<table>
<thead>
<tr>
<th>Title</th>
<th>LOGICAL FORMULAS FOR PETRI NET ω-LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YAMASAKI, Hideki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1994), 871: 52-58</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84057</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
LOGICAL FORMULAS FOR PETRI NET
\(\omega \)-LANGUAGES

Hideki YAMASAKI
（山崎 秀記， 一橋大学）

Department of Mathematics, Hitotsubashi University
Kunitachi, Tokyo 186 Japan

Abstract

In this paper, we study Petri net \(\omega \)-languages and logical formulas defining \(\omega \)-languages. We consider some accepting conditions for Petri nets, and characterize the classes of Petri net \(\omega \)-languages with these accepting conditions by logical formulas.

1 Preliminary

The set of integers \(\{0, 1, -1, 2, -2, \ldots \} \) is denoted by \(\mathbb{Z} \), and the set of nonnegative integers is denoted by \(\mathbb{N} \). For sets \(X \) and \(Y \), \(Y^X \) denotes the set \(\{f \mid f : X \to Y \} \) of all functions from \(X \) to \(Y \). For a finite set \(X = \{x_1, x_2, \ldots, x_n\} \), a function \(f \in \mathbb{Z}^X \) is identified with the \(n \)-dimensional vector \((f(x_1), f(x_2), \ldots, f(x_n))\). Then for functions \(f, g \in \mathbb{Z}^X \) and \(z \in \mathbb{Z} \), the addition \(f + g \), the scalar product \(zf \), and the partial ordering \(f \leq g \) are defined componentwise as usual.

Let \(\Sigma \) be an alphabet. We call a mapping \(\alpha \in \Sigma^\mathbb{N} \) an \(\omega \)-word over \(\Sigma \), and write \(\alpha = a_0a_1a_2\ldots \) where \(a_n = \alpha(n) \) for each \(n \). The set of all \(\omega \)-words over \(\Sigma \) is denoted by \(\Sigma^\omega \), and that of all finite words over \(\Sigma \) is denoted by \(\Sigma^* \) as usual.

If \(u = \alpha(0)\ldots\alpha(n) \) for some \(n \), then \(u \) is called a prefix of \(\alpha \) and we write \(u \prec \alpha \). For \(\alpha \in \Sigma^\omega \), we define \(\downarrow \alpha = \{v \in \Sigma^* \mid v \prec \alpha\} \); \(\alpha = \{a \mid a = \alpha(n) \text{ for some } n\} \), and \(\alpha = \{a \mid a = \alpha(n) \text{ for infinitely many } n\} \). For \(L \subseteq \Sigma^\omega \), we define \(\downarrow L = \bigcup_{\alpha \in L} \downarrow \alpha \).

For \(K \subseteq \Sigma^* \) and \(L \subseteq \Sigma^\omega \), we define \(KL = \{u\alpha \mid u \in L \text{ and } \alpha \in K\} \) and \(K^\omega = \{v_1v_2\ldots v_1, v_2, \ldots \in K - \{\epsilon\}\} \), where \(u\alpha \) is the \(\omega \)-word obtained by concatenating \(u \) before \(\alpha \), and \(v_1v_2\ldots \) is the \(\omega \)-word obtained by concatenating \(v_1, v_2, \ldots \) one after another.

We can consider \(\Sigma^\omega \) a metric space with the distance \(d \) defined by:

\[
d(\alpha, \beta) = \begin{cases}
0, & \text{if } \alpha = \beta \\
2^{-k}, & \text{if } \alpha \neq \beta \text{ and } k = \text{Min}\{n \mid \alpha(n) \neq \beta(n)\}.
\end{cases}
\]

Then \(L \subseteq \Sigma^\omega \) is a closed set if and only if \(L = \{\alpha \mid \downarrow \alpha \subseteq \downarrow L\} \).

In this paper, when we mention a net or a Petri net \(N \), we mean a marked \(\lambda \)-free labelled Petri net \(N = (P, T, A, e, m_0, F) \), where \(P \) is a finite set of places, \(T \) a finite set of transitions, \(A : T \to \mathbb{N}^P \times \mathbb{N}^P, e \in \Sigma^T \) a \(\lambda \)-free labelling function, \(m_0 \in \mathbb{N}^P \) an initial marking, and \(F \subseteq \mathbb{N}^P \) a finite set of accepting markings.

