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Abstract
A mathematical model for the drug delivery to tissues by using a preassigned

cohort of red blood cells (RBC) loaded with a drug is presented. The model
has a discrete time delay in the interaction between RBC and macrophage cells
in the various tissues. A control problem to maintain the longest duration of
the therapeutic effect is considered.

1 Drug Administration by Using RBC

Human and murine red blood cells (RBC) treated with $ZnCl_{2}$ and bis (sulfosuc-

cinimidyl) suberate $(BS^{3})$ (a cross linking agent) undergo band 3 clustering and

binding of hemoglobin to RBC membrane proteins. These clusters induce autologous

$IgG$ binding and complement fixation, thus favoring the phagocytosis of $ZnCl_{2}/BS^{3}$

treated cells by macrophages. The extension of RBC opsonization can be easily mod-

ulated by changing the $ZnCl_{2}$ concentration in the 0.1-1.0 $mM$ range thus providing

a way to affect RBC recognition by macrophages. Since the $ZnCl_{2}/BS^{3}$ treatment

can also be performed on RBC loadeded with drugs or other substances, this pro-

cedure is an effective drug-targeting system to be used for the delivery of molecules

to peritoneal, liver and spleen macrophages (L.Chiarantini et al : Modulated RBC

survival by membrane protein clustering. Preprint.)
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Macrophages phagocytate only RBC when they are recognized as senescent, i.e.

with an age $a\geq\overline{a},\overline{a}\simeq 120$ days, because the aging of RBC induce a progressive

membrane clustering.

The RBC membrane clustering by $ZnCl_{2}/BS^{3}$ treatment enables to prepare a

cohort of drug loaded RBC at time $t=0$ :

$n(0, a)=\{\begin{array}{l}\varphi(a)>0\forall a\in\Re_{+0}=[0,+\infty)0\forall a<0\end{array}$ (1)

such that RBC of age $a$ at $t=0$ will be recognized as senescent after a time $t=\overline{a}-a$ .

The shape of the initial age distribution $\varphi$ of the drug loaded RBC is experimentally

controlled, so as the total amount of loaded RBC is:

$n_{0}= \int_{0}^{+\infty}\varphi(a)da(mlRBC)$ $n_{0}\in[n_{1}, n_{2}]$ , (2)

and the fraction of senescent RBC is

$\alpha n_{0}=\int_{\overline{a}}^{+\infty}\varphi(a)da$ $\alpha\in[0,1]$ . (3)

The aim of the administration is to give a drug directly to the macrophages

of various tissues : peritoneum, spleen, liver $\cdots$ by injecting at $t=0$ in the blood

circulation and to control the age distribution of RBC cohort, which is experimentally

preassigned, in order to maintain the therapeutic effect for the longest time possible.

Here only the RBC in the cohort with age $a\geq\overline{a}$ (i.e. senescent) are phagocytated

by macrophages, releasing inside them the drug.

Other assumptions on the process are as follows:

1) The drug is not catabolized inside the RBC neither can diffuse through their

membranes.

2) The drug is catabolized inside the macrophages.

3) The size of the macrophage population $M_{0}$ is constant on the time scale $\overline{a}$ of the

drug administration.
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4) Once phagocytated RBC a macrophage has an average digestion time $T(\simeq 4/5$

hours) during which it is inactive in the capture process of other RBC.

5) The average capture time is negligible with respect to the average digestion time

$T$ .

2 Formulation of The Model

At $t=0$ we have a cohort of drug loaded RBC $n(0, a)$ given by (1) with an age

distribution $\varphi(a)$ . Let $\overline{a}$ be the age beyond which the RBC are recognized as senescent.

The total number of loaded RBC is $n_{0}$ given by (2), of which $\alpha n_{0}$ given by (3) is the

senescent fraction at $t=0$ . If $q_{0}$ is the amount of drug ( $\mu$ moli) loaded at $t=0$ into

the RBC cohort, the average amount of drug in each RBC is :

$\beta=q_{0}/n_{0}$ . (4)

2.1 RBC Equations

Let us consider for $t>0$ the time evolution of the cohort of RBC $n(t, a)$ .

