS symmetry has been playing the central role in gage theories[1,2,3,4]. This

article aims at clarifying its role in the background formalism (effective action

formalism) which is one popular approach to gauge theories. In the workshop, I

talked about the $4D$ gauge and gravitational theories, and about the $2D$ gravita-

tional theory. In particular, as for the $4D$ gravitational theory, the connection with

the renormalizability problem was stressed. Because the content about the $4D$ the-

ories wil soon been published elsewhere[5], I report here only the $2D$ gravitational

theory.

New points of the present formulation of $2D$ quantum gravity are as follows.

1. $2D$ quantum gravity is newly formulated in the general framework of the back-

ground field formalism. The $2D$ general covariance and invariance are com-

pletely kept in the background effective action.
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2. We take a new way of splitting the metric field. As the quantum field, the

traceless modes and the Weyl (trace) mode are separately treated. The new

splitting makes us clarify the role of the Weyl mode and the Weyl symmetry

so much.

3. Because the quantization procedure is based on the standard BRS procedure,

the BRS symmetry is respected manifestly.

4. We can find a new aspect of the background quantization in connection with

the compatibility of the BRS symmetry with the Weyl symmetry in defining

the physical quantities.

\S 2. Q-type,C-type and Weyl Symmetries

The background formalism is exploiting the technique of splitting fields into the

bacground ones and the quantum ones. GeneraUy there are some ways of splitting.

We must adopt the best choice of splitting by taking account of the symmetry of

the system. For example, as for Yang-MiUs theory (in 3+1 $Dim$) we should take

the following linear splitting.

$A_{\mu}$ $=$ $A_{\mu}^{d}+$ $A_{\mu}$ (2.1)

This is because the symmetry $\delta A_{\mu}=\partial_{\mu}\Lambda+\Lambda\cross A_{\mu}$ , is linear with respect to $A_{\mu}$ .

As for the non-linear sigma-model, we should take the nonlinear splitting [ref. 6,7]

as

$\overline{g}$ $=$ $g_{d}\cdot exp(i\tau^{a}\pi_{a})$ , (2.2)

where $\overline{g}$ and $g_{d}$ are elements of the group $G,and\tau^{a}$ is an element of the correspond-

ing Lie algebra. As for the (2D) gravitaional theory, the symmetry looks linear and

nonlinear depending on the choice of independent fields. In the present case it seems

best to take the following one. 2

$\overline{g}_{ab}=g_{ab}e^{\varphi}+h_{ab}^{T}$ , $g^{ab}h_{ab}^{T}=0$ (2.3)

2The $2D$ induced gravity was analysed in the way of linear-splitting in ref.8 and ref.9.
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This is because the Weyl mode plays the essential role in $2D$ quantum gravity. The

symmety of the general covariance can be written in terms of the $fuU$ field as

$\delta\overline{g}_{ab}$
$=-\overline{\nabla}_{a}\epsilon_{b}-\overline{\nabla}_{b}\epsilon_{a}$

$=-\overline{g}_{ac}\partial_{b}\epsilon^{c}-\overline{g}_{bc}\partial_{a}\epsilon^{c}-\partial_{c}\overline{g}_{ab}\cdot\epsilon^{c}$ (2.4)

$=-\overline{g}_{ac}\nabla_{b}\epsilon^{c}-\overline{g}_{bc}\nabla_{a}\epsilon^{c}-\nabla_{c}\overline{g}_{ab}\cdot\epsilon^{c}$ ,

$whereV_{a}\epsilon_{b}=\overline{g}_{k}\overline{\nabla}_{a}\epsilon^{c}=\overline{g}_{bc}(\partial_{a}\epsilon^{c}+\Gamma_{ad}^{c}(\overline{g})\epsilon^{d})$ $\nabla_{a}\epsilon^{b}=\partial_{a}\epsilon^{b}+\Gamma_{ac}^{b}(g)\epsilon^{c}$ $and\nabla_{c}\overline{g}_{ab}=$

$\partial_{c}\overline{g}_{ab}-\Gamma_{cu}^{d}(g)\overline{g}_{db}-\Gamma_{cb}^{d}(g)\overline{g}_{da}$ . This symmetry can be eqivalently expressed by the

various combination of two transformations: the transformation of the quantum

field and that of the background field. Particularly the following two characteristic

ways are useful.