A marking \(m \) of a Petri net \(N \) is a function in \(\mathbb{N}^P \), i.e., an assignment of tokens to the places. We say that the place \(p \) has \(m(p) \) tokens at the marking \(m \). For each transition \(t \), \(A(t) = \langle \ast A(t), A(t)^\ast \rangle \) assigns a pair of functions \(\ast A(t) \) and \(A(t)^\ast \) called the input and output vector of \(t \), respectively.

Example 1

Let \(N = (\{p\}, \{s, t\}, A, e, \langle 0, \{0\}, \{\{2\}\} \rangle) \), where \(A(s) = \langle \{0\} \}, A(t) = \langle \{1\}, \{0\} \rangle, e(s) = a \)
and $e(t) = b$. Then the Petri net N is illustrated as follows.

```
  a  b
   |   |
   p   t
```

A transition t is fireable in a marking m if $m \geq *A(t)$, and if so, t may be fired at m resulting in the marking

$$m' = m - *A(t) + A(t)^*.$$

In this case, we write $m[t]$ or $m[t]m'$. Intuitively, t removes $*A(t)(p)$ tokens from the place p, and distributes $A(t)^*(p)$ tokens to p, when t fires.

The definitions and notations are extended to finite or infinite sequences of transitions. That is, $m[t_1t_2\ldots t_n]$ or $m[t_1t_2\ldots t_n]m'$ if $m[t_1]m_2\ldots m_{n-1} [t_n]m'$, and $m(\alpha)$ if $m(\alpha(0))m_1(\alpha(1))m_2\ldots$.

We define infinite behaviour of a Petri net N as the homomorphic image of infinite firing sequences by the λ-free labelling function e. For a Petri net $N = (P,T,A,e,m_0,F)$ and $\alpha \in T^\omega$, we define $N(\alpha) = m_0m_1m_2\ldots$ if $m(\alpha(0))m_1(\alpha(1))m_2\ldots$. Let

$$\uparrow F = \{m' | m' \geq m \text{ for some } m \in F\}.$$

Then we consider the following five types of ω-languages accepted by N:

$$L_0(N) = \{e(\alpha) | m_0(\alpha)\},$$

$$L_1(N) = \{e(\alpha) | N(\alpha) \cap \uparrow F \neq \phi\},$$

$$L_2(N) = \{e(\alpha) | \overline{N(\alpha)} \subseteq \uparrow F\},$$

$$L_3(N) = \{e(\alpha) | N(\alpha) \cap \uparrow F \neq \phi\},$$

$$L_4(N) = \{e(\alpha) | \overline{N(\alpha)} \subseteq \uparrow F\}.$$

We define $P_i = \{L_i(N) | N \text{ is a Petri net over } \Sigma\}$ ($i = 0, \ldots, 4$). The accepting conditions considered in [2, 3] are defined by F instead of $\uparrow F$.

Example 2 For the Petri net N in the previous example, $L_0(N) = \{\alpha | \#_a(u) \geq \#_b(u) \text{ for any } u < \alpha\}$, $L_1(N) = L_0(N) - (ab)^\omega$, $L_2(N) = \phi$, $L_3(N) = L_0(N) - D(ab)^\omega$, and $L_4(N) = \{u | \#_a(u) = \#_b(u) + 2\}L_0(N) \cap L_0(N)$, where $\#_a(u)$ is the number of occurrence of the letter a in the string u.

Let $M = (Q, \Sigma, \delta, s, F)$ be a nondeterministic finite automaton with the finite set Q of states, the input alphabet Σ, the transition relation $\delta \subseteq Q \times \Sigma \times Q$, the initial state s, and the set F of accepting states. Any $\alpha = \langle q_0, a_0, p_0 \rangle \langle q_1, a_1, p_1 \rangle \langle q_2, a_2, p_2 \rangle \ldots \in \delta^\omega$ is called a run of M, if $q_0 = s$ and $q_i = q_{i+1}$ for any i. For a run α of M, we define $M(\alpha) = q_0q_1q_2q_3\ldots$ and $\Sigma(\alpha) = a_0a_1a_2\ldots$.