If $a\leq\overline{a}$ , then

$\frac{\partial}{\partial t}n(t, a)+\frac{\partial}{\partial a}n(t, a)=0$ (5)

with

$i.c$ . $n(0, a)$ $=\varphi(a)$ , $\forall a\in[0,\overline{a}]$

$b.c$ . $n(t, 0)$ $=0$ , $\forall t>0$

i.e. we have no newborns neither deaths. Then, the solution to (5) is expressed as

$n(t, a)=\{\begin{array}{l}\varphi(a-t)ift\leq a0ift>a,\forall a\in[0,\overline{a}]\end{array}$ (6)
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If $a>\overline{a}$ , then

$\frac{\partial}{\partial t}n(t, a)+\frac{\partial}{\partial a}n(t, a)=-K(a)n(t, a)x_{3}(t)$ (7)

where $x_{3}(t)$ is the number of macrophages that at time $t$ are free for the phagocy-

tosis process. $K(a)$ is the average number of RBC with age $a$ captured by a free

macrophage per unit of time. We assume that $K(a)=K$ for $a>\overline{a}$ .

Let us define by

$x_{1}(t)= \int_{\overline{a}}^{+\infty}n(t, a)da$ (8)

the number of senescent loaded RBC at time $t$ . By integration of (7) between $\overline{a}$ and

$+\infty$ we obtain:

$\frac{d}{dt}x_{1}(t)=-Kx_{1}(t)x_{3}(t)+n(t,\overline{a})$ (9)

with i.c.

$x_{1}(0)= \int_{\overline{a}}^{+\infty}\varphi(a)da=\alpha n_{0}$, (10)

and

$n(i,\overline{a})=\{\begin{array}{l}\varphi(\overline{a}-t)if0\leq t\leq\overline{a}0ift>\overline{a}\end{array}$ (11)

2.2 Macrophage Equations

Let $M_{0}$ be the total number of macrophage cells. For $\forall t>0$ the macrophages belong

to one of the two classes :

$x_{2}(t)$ : macrophages which are digesting senescent RBC (either from the loaded cohort

of RBC and from normal blood circulation),

$x_{3}(t)$ : macrophages which are free for phagocytosis of senescent RBC.

Therefore

$M_{0}=x_{2}(t)+x_{3}(t)$ , $\forall t\geq 0$ . (12)

Furthermore we assume that
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a) If $x_{2}(t-T)$ are the macrophages which are digesting at $t-T$, the number of

macrophages becoming free at $t$ will be $\gamma x_{2}(t-T)$ , where $[\gamma]=[day^{-1}]$ and $\gamma<1$ .

This takes account of the fact that among $x_{2}(t-T)$ there are macrophages that

phagocytated RBC at previous times before $t-T$ .
b) The number of non-loaded senescent RBC is assumed to be constant and will be

denoted by $\overline{B}$ .

Hence

$\frac{dx_{3}}{dt}=-Kx_{1}(t)x_{3}(t)-K\overline{E}x_{3}(t)+\gamma x_{2}(t-T)$ , $\forall t\geq 0$ . (13)

We must specify the i.c. on $x_{3}(t)$ for $t\in[-T, 0]$ . For $t\in[-T, 0$), $x_{1}(t)=0$ (no

senescent loaded RBC are present before $t=0$). Therefore

$\frac{dx_{3}}{dt}=-K\overline{E}x_{3}(t)+\gamma x_{2}(t-T)$

(14)
$x_{2}(t)+x_{3}(t)=M_{0}$ , $t\in[-T, 0$).

We assume that

c) Without loaded RBC the system composed of macrophages and senescent RBC is

at a positive equilibrium state which is stable.