Q-type transformation

$\delta g_{ab}=$ $0$ ,

$\delta e^{\varphi}=$ $-e^{\varphi}(\nabla_{a}\epsilon^{a}+\partial_{a}\varphi\cdot\epsilon^{a})-h_{ab}^{T}\nabla^{a}\epsilon^{b}$ , (2.5a)

$\delta h_{ab}^{\tau}=$ $-e^{\varphi}D_{ab^{C}}\epsilon_{c}-h_{dc}^{T}D_{ob}^{d}\epsilon^{c}-\nabla_{c}h_{ab}^{T}\cdot\epsilon^{c}$

$D_{ab^{c}}$ above is defined as

$D_{ab}^{c}\equiv\delta_{a}^{c}\nabla_{b}+\delta_{b}^{c}\nabla_{a}-g_{ab}\nabla^{c}$ ,

$D_{ab}^{b}=n\nabla_{a}$ , $g^{ab}D_{ab}^{c}=(2-n)\nabla^{c}$ , (2.5b)

where $n(=2)$ is the space-tome dimension. $D_{ab}^{c}$ is $essel\iota tially$ the same as that

operator which appeared in ref.10 and ref.11 as the jacobian factor transforming $hom$

the metric field to Weyl mode in the conformal gauge. The Q-type transformation

is characterized by the condition that the quantum fields $(\varphi, h_{ab}^{T})$ undertake full

variation of the symmetry transformation and the background fields $g_{ab}$ are fixed.

This condition makes the transformation (2.5a) unique.

C-type transformation

$\delta g_{ab}$ $=-\nabla_{a}\epsilon_{b}-\nabla_{b}\epsilon_{a}$ ,

$\delta e^{\varphi}$ $=-\partial_{c}e^{\varphi}\cdot\epsilon^{c}$ , (2.6)

$\delta h_{ab}^{T}$ $=-h_{a}\tau_{cbbca}\epsilon^{c},-h^{T}\epsilon^{c},-h_{ab,c}^{T}\epsilon^{c}$
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The C-type transformation is characterized by the condition that the background

field transforms in the same way as the full field. Of course, the reason why we can

equivalently express the transformation (2.4) in so many ways is that the number of

fields are doubled: from 3 $(\overline{g}_{ab})$ to 6 $(3(g_{ab})+1(\varphi)+2(h_{ab}^{T}))$ . Note further $e^{\varphi}$ and $h_{ab}^{T}$

transform as the scalar and tensor respectively,in C-type transformation. There is

an additional symmetry which originates not from the symmetry of the lagrangian

but from the choice of the splitting form (2.3).

$g_{ab’}=$ $g_{ab}e^{\tau(\sigma)}$ ,

$\varphi’=$ $\varphi-\tau(\sigma)$ , (2.7)

$h_{ab}^{T’}=h_{ab}^{T}$ (fixed) ,

where $\tau(\sigma)$ is the arbitray local parameter (Weyl freedom). This is called (local)
$Q$

Weyl symmetry. This freedom remains even when the cosmological term is added

in the theory.

\S 3. Background Quantization of $2D$ Quantum
Gravity

Let us consider the $2D$ quantum gravity interacting with a scalar field $X(\sigma)$ .

$\mathcal{L}[X, g_{ab}]$ $=\mathcal{L}_{G}[g_{ab}]+\mathcal{L}_{Af}[X, g_{ab}]$ ,

$\mathcal{L}_{G}[g_{ab}]=\sqrt{g}(\omega R-\lambda)$ , (3.1)

$\mathcal{L}_{Af}[X, g_{ab}]$ $= \frac{1}{2}\sqrt{gV}aX\cdot\nabla^{a}X$ ,

where $1/\omega$ and $\lambda$ are the gravitational constant and the cosmological constant re-

spectively. As for the matter field, we adopt the the linear splitting.

$\overline{X}=$ $X+x$ , (3.2)

where $X$ is the background field and $x$ is the quantum one. From the starting

symmetry:

Original Symmetry

$\delta\overline{X}=-\epsilon^{a}\nabla_{a}(\overline{g})\overline{X}=-\epsilon^{a}\partial_{a}\overline{X}$ , (3.3)
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satisfied by the full field, we can obatin the Q-type symmetry and C-type one fol-

lowing the procedure presented in Sec.2.