Then we can also define the following five types of ω-languages accepted by M:

$$L_0(M) = \{\Sigma(\alpha) | \alpha \text{ is a run of } M\},$$

$$L_1(M) = \{\Sigma(\alpha) | M(\alpha) \cap F \neq \phi\},$$

$$L_2(M) = \{\Sigma(\alpha) | \overline{M(\alpha)} \subseteq F\},$$

$$L_3(M) = \{\Sigma(\alpha) | M(\alpha) \cap F \neq \phi\},$$

$$L_4(M) = \{\Sigma(\alpha) | \overline{M(\alpha)} \subseteq F\}.$$

We define $E_i = \{L_i(M) | M \text{ is a nondeterministic finite automaton over } \Sigma\}$ ($i = 0, \ldots, 4$).

2 Inclusion relations

In the case of ω-languages accepted by nondeterministic finite automata, it is known that

$$E_0 = E_2 \subset E_1 = E_4 \subset E_3 \subset \{4, 5, 7\}.$$

We show the similar results for the classes P_i of Petri net ω-languages.

As a tool of the proofs in this section, we define a new accepting condition for a Petri net, which is described by a language over
transitions. Let \(N = (P, T, A, e, m_0, \phi) \) and \(R \subseteq T^\omega \). We define

\[
L(N, R) = \{e(\alpha) \mid m_0[\alpha] \text{ and } \alpha \in R\}.
\]

In the proof of the following theorems, we use the following notations to simplify the description. For \(f \in \mathbb{Z}^X \) and \(g \in \mathbb{Z}^Y \), \(f \oplus g \) denotes the function in \(\mathbb{Z}^{X \cup Y} \), defined by

\[
f \oplus g(z) = \begin{cases}
 f(z) + g(z), & \text{if } z \in X \cap Y \\
 f(z), & \text{if } z \in X \\
 g(z), & \text{if } z \in Y.
\end{cases}
\]

For \(n \in \mathbb{N} \) and a set \(X \), \(n^X \) denote the constant function in \(\mathbb{N}^X \) such that \(n^X(z) = n \) for any \(z \in X \). If \(X \) is a singleton \(\{z\} \), then we write \(n^z \) instead of \(n^{\{z\}} \). Thus, for example, for \(p_0 \in P \),

\[
0^p \oplus 1^p(p) = \begin{cases}
 1, & \text{if } p = p_0 \\
 0, & \text{if } p \neq p_0.
\end{cases}
\]

Theorem 1 For any \(i = 0, \ldots, 4 \), \(P_i = \{L(N, R) \mid N \) is a Petri net and \(R \in E_i\} \).

Proof. Let \(N = (P, T, A, e, m_0, \phi) \) and \(M = (Q, \Sigma, \delta, s, F) \) be a finite automaton such that \(L_i(M) = R \). We define the Petri net \(N' = (P \cup Q, \delta, A', e', m_0 \oplus 1^S \oplus 0^Q, \{0^p \oplus 1^q \oplus 0^Q \mid q \in E \}) \), where \(A'(\langle q, t, q' \rangle) = \langle A(t) \oplus 1^q \oplus 0^Q, A(t)^* \oplus 1^q \oplus 0^Q \rangle \), and \(e'(\langle q, t, q' \rangle) = e(t) \) for any \(\langle q, t, q' \rangle \). Intuitively, \(N' \) is a product of \(N \) and \(M \), and simulates \(N \) and \(M \), simultaneously. Thus it is clear that \(L(N, R) = L(N, L_i(M)) = L_i(N') \).

Let \(N = (P, T, A, e, m_0, F) \) and \(L = L_i(N) \). For each \(t \in T \) and \(m \in F \), we add new transition \(t_m \) to \(N \), such that \(m_1[t_m]m_2 \) if and only if \(m_1 \geq m \) and \(m_1[t_m]m_2 \). Since \(m_1 \geq m \in F \) means \(m_1 \in \uparrow F \), \(t_m \) works same as \(t \), and can check whether the current marking is in \(\uparrow F \) or not.