Accordingly, the equilibrium of (14) is

$\overline{X}_{3}=\frac{\gamma M_{0}}{K\overline{E}+\gamma}$ , $\overline{x}_{2}=\frac{K\overline{E}M_{0}}{K\overline{E}+\gamma}$ (15)

and its stability is ensured provided that

$K\overline{E}>\gamma$ . (16)

At $t=0$ the amount of senescent loaded RBC injected is $x_{1}(0)=\alpha n_{0}$ , and therefore

at $t=0$ $x_{3}$ is shifted from its equilibrium $\overline{x}_{3}$ to the value:

$x_{3}^{0}= \frac{\gamma M_{0}}{K(\overline{E}+x_{1}(0))+\gamma}$ (17)

In conclusion, for the free macrophages we have

$\frac{dx_{3}}{dt}=-Kx_{1}(t)x_{3}(t)-K\overline{E}x_{3}(t)+\gamma(M_{0}-x_{3}(t-T))$ , $t>0$ (18)
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with i.c.

$x_{3}(s)=\overline{x}_{3}$ , $s\in[-T, 0$), $x_{3}(0)=x_{3}^{0}$ . (19)

2.3 Drug Equation

We denote the average drug concentration in the macrophages by $x_{4}(t)$ . If $V$ is the

total volume of macrophage population and $\beta=q_{0}/n_{0}$ is the average drug amount

for each loaded RBC, then the input for $x_{4}(t)$ is $\beta Kx_{1}(t)x_{3}(t)/V$ .

If the drug inside the macrophages is catabolized by an enzyme reaction we can

assume the average concentration of the drug sufficiently small s.t. $V_{m}x_{4}/(K_{m}+x_{4})\simeq$

$\eta x_{4}(i.e.x_{4}<<K_{m})$ where $V_{m},$ $K_{m}$ respectively are the averages of maximum catabolic

rate and affinity constant on the macrophage population, and $\eta=V_{m}/K_{m},$ $[\eta]=$

$[day^{-1}]$ . Therefore

$\frac{dx_{4}}{dt}=\frac{\beta}{V}Kx_{1}(t)x_{3}(t)-\eta x_{4}(t)$ , $\forall t>0$ (20)

with $x_{4}(0)=0$ .

2.4 Total Model Equations

In conclusion, the model equations are given (for $t>0$ ) by

$\frac{dx_{1}}{dt}=-Kx_{1}(t)x_{3}(t)+n(t,\overline{a})$ , $x_{1}(0)=\alpha n_{0}$

$x_{2}(t)=M_{0}-x_{3}(t)$ , $x_{2}(s)=\overline{x}_{2}$ , $s\in[-T, 0$), $x_{2}(0)=x_{2}^{0}$

$\frac{dx_{3}}{dt}=-Kx_{1}(t)x_{3}(t)-K\overline{E}x_{3}(t)+\gamma x_{2}(t-T)$ , (21)

$x_{3}(s)=\overline{x}_{3},$ $s\in[-T, 0$)
$,$

$x_{3}(0)=x_{3}^{0}$

$\frac{dx_{4}}{dt}=\frac{\beta}{V}Kx_{1}(t)x_{3}(t)-\eta x_{4}(t)$ , $x_{4}(0)=0$
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where

$n(t,\overline{a})=\{\begin{array}{l}\varphi(\overline{a}-t),t\in[0,\overline{a}]0,t>\overline{a}\end{array}$

and the constraints on the parameters are

$K\overline{E}>\gamma$, $\gamma T=1$ . (22)

3 Problems

We can prove easily the following basic properties of the solutions:

a) positivity;

b) boundedness ;

c) asymptotic stability of $(x_{1}=0, x_{2}=\overline{x}_{2}, x_{3}=\overline{x}_{3}, x_{4}=0)$ .