Q-type Symmetry

$\delta X=0$ , $\delta x=-\epsilon^{a}\partial_{a}(X+x)$ , (3.4a)

C-type Symmetry

$\delta X=-\epsilon^{a}\partial_{a}X$ $\delta x=-\epsilon^{a}\partial_{a}x$ (3.4b)

We consider first the conformal gauge.

$h_{ab}^{T}$ $=$ $0$ (3.5)

Note that this gauge is C-type invariant. For convenience we prefer to take the more

general gauge.

$\mathcal{L}_{gauge}[b_{ab}^{T}, h_{ab}^{T};\beta]=$ $\sqrt{g}(\rho_{b_{T}^{ab}b_{ab}^{T}}2+b_{T}^{ab}h_{ab}^{T})$

$=$ $\sqrt{g}(\rho_{(b_{T}^{ab}}2+\frac{1}{\beta}h_{T}^{ab})(b_{ab}^{T}+\frac{1}{\beta}h_{ab}^{T})-\frac{1}{2\beta}h_{T}^{ab}h_{ab}^{T})$ , (3.6)

$g^{ab}b_{ab}^{T}=$ $0$ ,

where $b_{ab}^{T}$ is the auxiliary field (so-called B-field) which is traceless, and $\beta$ is the

gauge parameter. The case (3.5) is obtained by the limit $\betaarrow 0$ . We can obtain

C-type transformation of $b_{ab}^{T}$ by requiring the C-type invariance of (3.6).

$\delta b_{T}^{ab}=b_{T}^{ac}\epsilon_{c}^{b}+b_{T}^{k}\epsilon_{c}^{a}-\epsilon^{c}b_{T,c}^{ab}$ (3.7a)

The corresponding ghost lagrangian is obtained, by Q-type transformation of $h_{ab}^{T},as$

$\mathcal{L}_{ghost}=\sqrt{g}\overline{\chi}_{T}^{ab}[-e^{\varphi}D_{ab}^{c}\chi_{c}-h_{dc}^{T}\cdot D_{ab}^{d}\chi^{c}-(\nabla_{c}h_{ab}^{\tau})\cdot\chi^{c}]$ ,

$g_{ab}\overline{\chi}_{T}^{ab}$ $=$ $0$ (3.8)

Noting the fact that $e^{\varphi}$ and $h_{ab}^{T}$ transform, in the C-type transformation (2.6), as

the scalar and tensor respectively, C-type symmetry of the ghost lagrangian is gau-

ranteed by taking the ordinary C-type symmetry of tensor for $\overline{\chi}_{T}^{ab}$ and that of vector

for $\chi_{a}$ .

$\delta\chi_{a}=$ $-\chi_{b}\epsilon_{a}^{b}-\epsilon^{b}\chi_{a,b}$ ,

$\delta\overline{\chi}_{T}^{ab}=\overline{\chi}_{T}^{ac}\epsilon_{c}^{b}+\overline{\chi}_{T}^{bc}\epsilon_{c}^{a}-\epsilon^{c}\overline{\chi}_{T,c}^{ab}$ (3.7b)
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The total lagrangian is given by

$\mathcal{L}^{T}[e^{\varphi}, h^{T}, x,\overline{\chi}_{T}^{ab},\chi_{a}, b_{ab}^{T};\beta,\omega, \lambda]\equiv \mathcal{L}_{G}[ge^{\varphi}+h^{T}]+\mathcal{L}_{AI}[X+x,ge^{\varphi}+h^{T}]$

$+\mathcal{L}_{gauge}[b_{ab}^{T}, h_{ab}^{T};\beta]+\mathcal{L}_{ghost}[\overline{\chi}_{T}^{ab},\chi_{a}, e^{\varphi}, h^{T}]$ (3.9)

We can show this lagrangian has the BRS symmetry. The final result is that the

total lagrangian $\mathcal{L}^{T}$ is invariant under the following BRS transformation.