We construct \(N' = (P, T \cup T_F, A', e', m_0, \phi) \), where \(T_F = \{t_m \mid t \in T \) and \(m \in F \} \), \(A'(t) = A(t) \) and \(e'(t) = e'(t_m) = e(t) \), for each \(t \in T \) and \(m \in F \). Moreover, \(A'(t_m) = \langle A'(t_m), A'(t_m)^* \rangle \) with

\[
A(t_m)(p) = \text{Max}(A(t)(p), m(p)),
\]

\[
A(t_m)^*(p) = A(t_m)(p) + A(t)^*(p) - A(t)(p),
\]

for any \(p \in P \).

Then it is clear that \(L_0(N) = L(N', T^\omega) \), \(L_1(N) = L(N', T^*T_F T^\omega) \), \(L_2(N) = L(N', T^F) \), \(L_3(N) = L(N', T^*T_F T^\omega) \), \(L_4(N) = L(N', T^*T^*_F \omega) \). \(\square \)

Corollary 2 \(P_0 \subseteq P_1 \subseteq P_4 \subseteq P_3 \).

Proof. It is clear from the Theorem 1 and the results for \(E_i \)'s. \(\square \)

In the sequel, we only consider the case \(i = 0, 1, 3 \). To prove the strict inclusions between these classes, we prove the following topological properties of the classes \(P_0 \) and \(P_1 \).

Lemma 3 For any Petri net \(N \), \(L_0(N) \) is a closed set, and \(L_1(N) \) is a denumerable union of closed sets.

Proof. Let \(N = (P, T, A, e, m_0, F) \), and \(\downarrow \alpha \subseteq \downarrow L_0(N) \). We will show that \(\alpha \in L_0(N) \). Consider the set \(C = \{w \mid e(w) < \alpha, \) and \(m_0[w]\} \) of all the fireable finite sequences generating the prefixes of \(\alpha \). Then \(C \) is infinite. By König's Lemma, there exists \(\beta \in T^\omega \) such that \(\downarrow \beta \subseteq C \). It means that \(m_0[\beta] \) and \(e(\beta) = \alpha \). Hence \(\alpha \in L \).

Let \(N_m = (P, T, A, e, m, F) \) for \(m \in \mathbb{N} \).

Then, \(L_1(N) = \bigcup \{e(w)L_0(N_m) \mid m_0[w]m \in \uparrow F\} \), which is a denumerable union of closed sets. \(\square \)

Then the next theorem follows from the topological characterizations of \(\omega \)-regular languages [4, 5].

Theorem 4 \(P_0 = P_2 \subseteq P_1 = P_4 \subseteq P_3 \).
Theorem 5 The classes P_i ($i = 0, 1, 3$) of Petri net ω-languages are closed under union, intersection, and projection.

Proof. Let $N_j = (P_j,T_j,A_j,e_j,m_j,\phi)$ for $j = 1, 2$. We define a Petri net N which can simulate N_1 and N_2 simultaneously, as follows. $N = (P_1 \cup P_2, T, A, e, m_1 \oplus m_2, \phi)$, where $T = \{ (t_1, t_2) \in T_1 \times T_2 \mid e_1(t_1) = e_2(t_2) \}$, $A'((t_1, t_2)) = \langle *A_1(t_1) \oplus *A_2(t_2), A_1(t_1)^* \oplus A_2(t_2)^* \rangle$, $e((t_1, t_2)) = e_1(t_1)$, for any $(t_1, t_2) \in T$. For any $R_j \subseteq T_j^\omega$ ($j = 1, 2$), let $R_0 = \{ \alpha \mid \alpha \in R_1 \text{ or } \alpha \in R_2 \}$, $R_n = \{ \alpha \mid \alpha \in T^\omega \text{ and } \alpha_i \in R_1 \text{ or } \alpha_i \in R_2 \}$, where α_i is the ω-word over T_j obtained by concatenating j-th elements of $\alpha(i)$ for $i = 0, 1, \ldots$. Then it is clear that $L(N_1, R_1) \cup L(N_2, R_2) = L(N, R_0)$, $L(N_1, R_1) \cap L(N_2, R_2) = L(N, R_n)$.