Let $m$ be the average drug concentration in the macrophages beyond which the

drug has therapeutic effect, and let $M$ be the average drug concentration in the

macrophages beyond which the drug has cytotoxic effect, where

$0<m<M$ . (23)

The control problem (C.P.) can be formulated as follows:

C.P. How to choose $\varphi$ : $[0,\overline{a}]arrow\Re_{+},$ $\varphi\in C^{1}([0,\overline{a}]))$ and $\alpha\in[0,1]$ s.t.

i) $\exists t_{1},$ $t_{2}\in\Re_{+}(t_{1}<t_{2})$ satisfying $m<x_{4}(t)<M$ for $\forall t\in(t_{1}, t_{2})$ and $x_{4}(t_{1})=$

$x_{4}(t_{2})=m$ ;

ii) $\Delta t=i_{2}-t_{1}$ be maximum;

$i\ddot{u})n_{0}=\int_{0}^{\overline{a}}\varphi(a)da/(1-\alpha),$ $n_{0}\in[n_{1}, n_{2}]$ be minimum.
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4 Control Problem

Here we will consider the C.P. and give an estimate for the time duration $\triangle t$ where

drug administration is effective.

Let us consider (21) for $t\in[0,\overline{a}]$ . Then

$n(t,\overline{a})=\varphi(\overline{a}-t)$ , $\forall t\in[0,\overline{a}]$ . (24)

Let $\sigma$ be the average value of $\varphi$ over $[0,\overline{a}]$ :

$\sigma=\frac{1}{\overline{a}}\int_{0}^{\overline{a}}\varphi(a)da$ . (25)

Since $\int_{0^{\overline{a}}}\varphi(a)da=n_{0}(1-\alpha)$ , we have

$\sigma=\frac{n_{0}(1-\alpha)}{\overline{a}}$ . (26)

Furthermore, we denote by

$\rho=\max\varphi(a)$ , $\mu=\min\varphi(a)$ . (27)
$a\in[0,\overline{a}]$ $a\epsilon[0,\overline{a}]$

Denoted by $u_{3}(t)=x_{3}(t)-\overline{x}_{3},\overline{u}_{3}=x_{3}^{0}-\overline{x}_{3}$, it is easy to show that

$\overline{x}_{3}-\delta<x_{3}(t)<\overline{x}_{3}+\delta$, $\forall t\geq 0$ (28)

where

$\delta^{2}=\max\{\overline{u}_{3}^{2}, \frac{KL}{2(K\overline{E}-\gamma)}\overline{x}_{3}^{2}\}$ (29)

and $L$ is a bound for $x_{1}$ , that is,

$0<x_{1}(t)<L$ , $\forall t>0$ . (30)

Of course $L_{0}=n_{0}$ is a bound for $x_{1}(t)$ . Therefore

$c_{0}^{-}=\overline{x}_{3}-\delta_{0}<x_{3}(t)<\overline{x}_{3}+\delta_{0}=c_{0}^{+}$ (31)



84

where $\delta_{0}$ is defined according to (29) with $L=L_{0}$ . Provided that $c_{0}^{-}>0$ , by using

the 1st equation in (21) with (31), for $x_{1}$ we have the better estimate as

$0<x_{1}(t)<L_{1}= \alpha n_{0}+\frac{\rho}{Kc_{0}^{-}}$ , $\forall t>0$ . (32)

By using this estimate in (28) we obtain

$c_{1}^{-}=\overline{x}_{3}-\delta_{1}<x_{3}(t)<\overline{x}_{3}+\delta_{1}=c_{1}^{+}$ (33)

where $\delta_{1}$ is obtained from (29) with $L=L_{1}$ . From the 1st and $4^{th}$ equation in (21)

we get

$\frac{dx_{4}}{dt}=\frac{\beta}{V}\varphi(\overline{a}-t)-\eta x_{4}-\frac{\beta}{V}\frac{dx_{1}}{dt}$, $\forall t\in[0,\overline{a}]$ (34)