$\delta g_{ab}=0$ , $\delta X=0$ ,

$\delta e^{\varphi}=e^{\varphi}\delta\varphi=\xi[-e^{\varphi}(\chi_{a}^{a}+\varphi_{a}\chi^{a})-h_{ab}^{T}\chi^{b,a}]\equiv\xi se^{\varphi}$ ,

$\delta h_{ab}^{T}=\xi[-e^{\varphi}D_{ab}^{c}\chi_{c}-h_{\epsilon d}^{\tau}D_{ab}^{c}\chi^{d}-h_{ab,c}^{T}\chi^{c}]\equiv\xi sh_{ab}^{T}$ ,

$\delta x=-\xi\chi^{a}(X_{a}+x_{a})\equiv\xi sx$ , (3.10)

$\delta\chi_{a}=-\xi\chi^{b}\chi_{a,b}\equiv\xi s\chi_{a}$ ,

$\delta\overline{\chi}_{T}^{ab}=-\xi b_{T}^{ab}\equiv\xi s\overline{\chi}_{T}^{ab}$ , $\delta b_{T}^{ab}=0$ ,

where $\xi$ is the global grassman parameter, $s$ is the BRS operator. The operator $s$

satisfies the nilpotency property

$s^{2}e^{\varphi}=s^{2}h_{ab}^{T}=s^{2}x=s^{2}\chi_{a}=s^{2}\overline{\chi}_{I}^{ab}=s^{2}b_{T}^{ab}=0$ , (3.11a)

where $s^{2}$ is defined by (3.11b)

$\delta \mathcal{O}=\xi s\mathcal{O}$ , $\delta(s\mathcal{O})\equiv\xi s^{2}\mathcal{O}$ , (3.11b)

for an arbitrary operator $\mathcal{O}$ . Furthermore we can write $\mathcal{L}_{gauge}+\mathcal{L}_{ghost}$ as the BRS-

exact form.

$\mathcal{L}_{ga\tau\iota ge}+\mathcal{L}_{ghost}=-s(\overline{\chi}_{T}^{ab}h_{ab}^{T}+\frac{\beta}{2}\overline{\chi}_{T}^{ab}b_{ab}^{T})$ . (3.12)

We summerize here the physical dimension and the ghost number for every field,

prameter and operator.



26

Table.1

\S 4. Weyl Invariance and New Treatment of Weyl
Mode in Background Formalism

In the background formalism, the effective action $\Gamma[A]$ is conventionally defined

as (see ref.5)

$e^{\Gamma[A]}= \int\prime Da\mathcal{D}(ghost)\mathcal{D}$( $b$ -field) $exp \int d^{2}\sigma\{\mathcal{L}[A+a]-\mathcal{L},:[A]a^{i}+\mathcal{L}_{gauge}+\mathcal{L}_{ghost}\}$ . $(4.1)$

We notice the following points.

1. The subtraction of the linear term (with respect to the quantum field), $-\mathcal{L}_{i}[A]a^{i}$

,is important to define the stable perturbation around a minimum of the po-

tential.

2. $\mathcal{L}^{T}\equiv \mathcal{L}[A+a]+\mathcal{L}_{gauge}+\mathcal{L}_{ghost}$ is BRS invariant, but the subtraction term is

not.

3. BRS invariance of physical quantities are guaranteed by the on-shell condition

$\mathcal{L}_{i}[A]=0$ .

On the other hand, in the present case, the subtraction procedure is valid for $(h^{T}, x)$ ,

but not for the Weyl mode $\varphi$ . This is because the system contains the Liouville

potential and it does not seem to have a minimun in the gdirection. The best way

to define the effective action is to make the whole system ‘inert’ with respect to

the Weyl mode: make the theory Weyl invariant (taking account even of the Weyl
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anomaly) at the cost of BRS symmetry at this intermediate stage. Note that it is

enough to require BRS symnetry for the physical quantites which are obtained by

imposing the on-shell condition in the background approach.

In the total lagrangian (3.9), $\mathcal{L}_{G}$ and $\mathcal{L}_{Af}$ are Weyl invariat; invariant under the

transformation (2.7),

$g_{ab’}=g_{ab}e^{\tau(\sigma)}$ ,

$\varphi’=\varphi-\tau(\sigma)$ , (4.2a)

$h_{ab}^{T’}=h_{ab}^{T}$ (fixed)

However the gauge and ghost parts $(\mathcal{L}_{ga\tau\iota ge}, \mathcal{L}_{ghost})$ are not. Let us modify $\mathcal{L}_{gauge}$ and

$\mathcal{L}_{ghost}$ and make them Weyl invariant. The simplest choice of Weyl transformation

for the auxiliary field $b_{ab}^{T}$ is

$b_{ab}^{T’}=b_{ab}^{T}$ (fixed) (4.2b)