The closure under projection is clear from the definition. □

3 Normal form of Petri nets

We define a normal form of Petri nets and show that any Petri net can be transformed into a normal form Petri net.

We say that a Petri net $N = (P, T, A, e, m_0, F)$ is in normal form if
1) there exists a place $p_0 \in P$ such that $m_0 = 1^{p_0} \oplus 0^P$,
2) there exists a place p_f such that $F = \{ 1^{p_f} \oplus 0^P \}$,
3) for any transition t fireable at markings in $\uparrow F$, $*A(t)(p_f) = 1$,
4) for any $p \in P$, and $t \in T$, $*A(t)(p) \leq 1$ and $A(t)^*(p) \leq 1$, that is, each place p gets or lose at most one token at once.

Theorem 6 For any Petri net N, we can construct a Petri net N' in normal form such that $L_i(N) = L_i(N')$ for any $i = 0, 1, 3$.

Proof. First we show that any Petri net $N = (P, T, A, e, m_0, F)$ can be transformed into a Petri net $N' = (P', T', A', m'_0, e', F')$ which satisfies the conditions 1), 2) and 3). Let $P' = P \cup \{ p_0, p_e, p_f \}$ and $T' = T \cup \{ t' \mid m_0(t) \} \cup \{ t'' \mid t \in T \} \cup \{ t_m \mid t \in T$ and $m \in N \}$. We define

$A'(t) = \langle *A(t) \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f}, A'(t) \rangle$

$A'(t') = \langle 0^P \oplus 1^{p_0} \oplus 0^{p_c} \oplus 0^{p_f} \rangle$

$(m_0 - \cdot A(t) + A(t)^* \oplus 0^{p_0} \oplus 1^{p_c} \oplus 0^{p_f})$

$A'(t'') = \langle *A(t) \oplus 0^P \oplus 1^{p_c} \oplus 1^{p_f}, A(t)^* \oplus 0^P \oplus 0^{p_c} \oplus 0^{p_f} \rangle$

$A'(t_m) = \langle *A(t_m) \oplus 0^P \oplus 1^{p_c} \oplus 1^{p_f}, A(t_m)^* \oplus 0^P \oplus 0^{p_c} \oplus 1^{p_f} \rangle$

$e'(t) = e'(t) = e'(t') = e'(t_m) = e(t)$

$m'_0 = 1^{p_0} \oplus 0^P$, and $F = \{ 1^{p_f} \oplus 0^P \}$.

Then the Petri net N' satisfies 1), 2) and 3), and it is clear from the construction that $L_i(N) = L_i(N')$ for $i = 0, 1, 3$.

Next we show that we can decrease the number of places $q \in P'$ such that $Max \{ *A'(t)(q), A'(t)^*(q) \mid t \in T \} = n > 1$. Repeating the process, we can transform N' into a Petri net in normal form.

To construct $N'' = (P'', T'', A'', e'', m''_0, F'')$, we replace q by n new places q_1, q_2, \ldots, q_n. For each transition t, let $D_i (1 \leq i \leq k_t)$ and $E_j (1 \leq j \leq l_t)$ be the enumerations of the subsets of $\{ q_1, q_2, \ldots, q_n \}$ with $*A'(t)(q)$ and $A'(t)^*(q)$ elements, respectively. Then we also replace the transition t by $n_t \times m_t$ transitions $t_{i,j}$ ($1 \leq i \leq k_t$, $1 \leq j \leq l_t$) such that

$A''(t_{i,j})(p) = \begin{cases} *A'(t)(p), & \text{if } p \neq q \\ 1, & \text{if } p \in D_i \\ 0, & \text{if } p \not\in D_i \end{cases}$

$A''(t_{i,j})^*(p) = \begin{cases} A'(t)^*(p), & \text{if } p \neq q \\ 1, & \text{if } p \in E_j \\ 0, & \text{if } p \not\in E_j \end{cases}$

and $e''(t_{i,j}) = e(t)$.
Note that on the Petri net N'', the tokens in q on N' are distributed to the places q_1, q_2, \cdots, q_n, and the arcs from or to q in N' are also distributed to these places.