$-Kc_{1}^{+}x_{1}+ \mu<\frac{dx_{1}}{dt}<-Kc_{1}^{-}x_{1}+\rho$, $\forall t\in[0,\overline{a}]$ . (35)

Thanks to (34),(35) and provided that

$\frac{\mu}{Kc_{1}^{+}}<x_{1}(0)=\alpha n_{0}<\frac{\rho}{Kc_{1}^{-}}$ (36)

we finally obtain

$- \eta x_{4}+\frac{\beta}{V}\sigma^{-}<\frac{dx_{4}}{dt}<-\eta x_{4}+\frac{\beta}{V}\sigma^{+}$ , $x_{4}(0)=0$ (37)

where

$\sigma^{-}=(\frac{c_{1}^{-}}{c_{1}^{+}})\mu-(\rho-\mu)$ , $\sigma^{+}=(\frac{c_{1}^{+}}{c_{1}^{-}})\rho+(\rho-\mu)$ . (38)

Of course, we must choose $\varphi(a)$ with $\rho=\max\varphi,\mu=\min\varphi$ in order that $\sigma^{-}>0$ .

Then

$x_{4}^{-}(t)= \frac{\beta}{V}\frac{\sigma^{-}}{\eta}(1-e^{-\eta t})<x_{4}(t)<x_{4}^{+}(t)=\frac{\beta}{V}\frac{\sigma^{+}}{\eta}(1-e^{-\eta t})$, $t\in[0,\overline{a}]$ (39)

and for $t>\overline{a}$

$x_{4}^{-}(t)= \frac{\beta}{V}\frac{\sigma^{-}}{\eta}e^{-\eta(t-\overline{a})}<x_{4}(t)$ . (40)

The C.P. has a solution if

$m< \frac{\beta}{V}\frac{\sigma^{-}}{\eta})$ $\frac{\beta}{V}\frac{\sigma^{+}}{\eta}<M$. (41)
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If we denote the time $\overline{t}_{t}(i=1,2)$ satisfying $x_{4}^{-}(t_{i})=m,\overline{t}_{1}>t_{1}$ and $\overline{t}_{2}<t_{2}$ , then

duration of therapeutic effect is s.t.

$\Delta t=t_{2}-t_{1}>\overline{t}_{2}-\overline{t}_{1}=\overline{a}+\frac{1}{\eta}\log(\frac{\beta}{V}\frac{\sigma^{-}}{\eta}\frac{1}{m}-1)$ . (42)

In order to have $\triangle t>\overline{a}$ it is sufficient that

$\sigma^{-}>2m\eta\frac{V}{\beta}$ , where $\sigma^{-}=(\frac{c_{1}^{-}}{c_{1}^{+}})\mu-(\rho-\mu)$ . (43)

Therefore

$\sigma=\frac{n_{0}(1-\alpha)}{\overline{a}}>\mu=\min\varphi(a)>(\frac{c_{1}^{+}}{c_{1}^{-}})[2m\eta\frac{V}{\beta}+(\rho-\mu)]$ .

If we assume a constant age distribution, i.e.

$n(t,\overline{a})=\{\begin{array}{l}\varphi(\overline{a}-t)=\sigma t\in[0,\overline{a}]0t>\overline{a})\end{array}$ (44)

then we have $\rho=\mu$ . Hence in order to have $\Delta t>\overline{a}$ , it is sufficient

$\sigma=\frac{n_{0}(1-\alpha)}{\overline{a}}>(\frac{c_{1}^{+}}{c_{1}^{-}})2m\eta\frac{V}{\beta}$.

Therefore the above two inequalities suggest that a constant age distribution of the

drug loaded RBC may be the best choice for the C.P. since, in agreement with the

requirement iii) of C.P., the constant age distribution (44) requires a lower amount

$n_{0}$ of drug loaded RBC. A detailed analysis of the model and of the related C.P. will

be presented in a future paper by the same authors.
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