$(b_{T}^{ab}=g^{ac}g^{u}b_{cd}^{T}arrow b_{T}^{ab’}=e^{-2\tau}b_{T}^{ab})$

In this choice $\mathcal{L}_{gauge}$ transforms to $e^{-\tau}\mathcal{L}_{gaug\epsilon}$ , therefore the Weyl invariant modifi-

cation is obtained by

$\mathcal{L}_{gauge’}=$ $e^{-\varphi}\mathcal{L}_{gauge}$

$=\sqrt{g}e^{-\varphi}(\rho b_{T}^{ab}b_{ab}^{T}2+b_{T}^{ab}h_{ab}^{T})$ (4.3)

As for the ghost fields $(\overline{\chi}_{T}^{ab}, \chi_{a})$ , the simplest choice is

$\overline{\chi}_{T}^{ab’}=\overline{\chi}_{T}^{ab}$ (fixed) , $\chi_{a’}=\chi_{a}$ (fixed) . (4.2c)

$(\chi^{a}=g^{ab}\chi_{b}arrow\chi^{a/}=e^{-\tau}\chi^{a})$

Then,by substituting $\nabla_{c}h_{ab}^{T}$ and $D_{ab}^{c}\chi_{d}$ in (3.8) by their Weyl-invariant counter-

parts,

$\overline{\nabla_{c}h_{ab}^{T}}\equiv$ $\nabla_{c}h_{ab}^{T}-\frac{1}{2}(h_{ad}^{T}D_{bc}^{d}\varphi+arightarrow b)$

$\overline{D_{ab}^{c}\chi_{d}}\equiv D_{ab}^{c}\chi_{d}-\frac{1}{2}(\delta_{a}^{c}\chi_{e}D_{u^{e}}\varphi+\delta_{b}^{c}\chi_{e}D_{ad}^{e}\varphi-g_{ab}\chi_{e}D^{c_{d}e}\varphi)$ , (4.4)
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respectively, the Weyl invariant version of ghost lagrangian $\mathcal{L}_{ghost’}$ is obtained as

$\mathcal{L}_{ghost’}=\sqrt{g}\overline{\chi}_{T}^{ab}[-e^{\varphi}\overline{D_{ab}^{c}\dot{\chi}_{c}}-h_{dc}^{T}g^{c\epsilon}\overline{D_{ab}^{d}\chi_{e}}-\overline{\nabla_{c}h_{ab}^{T}}\cdot\chi^{c}]$ (4.5)

Note that, in (4.4), $D_{ab}^{c}\varphi$ plays the role of Weyl gauge field.

In conclusion , the Weyl invariant version of $\mathcal{L}^{T},(3.9)$ , is obtained by substituting

$\mathcal{L}_{gauge’}$ and $\mathcal{L}_{ghost’}$ for $\mathcal{L}_{gauge}$ and $\mathcal{L}_{ghost}$ respectively. As for the treatment of Weyl

anomaly, we comment on the next section.

\S 5. New Effective Action and Discussions

Now we propose a new effective action $\Gamma[g, X]$ defined by

$exp\Gamma[g,X]=$ $\int \mathcal{D}h_{ab}^{T}D\varphi’DxDb_{ab}^{T}D\overline{\chi}_{T}^{ab\prime}D\chi_{a}exp$ $\{$

$\mathcal{L}_{G}[ge^{\varphi}+h^{T}]+\mathcal{L}_{At}[X+x, ge^{\varphi}+h^{T}]$

$+\mathcal{L}_{gauge’}+\mathcal{L}_{ghost’}+\sqrt{g}(a_{1}g^{ab}\partial_{a}\varphi\partial_{b}\varphi+a_{2}R\varphi+\lambda’e^{a\iota\varphi})$ } (5.1)

We notice the following points.

1. The last three terms are added to absorb the Weyl anomaly induced by the

transformation of the integration measure$[12,13]$ . They are C-type gauge in-

variant,but are,by themselves,neither BRS invariant nor Weyl invariat.

2. We notice here the kinetic term of $\varphi$ appears in the lagragian through the

cancelling procedure of the Weyl anomaly.

3. The BRS non-invariat part gives us the on-shell condition for the bacground

field. In particular $\varphi$-mode part gives us a new type of condition.

4. This formalism can naturally be generalized to the string theory by introducing

the external fields such as the graviton field, $G_{\mu\nu}(X)$ and the dilaton field

$\Phi(X)$ .
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