It is easy to see that the $L_i(N') = L_i(N'')$ for $i = 0, 1, 3$. □

4 Characterizations by logical formulas

We define the monadic second-order theory K over an alphabet Σ for natural numbers, which is introduced by Parigot and Pez [2, 3]. K has two sorts of variables, number variables x, y, \ldots ranging over \mathbb{N}, and set variables X, Y, \ldots ranging over the power set of \mathbb{N}. K also has set constants P_a for each $a \in \Sigma$.

The terms of K are expressions of form n or $x + n$, where x is a number variable and n is a constant in \mathbb{N}. The atomic formulas of K are expressions of form $u \leq t$, $t \in W$ or $V \leq W$, where u, t are terms and V, W are set variables or P_a for some $a \in \Sigma$. Here, \leq and \in are usual 'less than or equal to' and 'belong to' relations, and $V \leq W$ is true if and only if there exists a one to one function $f: W \to V$ such that $f(x) \leq x$ for any $x \in W$.

The formulas of K, called K-formulas, are defined as usual. That is, $\varphi \land \psi, \varphi \lor \psi, \lnot \varphi, \forall x \varphi, \exists x \varphi, \forall X \varphi, \exists X \varphi$ are formulas for any formula or atomic formula φ, ψ, number variable x and set variable X. We use bold-face quantifier symbols \forall and \exists for set variables to distinguish from those for number variables.

Note that the K-formulas not containing the symbol \leq is the S1S-formulas considered in Büchi [1].

We say that an ω-word $\alpha \in \Sigma^\omega$ satisfies K-sentence (i.e., formulas without free variables) ψ, if ψ is true under the interpretation $P_a = \{n | \alpha(n) = a\}$. Then, K-sentence ψ define the set $L(\psi)$ of all ω-words satisfying ψ. For a set of K-formulas Δ, we define that $L(\Delta) = \{L(\psi) | \psi \in \Delta\}$, the class of ω-languages defined by the sentences in Δ.

For a language R over quantifier symbols $\{\forall, \exists, \forall, \exists\}$, $[R]$ denotes the set of S1S-formulas of the prenex normal form

$\Xi_1 \xi_1 \Xi_2 \xi_2 \cdots \Xi_i \xi_i$, $\psi(\xi_1, \xi_2, \cdots, \xi_i)$,

where $\Xi_1 \Xi_2 \cdots \Xi_i$ is a string in R, and ψ is a quantifier-free formula.

On the relation between S1S-formulas and ω-regular languages, we have shown the following theorem [6].

Theorem 7 $E_0 = L(\exists^{*} \forall)$,

$E_1 = L(\exists^{*} \exists^{*} \forall^{*} \exists)$,

$E_3 = L(\exists^{*} \forall^{*} \exists^{*} \forall)$.

For any $\alpha \in (\Sigma_1 \times \Sigma_2 \times \cdots \times \Sigma_n)^\omega$, α_i is defined to be the ω-words obtained by concatenating the i-th elements of $\alpha(j)$ for $j = 0, 1, 2, \ldots$. We say that $\alpha \in (\{0, 1\}^{n+k} \times \Sigma)^\omega$ satisfies the formula $\psi(X_1, \ldots, X_n, x_1, \ldots, x_k)$, if $\alpha_{n+i} \in \Sigma^\omega$ satisfies $\psi(C_1, \ldots, C_n, d_1, \ldots, d_k)$, where $C_i = \{j | \alpha_i(j) = 1\}$ for $i = 1, \ldots, n$ and $\alpha_{n+i+1} = 1$ if and only if $j = d_i$ for $i = 1, \ldots, k$. We write $L(\alpha) = \{\alpha | \alpha$ satisfies $\psi\}$.

Now, we show the main theorem. Let Δ be a set of formulas and $\overline{\Delta}$ be the smallest set of formulas constructed from the atomic formulas $V \leq W$ and formulas in Δ using $\land, \lor, \forall, \exists$.

Theorem 8 If $L(\Delta) = E_i$, then $L(\overline{\Delta}) = P_i$ for $i = 0, 1, 3$.

Proof. $E_i \subseteq P_i$ from Theorem 1. Moreover the ω-language $L(X_1 \leq X_2) \subseteq (\{0, 1\}^2)^\omega$ is accepted by the following Petri net without the accepting condition.

\[
\begin{array}{cccc}
\langle 0, 0 \rangle & \langle 1, 1 \rangle & \langle 1, 0 \rangle & \langle 0, 1 \rangle \\
\end{array}
\]
Since each class of Petri net ω-languages is closed under union, intersection and projection, we have shown that the half part of the theorem.

Let \(N = (P, T, A, e, 0^P \oplus 1^P, \{0^P \oplus 1^P\}) \) be a Petri net in normal form. Note that in normal form Petri net, each place \(p \) can get or lose at most one token at once. To describe the infinite behaviour of the net \(N \), we use the following set variables,
- \(X_t \) to represent the time \(t \) fires,
- \(E^p \) to represent the time \(p \) gets a new token,
- \(S^p \) to represent the time \(p \) loses one token,
for each \(t \in T \) and \(p \in P \). Let

\[
\psi_1(z) = \bigvee_{t \in T} ((z \in X_t) \land (z \in P_{d(t)}))
\]
\[
\quad \land \left(\bigwedge_{t' \neq t} \neg(z \in X_{t'}) \right)
\]

which means that there exists a unique transition \(t \) that fires at time \(z \).

\[
\psi_2(z) = \bigwedge_{p \in P} ((z \in S_p) \land (z \in X_{t}))
\]
\[
\quad \leftrightarrow \bigvee_{t \in T} \ast A(t)(p) = 1
\]

which means that a place \(p \) loses a token at time \(z \) if and only if a transition \(t \) with \(\ast A(t)(p) = 1 \) fires at the same time \(z \).

\[
\psi_3(z) = \bigwedge_{p \in P} ((z + 1 \in E_p) \land (z \in X_{t}))
\]
\[
\quad \leftrightarrow \bigvee_{t \in T} \ast A(t)(p) = 1
\]

which means that a place \(p \) gets a token at time \(z + 1 \) if and only if a transition \(t \) with \(\ast A(t)(p) = 1 \) fires at time \(z \).

\[
\psi_4 = (0 \in E_{p_0}) \land (\bigwedge_{p \neq p_0} \neg(0 \in E_p))
\]

which represents the condition for the initial marking.

\[
\varphi_0 = true,
\]

\[
\varphi_1(y) = (y \in E_{p_f}),
\]

\[
\varphi_3(z, y) = (x \leq y) \land (y \in E_{p_f}),
\]

here \(\varphi_i \) is a formula to represent the accepting condition of type \(i, (i = 0, 1, 3) \). Finally,

\[
\psi_5 = \bigwedge_{p \in P} (E_p \preceq S_p)
\]

which means that each place \(p \) can lose only tokens which got previously.

Then, \(L_0(N) \) is defined by

\[
\exists_t \in T X_t \exists_p \in P E_p \exists_p \in P S_p (\forall x)\psi_5
\]
\[
(\psi_1(x) \land \psi_2(x) \land \psi_3(x) \land \psi_4 \land \varphi_0 \land \psi_5).
\]

\(L_1(N) \) is defined by

\[
\exists_t \in T X_t \exists_p \in P E_p \exists_p \in P S_p (\forall x \exists y)\psi_5
\]
\[
(\psi_1(x) \land \psi_2(x) \land \psi_3(x) \land \psi_4 \land \varphi_1(y) \land \psi_5).
\]

\(L_3(N) \) is defined by

\[
\exists_t \in T X_t \exists_p \in P E_p \exists_p \in P S_p (\forall y \exists x)\psi_5
\]
\[
(\psi_1(x) \land \psi_2(x) \land \psi_3(x) \land \psi_4 \land \varphi_3(y) \land \psi_5).
\]

Note that all \(\psi_1, \ldots, \psi_4 \) and \(\varphi_i \) (\(i = 0, 1, 3 \)) are S1S-formulas with no quantifiers. From Theorem 7, this completes the proof. □

References

